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Abstract: Applying the effective Lagrangian method, we study the flavor changing neutral current process 
within  the  minimal  supersymmetric  extension  of  the  Standard  Model,  where  baryon and  lepton  numbers  are  local
gauge  symmetries.  Constraints  on  the  parameters  are  investigated  numerically  with  the  experimental  data  for  the
branching ratio of . Additionally, we present the corrections to direct CP-violation in  and time-de-
pendent CP-asymmetry in . With appropriate assumptions on the parameters, we find the direct CP-viola-
tion  is very small, while one-loop contributions to  can be significant.
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I.  INTRODUCTION

b→ sγ

B̄→ Xsγ

Since  the  flavor  changing  neutral  current  process
(FCNC)  originates only from loop diagrams, it is
very sensitive to new physics beyond the Standard Mod-
el (SM). The updated average branching ratio for inclus-
ive  is [1]

BR(B̄→ Xsγ)exp = (3.32±0.15)×10−4, (1)

and  the  SM  prediction  at  next-next-to-leading  order
(NNLO) is [2-4]

BR(B̄→ Xsγ)SM = (3.40±0.17)×10−4. (2)

Though the  deviation  of  the  SM prediction  from experi-
mental results has been almost eliminated in the past few
years, it is helpful to constrain parameters of new physics.

The discovery  of  the  Higgs  boson at  the  Large  Had-
ron Collider (LHC) has made the SM the most successful
theory  in  particle  physics  to  date.  However,  because  of

the hierarchy problem and the missing gravitational inter-
action, it  is  believed  that  the  SM is  just  an  effective  ap-
proximation  of  a  more  fundamental  theory  at  a  higher
scale. Among the various proposed extensions of the SM,
supersymmetric models have been studied for decades.

As the simplest extension, the Minimal Supersymmet-
ric  Standard  Model  (MSSM)  [5-7]  solves  the  hierarchy
problem as well  as  the instability  of  the Higgs boson by
introducing  a  superpartner  for  each  SM  particle.  The
lightest supersymmetric particle (LSP) within this frame-
work also provides candidates for dark matter as weakly
interacting  massive  particles  (WIMPs).  However,  the
MSSM  cannot  naturally  generate  the  tiny  neutrino  mass
which is needed to explain the observation of neutrino os-
cillation.  To  acquire  neutrino  masses,  heavy  Majorana
neutrinos are introduced in the seesaw mechanism, which
implies  that  the  lepton numbers  are  broken.  Besides,  the
baryon  numbers  are  also  expected  to  be  broken  because
of  the  matter-antimatter  asymmetry  in  the  universe.  The
authors  of  Refs.  [8, 9]  have  presented  the  so-called
BLMSSM model,  in  which  the  baryon  and  lepton  num-
ber are locally gauged and spontaneously broken at TeV
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scale. The experimental bounds on proton decay lifetime
are the main motivation of the great desert hypothesis. In
the BLMSSM, proton decay can be avoided with discrete
symmetries called matter parity and R-parity [10]

S U(3)C ⊗S U(2)L⊗
U(1)Y ⊗U(1)B⊗U(1)L

c(t)

h→ γγ
h→ VV∗(V = Z,W)

b→ sγ

To  describe  the  symmetries  of  baryon  and  lepton
numbers, the gauge group is enlarged to 

. Corrections  to  various  observa-
tions  can  then  be  induced  from  new  gauge  boson  and
exotic  fields  within  this  scenario.  In  Ref.  [11], correc-
tions  to  the  anomalous  magnetic  moment  from one-loop
diagrams and  two-loop  Barr-Zee  type  diagrams  are  in-
vestigated  with  an  effective  Lagrangian  method.  One-
loop  contributions  to  the  electric  dipole  moment  in
the CP-violating BLMSSM are presented in Ref. [12]. To
account for the experimental data on the Higgs boson, the
authors  of  Ref.  [13]  have  studied  the  signals  of 
and  with  a  125  GeV  Higgs.  In  this
work, we  use  the  branching  ratio  to  constrain  the  para-
meters. Furthermore, we present the corrections to CP-vi-
olation  of  due  to  new  parameters  introduced  in
this model.

This  paper  is  organized as  follows.  In  Section II,  we
briefly  introduce  the  construction  of  the  BLMSSM  and
the interactions we need for our caculation. After that, we
present  the  one-loop  corrections  to  the  branching  ratio
and CP-violation with the effective Lagrangian method in
Section III. Numerical results are discussed in Section IV
and the conclusions are given in Section V.

II.  INTRODUCTION TO THE BLMSSM

S U(3)C ⊗S U(2)L ⊗U(1)Y ⊗U(1)B⊗U(1)L

The  BLMSSM  is  based  on  the  gauge  symmetry
. In order to can-

cel the anomalies of baryon number (B), the exotic quarks

Q̂4 ∼ (3,2,1/6,B4,0), Ûc
4 ∼ (3̄,1,−2/3,−B4,0), D̂c

4 ∼ (3̄,1,1/3,

−B4,0), Q̂c
5 ∼ (3̄,2,−1/6,−(1+B4),0), Û5 ∼ (3,1,2/3,1+B4,0),

D̂5 ∼ (3,1,−1/3,1+B4,0)
Φ̂B ∼

(1,1,0,1,0), φ̂B ∼ (1,1,0,−1,0)

L̂4 ∼ (1,2,−1/2,
0,L4), Êc

4 ∼ (1,1,1,0,−L4), N̂c
4 ∼ (1,1,0,0,−L4), L̂c

5 ∼ (1,2,1/2,
0,−(3+L4)), Ê5 ∼ (1,1,−1,0,3+L4), N̂5 ∼ (1,1,0,0,3+L4)

Φ̂L ∼ (1,1,0,0,−2), φ̂L ∼ (1,1,0,0,2)

X̂ ∼ (1,1,0,2/3+B4,0), X̂′ ∼ (1,1,0,−(2/3+
B4),0)

 are  introduced.  Baryon  number
is broken spontaneously after the Higgs superfields 

 acquire  nonzero  vacuum
expectation values (VEVs). To deal with the anomalies of
lepton  number  (L),  the  exotic  leptons 

are  introduced,  and 
are  responsible  for  the  breaking  of  lepton  number  [9].
The superfields 

, which mediate the decay of exotic quarks, are ad-
ded in this model to avoid their stability.

Given the superfields above, one can construct the su-
perpotential as

WBLMSSM =WMSSM+WB+WL +WX , (3)

WMSSMwhere  indicates  the  superpotential  of  MSSM,
and

WB=λQQ̂4Q̂c
5Φ̂B+λUÛc

4Û5φ̂B+λD
D̂c

4D̂5φ̂B+µBΦ̂Bφ̂B

+Yu4
Q̂4ĤuÛc

4+Yd4
Q̂4ĤdD̂c

4+Yu5
Q̂c

5ĤdÛ5+Yd5
Q̂c

5ĤuD̂5,

WL=Ye4
L̂4Ĥd Êc

4+Yν4
L̂4ĤuN̂c

4 +Ye5
L̂c

5ĤuÊ5+Yν5
L̂c

5ĤdN̂5

+YνL̂ĤuN̂c+λNc N̂cN̂cφ̂L +µLΦ̂Lφ̂L ,

WX =λ1Q̂Q̂c
5X̂+λ2ÛcÛ5X̂′+λ3D̂cD̂5X̂′+µX X̂X̂′ .

(4)

The soft breaking terms are given by

Lsoft =LMSSM
soft − (m2

Ñc )IJ Ñc∗
I Ñc

J −m2
Q̃4

Q̃†4Q̃4−m2
Ũ4

Ũc∗
4 Ũc

4 −m2
D̃4

D̃c∗
4 D̃c

4−m2
Q̃5

Q̃c†
5 Q̃c

5−m2
Ũ5

Ũ∗5Ũ5−m2
D̃5

D̃∗5D̃5−m2
L̃4

L̃†4L̃4−M2
ν̃4
ν̃c∗4 ν̃

c
4

−m2
Ẽ4ẽc∗

4 ẽc
4−m2

L̃5
L̃c†

5 L̃c
5−M2

ν̃5
ν̃∗5ν̃5−m2

Ẽ5
ẽ∗5ẽ5−m2

ΦB
Φ∗BΦB−m2

φB
φ∗BφB−m2

ΦL
Φ∗LΦL −m2

φL
φ∗LφL − (mBλBλB+mLλLλL +h.c.)

+
{
Au4

Yu4
Q̃4HuŨc

4 +Ad4
Yd4

Q̃4HdD̃c
4+Au5

Yu5
Q̃c

5HdŨ5+Ad5
Yd5

Q̃c
5HuD̃5+ABQλQQ̃4Q̃c

5ΦB+ABUλUŨc
4Ũ5φB

+ABDλDD̃c
4D̃5φB+BBµBΦBφB+h.c.

}
+

{
Ae4

Ye4
L̃4Hd Ẽc

4+AN4
YN4

L̃4HuÑc
4 +Ae5

Ye5
L̃c

5HuẼ5+AN5
Yν5

L̃c
5HdÑ5

+ANYN L̃HuÑc+ANcλNc ÑcÑcφL +BLµLΦLφL +h.c.
}
+

{
A1λ1Q̃Q̃c

5X+A2λ2ŨcŨ5X′+A3λ3D̃cD̃5X′+BXµXXX′+h.c.
}
.
(5)

LMSSM
soft

S U(3)C ⊗S U(2)L ⊗U(1)Y ⊗U(1)B⊗U(1)L

U(1)e vu,vd

vB, v̄B,vL, v̄L S U(2)L Hu,Hd

S U(2)L ΦB,φB,ΦL,φL

The first term  denotes the soft breaking terms
of  the  MSSM.  To  break  the  gauge  symmetry  from

 to electromag-
netic  symmetry ,  nonzero  VEVs  and

 are  allocated  to  the  doublets 
and  singlets :

Hu =

(
H+u

(vu+H0
u + iP0

u)/
√

2

)
,

Hu =

(
(vd +H0

d + iP0
d)/
√

2
H−d

)
,

ΦB =(vB+Φ
0
B+ iP0

B)/
√

2,

φB =(v̄B+φ
0
B+ iP̄0

B)/
√

2,

ΦL =(vL +Φ
0
L + iP0

L)/
√

2,

φL =(v̄L +φ
0
L + iP̄0

L)/
√

2. (6)

tanβ = vu/vd, tanβB = v̄B/vBHere we take the notation  and
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tanβL = v̄L/vL

b→ sγ

.  After  spontaneous  breaking  and  unitary
transformation from interactive eigenstate to mass eigen-
state, one can extract  the  Feynman rules  and mass  spec-
tra  in  the  BLMSSM.  The  mass  matrices  of  the  particles
that mediate the one-loop process  can be found in
Ref. [14]. The Feynman rules that we need can be extrac-
ted from the  following  terms,  where  all  the  repeated  in-
dices of generation should be summed over:

LH±du =

(
−Y I

dZ1i
H PL +Y J

u Z2i
H PR

)
KJI∗d̄IuJ H−i ,

LD̃χ0d =

[(
−e

√
2sWcW

ZIi
D(

1
3

Z1 j
N sW −Z2 j

N cW )+Y I
dZ(I+3)i

D Z3 j
N

)
PL

+

(
−e
√

2
3cW

Z(I+3)i
D Z1 j∗

N +Y I
dZIi

DZ3 j∗
N

)
PR

]
χ̄0

jd
I D̃+i ,

LD̃χ0
Bd =

√
2

3
gB

(
Z1 j

NB
ZIi

DPL +Z1 j∗
NB

Z(I+3)i
D PR

)
χ̄0

B j
dI D̃+,

LŨχ−d =

[(
−e
sW

ZJi∗
U Z1 j

+ +Y J
u Z(J+3)i∗

U Z2 j
+

)
PL −Y I

dZJi∗
U Z2 j∗

− PR

]
×KJI χ̄−dŨ−,

LXb′d =

[
λ1(W†b ) j1(ZX)1kPL −λ∗3(U†b) j2(ZX)2kPR

]
b̄′jd

I Xk,

Lb̃′ X̃d =−
[
λ1(W∗b̃′ )3ρPL +λ

∗
3(Wb̃′ )4ρPR

]
¯̃XdI b̃′ρ,

LD̃ΛGd =g3
√

2Ya
αβ

(
−ZIi

DPL +Z(I+3)i
D PR

)
Λ̄a

GdI
βD̃
+
iα.

(7)

The interactions from the MSSM are collected from Ref.
[7]  for  completeness,  and  the  Feynman gauge  is  used  in
our derivation to stay consistent with the MSSM sector.

b→ sγIII.  ONE-LOOP CORRECTIONS TO 
FROM THE BLMSSM

b→ sγ
µ = O(mb)

The flavor transition process  can be described
by  the  effective  Hamiltonian  at  scale  as fol-
lows [15-17]:

Heff(b→ sγ) =− 4GF√
2

V∗tsVtb

[
C1Qc

1+C2Qc
2

+

6∑
i=3

CiQi+

8∑
i=7

(CiQi+ C̃iQ̃i)
]
, (8)

and the operators are given by Ref. [18-22]:

Oc
1 =(s̄LγµT abL)(c̄Lγ

µT abL),
Oc

2 =(s̄LγµbL)(c̄Lγ
µT abL),

O3 =(s̄LγµbL)
∑

q

(q̄γµq),

O4 =(s̄LγµT abL)
∑

q

(q̄γµT aq),

O5 =(s̄LγµγνγρbL)
∑

q

(q̄γµγµγνγρq),

O6 =(s̄LγµγνγρT abL)
∑

q

(q̄γµγµγνγρT aq),

O7 =e/g2
smb(s̄LσµνbR)Fµν,

O8 =1/g2
smb(s̄LσµνT abR)Ga,µν,

Õ7 =e/g2
smb(s̄RσµνbL)Fµν,

Õ8 =1/g2
smb(s̄RσµνT abL)Ga,µν. (9)

O7,8

Õ7,8

The coefficients of these operators can be extracted from
Feynman  amplitudes  that  originate  from  the  diagrams
considered.  Actually  only  the  coefficients  of  and

 are  needed  if  we  adopt  the  branching  ratio  formula
presented in Ref. [15]:

BR(B̄→ Xsγ)NP =10−4×
{

(3.32±0.15)

+
16π2a77

α2
s(µb)

[|C7,NP(µEW )|2+ |C̃7,NP(µEW )|2]
+

16π2a88

α2
s(µb)

[|C8,NP(µEW )|2+ |C̃8,NP(µEW )|2]
+

4π
αs(µb)

Re
[
a7C7,NP(µEW )+a8C8,NP(µEW )

+
4πa78

αs(µb)
(
C7,NP(µEW )C8,NP(µEW )

+ C̃7,NP(µEW )C̃8,NP(µEW )
)]}
,

(10)

C7,NP(µEW )
C8,NP(µEW ) C̃7,NP(µEW ) C̃8,NP(µEW )

µ ∼ mb
a7,8,77,88,78

where the first term is the SM prediction. The other terms
come  from  new  physics  in  which ,

,  and  indicate  Wilson
coefficients  at  the  electroweak  scale.  One  advantage  of
this  expression  is  that  they  do  not  have  to  be  evolved
down to hadronic scale , as the effect of evolution
has  already  been  involved  in  the  coefficients .
The  numerical  values  of  these  coefficients  are  given  in
Table 1.

b→ sγ

To  obtain  the  new  physics  corrections  in  the
BLMSSM,  we  investigate  the  one-loop  diagrams  shown
in Fig.  1.  Photons  should  be  attached  to  all  inner  lines
with  electric  charge  to  complete  the  diagrams of 

a7,8,77,88,78Table 1.    Numerical values for the coefficients  at
electroweak scale.

a7 a8 a77 a88 a78

−7.184+0.612i −2.225−0.557i 4.743 0.789 2.454−0.884i
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O7 Õ7

b→ sg
O8 Õ8

that  contribute  to  and .  Similarly,  diagrams  of
 can be  completed with  gluons  attached to  all  the

inner  lines  with  color  charge,  and  and  originate
from these processes.

s̄bg s̄bγ

The so-called flavor-changing self-energy diagrams in
which  photos  or  gluons  are  attached  to  external b or s
quarks are not included in our calculations. As studied in
Refs.  [23-25],  the  contributions  from  those  self-energy
diagrams  vanish  when  one  of  the  external  legs  is  on  its
mass shell. To preserve the Ward-Takahashi identity dur-
ing the renormalization of  and  vertices, one can
always impose the renormalized self-energies as zero, as
both b and s are on mass shell.

ui, (i = 1,2,3) H±

b→ sγ
ui

b→ sg

ui

O7 Õ7

In  detail,  we  attach  a  photon  to  the  SM  quark
 or charged Higgs  in Fig. 1(a) to get a set

of trigonal diagrams for , while the gluon can only
be  attached  to  up-type  quarks  to form  a  specific  dia-
gram of . To  give  a  complete  correction  originat-
ing  from Fig.  1(a),  contributions  from all  generations  of

 and Higgs  should  be  summed  over.  From  the  amp-
litudes  of  these  diagrams,  one  can  extract  the  Wilson
coefficients of electric- and chromomagnetic-dipole oper-
ators  and  at electroweak scale,

GF√
2

Ca
7γ(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ηL

H± )†sui
(ηL

H± )uibF(a)
1,γ(xui

, xH± )

+
m f

mb
(ηL

H± )†sui
(ηR

H± )uibF(a)
2,γ(xui

, xH± )
}
,

GF√
2

C̃a
7γ(Λ) =

GF√
2

Ca
7γ(Λ)

(
ηL

H± ↔ ηR
H±

)
,

(11)

xi = m2
i /µ

2
EW

1/(q2−m2
f ,S ) q

where . The concrete expressions for the rel-
evant  couplings  have already been given in  the  previous
section.  To  be  clear,  the  absence  of  divergences  in  the
Wilson coefficients associated with one-loop triangle dia-
grams can be verified by expanding all the propagators in
the power of , where  denotes the loop mo-
mentum. It can found that the order of q that appear in the
denominators is always higher than those in the numerat-
ors. Thus,  we do not  have to  deal  with  divergences  dur-
ing  our  evaluation.  The  form  factors  in  Eq.  (11)  can  be
written as:

F(a)
1,γ(x,y) =

[
1

72
∂3ϱ

3,1

∂y3 +
1

24
∂2ϱ

2,1

∂y2 −
1
6
∂ϱ

1,1

∂y

]
(x,y),

F(a)
2,γ(x,y) =

[
1

12
∂2ϱ

2,1

∂y2 −
1
6
∂ϱ

1,1

∂y
− 1

3
∂ϱ

1,1

∂x

]
(x,y), (12)

ϱm,n(x,y)where the function  is defined as:

ϱ
m,n

(x,y) =
xm lnn x− ym lnn y

x− y
. (13)

C7γ

C̃7γ

D̃
χ0

i

χ0
B

Corrections  from  all  the  other  diagrams  to  and
 can  be  obtained  similarly.  In Fig.  1(b),  the  photon

can  only  be  attached  to  the  charged  −1/3  squark .  We
present contributions from both neutralinos  and bary-
on neutralinos  at electroweak scale as:

b→ s χ0
B,X

b′ b̃′
Fig. 1.    One-loop Feynman diagrams for . The inner-line particles  denote baryon neutralinos and a new scalar particle intro-
duced in the BLMSSM.  and  are exotic quarks and squarks respectively. The photon and gluon can be attached in all possible ways.
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GF√
2

Cb
7γ(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ξL
χ0

i
)†

sD̃
(ξL
χ0

i
)D̃bF(b)

1,γ(xχ0
i
, xD̃)

+
m f

mb
(ξL
χ0

i
)†

sD̃
(ξRχ0

i
)D̃bF(b)

2,γ(xχ0
i
, xD̃)

+ (ξL
χ0

B
)†

sD̃
(ξL
χ0

B
)D̃bF(b)

1,γ(xχ0
B
, xD̃)

+
m f

mb
(ξL
χ0

B
)†

sD̃
(ξRχ0

B
)D̃bF(b)

2,γ(xχ0
B
, xD̃)

}
,

GF√
2

C̃b
7γ(Λ) =

GF√
2

Cb
7γ(Λ)

(
ξL
χ0

i
↔ ξRχ0

i
, ξL
χ0

B
↔ ξRχ0

B

)
.

(14)

F(b)
1,γ(x,y) =

[
− 1

72
∂3ϱ

3,1

∂3y
+

1
24
∂2ϱ

2,1

∂2y

]
(x,y),

F(b)
2,γ(x,y) =

[
− 1

12
∂2ϱ

2,1

∂2y
+

1
6
∂ϱ

1,1

∂y

]
(x,y). (15)

Ũ χ±i

With the photon attached to the charged +2/3 squarks
 or  chargino  in Fig.  1(c),  the  contributions  to  the

Wilson coefficients read:

GF√
2

Cc
7γ(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ηL

Ũ)†sχ±i (ηL
Ũ)χ±i bF(c)

1,γ(xχ±i , xŨ)

+
m f

mb
(ηL

Ũ)†sχ±i (ηR
Ũ)χ±i bF(c)

2,γ(xχ±i , xŨ)
}
,

GF√
2

C̃c
7γ(Λ) =

GF√
2

Cc
7γ(Λ)

(
ηL

Ũ ↔ η
R
Ũ

)
,

(16)

F(c)
1,γ(x,y) =

[
− 1

72
∂3ϱ

3,1

∂3y
+

1
6
∂2ϱ

2,1

∂2y
− 1

4
∂ϱ

1,1

∂y

]
(x,y),

F(c)
2,γ(x,y) =

[
− 1

12
∂2ϱ

2,1

∂2y
+

1
6
∂ϱ

1,1

∂y
− 1

2
∂ϱ

1,1

∂x

]
(x,y).

(17)

b′ X
The  intermediate  particles  in Fig.  1(d) are  the  exotic

quarks  with charge -1/3 and superfield  introduced in
the BLMSSM. The contributions from this diagram are:

GF√
2

Cd
7γ(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ηL

X j )†sb′ (η
L
X j )b′bF(d)

1,γ(xb′ , xX j )

+
m f

mb
(ηL

X j )†sb′ (η
R
X j )b′bF(d)

2,γ(xb′ , xX j )
}
,

GF√
2

C̃d
7γ(Λ) =

GF√
2

Cd
7γ(Λ)

(
ηL

X j ↔ ηR
X j

)
.

(18)

b̃′

X
Correspondingly, the corrections of exotic squarks 

with  charge  -1/3  and  fermionic  particle  can be  ob-
tained from Fig. 1(e):

GF√
2

Ce
7γ(Λ) =− iΛ−2(V∗tsVtb)−1

×
{

(ηL
b̃′ )
†
sX̃ j

(ηL
b̃′ )X̃ jbF(e)

1,γ(xX̃ j , xb̃′ )

+
m f

mb
(ηL

b̃′ )
†
sX̃ j

(ηR
b̃′ )X̃ jbF(e)

2,γ(xX̃ j , xb̃′ )
}
,

GF√
2

C̃e
7γ(Λ) =

GF√
2

Ce
7γ(Λ)

(
ηL

b̃′ ↔ η
R
b̃′
)
,

(19)

F(e)
1,γ(x,y) =

[
− 1

72
∂3ϱ

3,1

∂3y
+

1
24
∂2ϱ

2,1

∂2y

]
(x,y),

F(e)
2,γ(x,y) =

[
− 1

12
∂2ϱ

2,1

∂2y
+

1
6
∂ϱ

1,1

∂y

]
(x,y). (20)

ΛG µEW

From Fig.  1(f), we  obtain  the  corrections  from  glui-
nos  in the MSSM, and the Wilson coefficients at 
are

GF√
2

C f
7γ(Λ) =− iΛ−2(V∗tsVtb)−1

×
{

(ηL
D̃)†sΛG

(ηL
D̃)ΛGbF( f )

1,γ(xΛG
, xD̃)

+
m f

mb
(ηL

D̃)†sΛG
(ηR

D̃)ΛGbF( f )
2,γ(xΛG

, xD̃)
}
,

GF√
2

C̃ f
7γ(Λ) =

GF√
2

C f
7γ(Λ)

(
ηL

D̃↔ η
R
D̃

)
, (21)

with

F( f )
1,γ(x,y) =

[
1

24
∂3ϱ

3,1

∂3y
− 1

8
∂2ϱ

2,1

∂2y

]
(x,y),

F( f )
2,γ(x,y) =

[
1
4
∂2ϱ

2,1

∂2y
− 1

2
∂ϱ

1,1

∂y

]
(x,y). (22)

C8g C̃8g

ui

Ũ, D̃ b′

b̃′ ΛG

The  corrections  to  and  at  electroweak  scale
can  be  obtained  by  attaching  the  gluon  to  intermediate
virtual  particles  with  colors.  For  diagrams  in Fig.  1,  the
gluon  can  be  attached  to  SM  up-type  quarks ,  MSSM
squarks , exotic quarks  with charge -1/3 and their
supersymmetric partners , and gluinos . The Wilson
coefficients at electroweak scale can be formulated as:
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GF√
2

Ca
8G(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ηL

H± )†sui
(ηL

H± )uibF(a)
1,g(xui

, xH± )+
m f

mb
(ηL

H± )†sui
(ηR

H± )uibF(a)
2,g(xui

, xH± )
}
,

GF√
2

C̃a
8G(Λ) =

GF√
2

Ca
8G(Λ)(ηL

H± ↔ ηR
H± , ηL

G± ↔ ηR
G± ),

GF√
2

Cb
8G(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ξL
χ0

i
)†

sD̃
(ξL
χ0

i
)D̃bF(b)

1,g(xχ0
i
, xD̃)+

m f

mb
(ξL
χ0

i
)†

sD̃
(ξRχ0

i
)D̃bF(b)

2,g(xχ0
i
, xD̃)

+ (ξL
χ0

B
)†

sD̃
(ξL
χ0

B
)D̃bF(b)

1,g(xχ0
B
, xD̃)+

m f

mb
(ξL
χ0

B
)†

sD̃
(ξRχ0

B
)D̃bF(b)

2,g(xχ0
B
, xD̃)

}
,

GF√
2

C̃b
8G(Λ) =

GF√
2

Cb
8g(Λ)

(
ξL
χ0

i
↔ ξRχ0

i
, ξL
χ0

B
↔ ξRχ0

B

)
,

GF√
2

Cc
8G(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ξL
χ±i

)†
sD̃

(ξL
χ±i

)D̃bF(c)
1,g(xχ±i , xŨ)+

m f

mb
(ξL
χ±i

)†
sD̃

(ξRχ±i )D̃bF(c)
2,g(xχ±i , xŨ)

}
,

GF√
2

C̃c
8G(Λ) =

GF√
2

Cc
8g(Λ)

(
ξL
χ±i
↔ ξRχ±i

)
,

GF√
2

Cd
8G(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ηL

X j )†sb′ (η
L
X j )b′bF(d)

1,g(xb′ , xX j )+
m f

mb
(ηL

X j )†sb′ (η
R
X j )b′bF(d)

2,g(xb′ , xX j )
}
,

GF√
2

C̃d
8G(Λ) =

GF√
2

Cd
8G(Λ)

(
ηL

X j ↔ ηR
X j

)
,

GF√
2

Ce
8G(Λ) =− iΛ−2(V∗tsVtb)−1

{
(ξL

b̃′ )
†
sX̃ j

(ξL
b̃′ )X̃ jbF(e)

1,g(xX̃ j , xb̃′ )+
m f

mb
(ξL

b̃′ )
†
sX̃ j

(ξRb̃′ )X̃ jbF(e)
2,g(xX̃ j , xb̃′ )

}
,

GF√
2

C̃e
8G(Λ) =

GF√
2

Ce
8G(Λ)

(
ξL

b̃′ ↔ ξ
R
b̃′ )

)
, (23)

ui b′

ΛG D̃

with the form factors listed below. As a gluon can only be
attached  to  the  intermediate  fermions  and  in Fig.
1(a) and (d), so  the  form  factors  have  the  same  expres-
sions.  In Fig.  1(b), (c) and (e),  however,  the  gluon  can
only be attached to scalar particles. Then the form factors
associated with  these  diagrams  are  the  same.  By  sum-
ming  over  the  contributions  to  the  Wilson  coefficients
when the gluon is attached to  and , we get the form
factors of Fig. 1(f). The form factors are then:

F(a)
1,g(x,y) =F(d)

1,g(x,y) =
[
− 1

24
∂3ϱ

3,1

∂3y
+

1
4
∂2ϱ

2,1

∂2y
− 1

4
∂ϱ

1,1

∂y

]
(x,y),

F(a)
2,g(x,y) =F(d)

2,g(x,y) =
[
− 1

4
∂2ϱ

2,1

∂2y
+

1
2
∂ϱ

1,1

∂y
− 1

2
∂ϱ

1,1

∂x

]
(x,y),

F(b)
1,g(x,y) =F(c)

1,g(x,y) = F(e)
1,g(x,y) =

[
1
24
∂3ϱ

3,1

∂3y
− 1

8
∂2ϱ

2,1

∂2y

]
(x,y),

F(b)
2,g(x,y) =F(c)

2,g(x,y) = F(e)
2,g(x,y) =

[
1
4
∂2ϱ

2,1

∂2y
− 1

2
∂ϱ

1,1

∂y

]
(x,y),

F( f )
1,g(x,y) =

[
1
8
∂2ϱ

2,1

∂2y
− 1

4
∂ϱ

1,1

∂y

]
(x,y),

F( f )
2,g(x,y) =

[
− 1

2
∂ϱ

1,1

∂x

]
(x,y).

(24)

B̄→ Xsγ

B→ K∗γ
ACP

B̄→Xsγ
S K∗γ

The  Wilson  coefficients  obtained  above  can  also  be
used  in  direct  CP-violation  in  and  the  time-de-
pendent CP-asymmetry in . The direct CP-viola-
tion  and  CP-asymmetry  are  defined  at  the
hadronic scale as [26-30]:

ACP
B̄→Xsγ

=
Γ(B̄→ Xsγ)−Γ(B→ Xs̄γ)
Γ(B̄→ Xsγ)+Γ(B→ Xs̄γ)

∣∣∣∣∣∣
Eγ>(1−δ)Emax

γ

≃ 10−2

|C7(µb)|2
[
1.23I

(
C2(µb)C∗7(µb)

)
−9.52I

(
C8(µb)C∗7(µb)

)
+0.01I

(
C2(µb)C∗8(µb)

)]
,

(25)

S K∗γ ≃
2Im(e−iϕdC7(µb)C′7(µb))

|C7(µb)|2+ |C′7(µb)|2 , (26)

ACP δ = 3
ϕd S K∗γ Bd

sinϕd = 0.67±0.02

where the photon energy cut in  is taken as , and
 in  is the phase of the  mixing amplitude. Here

we  use  the  experimental  result  given
in Ref. [31].

µEW

µ ∼ mb

As the Wilson coefficients are calculated at  the elec-
troweak scale , we need to evolve them down to had-
ronic scale  with renormalization group equations:
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C⃗NP(µ) =Û(µ,µ0)C⃗NP(µ0),

C⃗′NP(µ) =Û′(µ,µ0)C⃗′NP(µ0), (27)

where the Wilson coefficients are constructed as:

C⃗T
NP =(C1,NP, · · · ,C6,NP,Ceff

7,NP,C
eff
8,NP),

C⃗′,TNP =(C′eff7,NP,C
′eff
8,NP). (28)

The evolving matrices involved in Eq. (27) are given as:

Û(µ,µ0) ≃1−
[

1
2β0

ln
αs(µ)
αs(µ0)

]
γ̂(0)T ,

Û′(µ,µ0) ≃1−
[

1
2β0

ln
αs(µ)
αs(µ0)

]
γ̂′(0)T , (29)

with anomalous dimension matrices

γ̂(0) =



−4 8
3 0 − 2

9 0 0 − 208
243

173
162

12 0 0 4
3 0 0 416

81
70
27

0 0 0 − 52
3 0 2 − 176

81
14
27

0 0 − 40
9 − 100

9
4
9

5
6 − 152

243 − 587
162

0 0 0 − 256
3 0 20 − 6272

81
6596
27

0 0 − 256
9

56
9

40
9 − 2

3
4624
243

4772
81

0 0 0 0 0 0 32
3 0

0 0 0 0 0 0 − 32
9

28
3



,

(30)

and

γ̂′(0) =


32
3

0

−32
9

28
3

 . (31)

Ceff
7γ ,C

eff
8g

Ceff
7 (mb) = −0.304,Ceff

8 (mb) = −0.167

As the renormalization group evolution of new phys-
ics  contributions  can  be  performed  independently  of  the
SM [32], we evolved the new physics contributions from
the  electroweak  scale  to  the  hadronic  scale  separately.
Then  the  complete  result  for  the  Wilson  coefficients  at
hadronic scale  is  obtained  by  adding  the  SM  parts  de-
noted by . To get as accurate a result as possible,
we  use  the  NNLO  result  from  the  SM  in  our  numerical
analysis, .

IV.  NUMERICAL ANALYSIS

B̄→ Xsγ

The consistency  of  the  SM  prediction  and  experi-
mental data on  sets stringent constraints on new
physics parameters. In this section, we discuss the numer-

ical  results  for  branching  ratio  with  some  assumptions.
The  SM inputs  are  given  in Table  2.  All  the  parameters
with  mass  dimension  are  given  in  GeV.  To  be  concise,
we omit all the GeV units in this section.

ABU = ABD = ABQ = A′BU = A′BD = A′BQ = Ad4
= Ad5

= Au4
= Au5

=

A′d4
= A′d5

= A′u4
= A′u5

= 100, M2
Q̃4
= M2

Q̃5
= M2

Ũ4
= M2

Ũ5
= M2

D̃4

= M2
D̃5
= 2500 m1 = m2 = 1200 mZB

= 1000

As  we  know,  the  heaver  new  particles  appearing  in
inner  lines  are,  the  less  they  contribute  to  the  Wilson
coefficient that we need. Furthermore, new particles with
too heavy a mass are not preferred because they are diffi-
cult to reach with today's colliders. On the other hand, no
signal  of  new particles  has  been observed to  date.  Thus,
the  masses  of  exotic  particles  have  to  be  heaver  than  a
few TeV. Based on the previous study of the mass spec-
trum in the BLMSSM in Ref. [14], the parameters intro-
duced  in  the  BLMSSM  are  set  as:

 
,  and ,  to  ensure

the  masses  of  new  physics  particles  under  experimental
limitations. With the above setup, one can scan the other
sensitive parameters with masses of new particles around
a few TeV as a condition in the numerical program.

X
X Q̂5, Û5 λi, (i = 1,2,3)

X WX
µX BX

λ1 λ3 µX BX λ2
λ1

As a  new  field  introduced  in  the  BLMSSM,  super-
field  interacts  with  exotic  quarks.  The  couplings
between  and , denoted by , are giv-
en in Eq. (4). From the analytical expressions, the Wilson
coefficients  are  sensitive  to  these  couplings  as  well  as
coefficients of the mass term of , which turn up in 
as  and . We show the branching ratio varying with

, ,  and  in Fig. 2 . The dependency of  is not
listed as it is similar to .

λ1

λ3/(4π) = 0.07, tanβ = 10, λQ = 0.7, λU = 0.3, λD = 0.2, µ =
−600, µB = mZB

= mB = 1000, µX = 1100, BX = 400, vbt = 6000.

λ1/(4π) = 0.95
λ1/(4π) < 0.95

In Fig.  2(a), one  can  find  the  branching  ratio  in-
creases  when  increases.  The  experimental  limitations
are  denoted  by  the  gray  area,  and  we  have  taken

It can be seen in this figure that the branching ratio reachs
the upper limits of experiments when , giv-
ing the constraint .

λ3
λ1/(4π) = 0.07

tanβ = 5, λQ = 0.7,
λU = 0.5, λD = 0.8, µ = −800, µB = µX = 1100, mZB

= 1000,
mB = 500, BX = 400, vbt = 6000

λ3/(4π)

Similarly, we plot the branching ratio varying with 
in Fig. 2(b). By taking , which satisfies the
limitations  obtained  in Fig.  2(a),  and 

, we  find  that  the  branch-
ing  ratio  rises  very  slowly  when  runs  from 0.01
to  1.5.  The  whole  curve  lies  in  the  gray  area,  which
means the branching ratio satisfies the experimental con-
straints under our assumptions.

Br(B̄→ Xsγ) µX

λ1/(4π) = 0.06, λ3/(4π) = 0.08, tanβ = 5, λQ =

To investigate  the variation of  with ,
we  take 

Table 2.    SM inputs in numerical analysis.

α mu md mW mc ms mZ mt mb

1/128 0.0023 0.0048 80.385 1.275 0.095 91.188 173.5 4.18
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0.8, λU = 0.5, λD = 0.2, µ = −600, µB = 1000, BX = 400,mzB
=

1100, vbt = 6000, mB = 2500
µX

BX

λ1/(4π) = 0.15, λ3/(4π) = 0.08, tan β=5, λQ=0.7, λU =0.2,
λD = 0.3, µ = −1000, µB = 1100, µX = 2500, mzB

= 900, vbt =

5500, mB = 2000
BX < 1625

.  We  find  from Fig.  2(c) that
the branching ratio decreases steeply with increasing ,
and finally reaches the SM value. In Fig. 2(d), we plot the
branching  ratio  varying  with ,  where  we  take

 

.  With  the  upper  limits  of  experimental
results, we get the constraint .

λQ

λ
Q
Q̂

4
Q̂c

5
Φ̂

B
λ1/(4π) = 0.08, λ3/(4π) = 0.06, tan β = 20,

λU = 0.3, λD = 0.6, µ = −800, µB = 1000, µX = 1200,BX =

400, mzB
= 1000, vbt = 5000, mB = 1500

In Fig.  3(a),  we  present  the  branching  ratio  varying
with , which is the coupling in the superpotential term

. With 

,  we  find  that  the

λQ
λQ > 0.62

vbt

vbt =

√
v̄2

B+ v2
B vB v̄B ΦB φB

vbt λ1/(4π) = λ3/(4π) = 0.1,
tan β = 5, λQ = 0.7,λU = 0.2, λD = 0.7, µ = −1000, µB = 1100,
µX = 1400, BX =400, mzB

= 1000, mB = 1500
vbt > 4200

branching ratio decreases when  increases. To be con-
sistent with the experimental data, . Another in-
teresting  parameter  is ,  which  is  defined  as

, where  and  are VEVs of  and 
respectively. We plot the variation of the branching ratio
with  in Fig.  3(b) with 

.  To  satisfy
the experimental constraints, we have .

B̄→ Xsγ B→ K∗γ
λ1, λ3, µX , BX , λQ, λD vbt

−0.6% < ASM
CP < +2.8%

Additionally,  we  plot  the  direct  CP-violation  of
 and time-dependent CP-asymmetry of 

varying  with  and .  Within  the
framework  of  the  SM,  we  have 
[33],  and  the  average  value  of  this  observable  is

Br(B̄→ Xsγ) X.Fig. 2.    (color online)  varying with parameters relevant to superfield 
 

Br(B̄→ Xsγ) λQ vbt .Fig. 3.    (color online)  varying with  and 
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Aexp
CP = −0.009±0.018

B̄→ Xsγ

S K∗γ

B→ K∗γ S SM
K∗γ ≃ (−2.3±1.6)%
S K∗γ ≃ −0.15±0.22

 [34, 35].  Within  some  uncertainty,
the  theoretical  value  is  consistent  with  the  experimental
result.  Compared  with  the  direct  CP-violation  of

,  there  is  significant  deviation  between  the  SM
prediction and the  experimental  result  for .  The SM
prediction  for  the  time-dependent  CP-asymmetry  in

 at  LO  level  is  given  as 
[36],  and  the  experimental  result  is 
[34].

ACP
B̄→Xsγ

S K∗γTo  investigate  and  numerically,  some
parameters are taken to be complex, and the areas within

X

ACP
B̄→Xsγ

λ1, λ3, µX , BX

experimental boundaries are shown in gray in the presen-
ted figures. In Fig. 4, we plot the dependency of paramet-
ers  relevant  to  superfield .  Under  our  assumptions  of
free parameters introduced in the BLMSSM, we find that

 (solid  line)  is  hardly  affected  by  the  change  of
.  Though  corrections  from  one-loop  level

are almost zero, the numerical results are consistent with
experimental data.

S K∗γ

−0.25
As  shown  in Fig.  4(a),  one-loop  corrections  to 

(dashed line)  in  the  BLMSSM can reach  with ap-
propriate  inputs.  By  changing  the  free  parameters,  one

ACP
B̄→Xsγ

S K∗γ X.Fig. 4.    (color online)  and  varying with parameters relevant to superfield 
 

ACP
B̄→Xsγ

S K∗γ λQ λD.Fig. 5.    (color online)  and  varying with  and 
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S K∗γ
S K∗γ

µX
S K∗γ BX

BX S K∗γ
λ1, λ3, µX BX S K∗γ

finds  can  be  as  small  as  zero  in Fig.  4(b).  In Fig.
4(c), it can be seen that  increases significantly with
increasing ,  and  finally  becomes  stable  around  zero.
The variation of  with  is given in Fig. 4(d). When

 increases,  decreases. Within  the  range  of  para-
meters  and , we find that  is consistent
with experimental data.

λQ
λD λQ

0.02 −0.22
λD S K∗γ −0.28 −0.02

λQ λD
S K∗γ

B̄→ Xsγ
λQ λD

In Fig. 5, we take into account the parameters  and
.  When  runs  from 0.01 to  2.0,  the  time-dependent

CP-asymmetry  decreases  from  to ,  while  for
increasing ,  increases  from  to . Un-
der our assumptions, we conclude that  and  clearly
affect ,  and  the  numerical  results  for  new  physics
corrections  are  consistent  with  experimental  data.
However,  the  direct  CP-violation  of  depends
weakly  on  and ,  and  the  one-loop  contributions
from the BLMSSM are very small.

S K∗γ

ACP
B̄→Xsγ

vbt λ1/(4π) = 0.8, λ3/(4π) = 0.9,
BX = 400 λQ = 0.4e0.625π S K∗γ

−0.26 −0.06 ACP
B̄→Xsγ

100 < vbt < 10000

The  last Fig.  6 shows  the  variation  of  and
 with .  By  taking 

 and ,  we find that  increases
from  to .  stays around zero within the
range .

µb

CNP
7,8 C̃NP

7,8 ACP S K∗γ

λD = 0.1

µb

X̃

To analyze the dependence of Wilson coefficients and
CP-asymmetry on the scale ,  the numerical  results  for

, ,  and  are given in Table 3. The input
parameters  are  the same as  in Fig.  5(b) with .  It
can  be  seen  that  the  CP  violation/asymmetry  becomes
more significant when  becomes larger. By printing the
coefficients  from  different  diagrams  separately,  one  can
find the dominant corrections come from Fig. 1(e), which
contains the exotic squark charged -1/3 and superfield .

V.  CONCLUSIONS

b→ sγWe have investigated the transition , an inter-
esting  FCNC  process,  within  the  framework  of  the
BLMSSM.  With  the  effective  Hamiltonian  method,  we
have  presented  the  Wilson  coefficients  extracted  from
amplitudes corresponding  to  the  relevant  one-loop  dia-
grams. Based on the analytical expressions, constraints on

B̄→ Xsγ
B̄→ Xsγ

S K∗γ

B→ K∗γ µX , BX ,λQ, λD vbt
−0.28

parameters have been given in the numerical section, with
the experimental data for the branching ratio of .
The  direct  CP-violation  of  in  the  BLMSSM  is
very  small,  and  depends  weakly  on  the  free  parameters.
However,  the  time-dependent  CP-asymmetry  in

 varies significantly with  and .
The contributions from new physics can reach  un-
der appropriate setup of the parameters.
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