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Abstract: In this paper, we study three scalar fields, namely the quintessence, phantom, and tachyon fields, to ex-

plore the source of dark energy via the Gaussian processes method from the background and perturbation growth

rate data. The corresponding reconstructions suggest that the dark energy should be dynamical. Moreover, the quin-

tom field, which is a combination of the quintessence and phantom fields, is powerfully favored by the reconstruc-

tion. The mean values indicate that the potential V(¢) in the quintessence field is a double exponential function,
whereas V(¢) in the phantom field is a double Gaussian function. This reconstruction can provide an important refer-
ence for the scalar field study. The two types of data employed reveal that the tachyon field is disadvantageous for

describing the cosmic acceleration.
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I. INTRODUCTION

Multiple experiments, including the type la super-
nova (SNIa) [1, 2], cosmic microwave background
(CMB) anisotropies [3], large scale structure [4], and ba-
ryon acoustic oscillation (BAO) peaks [5], have consist-
ently confirmed that our universe is experiencing a pro-
cess of accelerating expansion. Theoretically, this accel-
eration needs a new driving component with repulsive
gravity. In numerous theoretical paradigms, the exotic
dark energy theory is the most studied. One essential
parameter, i.e., the ratio of pressure to energy density, in
the equation of state (EoS) w is designed to understand its
nature. For example, the EoS of the famous cosmological
constant model is w = —1. According to a recent analysis
[6], this model fits well with the Planck and other astro-
physical data. However, an evolving dark energy is also
mildly favored by many other data, especially in the very
recent extended BAO survey [7]. In this study, we invest-
igated the quintessence [8-11], phantom [12], and tachy-
on [13-15] fields. They are all scalar fields that can
achieve evolving dark energy. Concerning the quint-
essence field, it has a positive kinetic energy density with
—1 <w< 1. Regarding the phantom field, it has a negat-
ive kinetic energy density with w < —1.

However, numerous observations found that w was
crossing —1. Unfortunately, neither the quintessence nor
the phantom scalar field can fulfill this transition. To
solve this issue, Feng et al. [16] proposed the quintom

model, i.e., a combination of the quintessence field ¢
and phantom field ¢, in the Lagrangian. When the time
derivative of the scalar field fulfills ¢; > ¢,, it leads to
w > —1; conversely, for ¢; < ¢,, we have w < —1. To pro-
mote the quintom model to be a single scalar field, Refs.
[17-21] introduced higher derivative operators in the Lag-
rangian. They found that the models are consistent with
the observations.

Note that most of the potentials V(¢) were built by
parametrization, either in the quintessence, phantom, or
quintom models. Their common popular templates in-
clude the power-law potential, exponential potential, or
trigonometric function potential. However, a parameter-
ized V(¢) template inevitably imposes a prior on the un-
derlying property of cosmic dynamics. In our view, a
straightforward and template-free study is advantageous
to understand such cosmic dynamics.

In this study, we focused on a prominent technique,
i.e., the Gaussian processes (GP) method. Unlike the
parametrization constraint, the GP method does not im-
pose any artificial cosmological template. It is a purely
statistical approach. In this process, a requirement is
presented for each observational datum, that is, it must
satisfy a Gaussian distribution. The data sets thus natur-
ally satisfy a multivariate Gaussian distribution. In this
process, we need a covariance function k(z,Z) to connect
two variables between any two data points. Using the
function k(z,7), information of the variables contained in
data can be extrapolated to other redshift that had not
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been observed. Finally, an involved goal function, such as
the potential ¥ in the scalar field, can be reconstructed via
more data. Note that the determination of the function
k(z,Z) is the primary task in this Gaussian process. Given
that this process is independent of any template for the
goal function, it has been widely used in many fields,
such as cosmology [22-31]. In a recent study of ours [32],
we investigated the dark energy using this method. The
EoS w analysis shows that observational data indicate a
dynamical dark energy. However, the source of the dy-
namics is still unknown for us. Therefore, the nature of
this reconstructed dark energy needs further understand-
ing. In this study, we performed a relevant analysis via
the scalar field. Our goal in the present study was to ex-
plore scalar fields that may constitute the dynamical
source of dark energy. This test can update our under-
standing on the cosmic acceleration by presenting model-
independent results. Following our aforementioned re-
cent study, the data sets we used are still supernova and
Hubble parameters, as well as perturbation data provided
by the growth rate of structure. The dynamical models we
considered are the quintessence, phantom, and tachyon
scalar fields.

This paper is organized as follows. In Section II, we
introduce the scalar field and GP approach. In Section III,
we introduce the relevant data we used. We present the
reconstruction results in Section IV. Finally, in Section V,
conclusions and discussions are presented.

II. THEORY AND METHOD

In this section, we give an introduction about the scal-
ar field and GP approach.

A. Scalar field

For a Friedmann-Robertson-Walker universe with flat
spatial, we assume it has only dark matter and a scalar
field. The Friedman equations of this universe are

8nG
H* = T(pm +P4),
a anG
P =_T(pm +pp+3pg)s (D

where the Hubble expansion rate H = a/a is a function of
the scalar factor a(f), and the dot denotes derivative with
respect to cosmic time ¢. The parameters p, and pgy are
energy density and pressure of the scalar field, respect-
ively. Concerning the dark matter, we assume that its en-
ergy density yields p,, = po(1+2)°, where p, is its cur-
rent energy density. Generally, we introduce the matter
energy density parameter Q.0 =pmo/0c0, With critical
density peo = 3HZ/(87G), where H, isthe Hubble con-
stant. Regarding the scalar field, we considered three
scenarios in the present study, namely, the quintessence,
phantom, and tachyon scalar fields.

Concerning the quintessence scalar field, its energy
density and pressure are defined as

1.
ps =59+ V(@),
1.
ps=59"-V(@. @

The potential V(¢) is usually parameterized as a function
of the scalar field ¢. To date, many models were pro-
posed (see Ref. [33] for a short review), such as the
power-law potential V(¢) « ¢”, exponential potential
V(¢) < e™*¢, inverse power-law potential V(¢) o< ¢~7, in-
verse exponential potential V(¢) « e/?, double exponen-
tial potential V(¢) o« Vie™1? + Voe~*¢, and Hilltop poten-
tial V(¢) xcos(¢). Other complex models can also be
found in Ref. [34], such as e /¢®, (coshAg—1)?,
sinh™%(1¢), and [(¢ — B)* + Ale™*¢. As a result of confront-
ing these models with the observational data [35-39], the
authors found that some models cannot be discriminated
from each other. It was also found that some models are
not disfavored by the observational data, such as the in-
verse power-law potential and inverse exponential poten-
tial, and others have intrinsic limitations. In this study, we
strongly aimed at determining suitable models for de-
scribing the dark energy. Thus, our objective was to solve
the quintessence scalar field. By introducing the defini-
tions expressed by Eq. (2) into Friedman equations in Eq.
(1), we can solve the quintessence field. Its potential is

871G . 1 ,
g& =30 +2)EY = Q01 +2)°,
0
87G 1 1
3%sz2—6(1+z)E2’—§Qm0(1+z)3, 3)
0

where the prime denotes derivative with respect to red-
shift z, and E(z) = H(z)/H, is the dimensionless Hubble
parameter. We found, on the one hand, that both the de-
rivative of scalar field ¢> and potential V' are in units of

8nG

YT On the other hand, note that the function ¢* may be

negative when the former term is less than the latter term.
If this is the case, it would change into the other model,
i.e., the phantom scalar field.

Concerning the phantom scalar field, its energy dens-
ity and pressure are

1.
w:—§&+vwm
1.
ps==54"=V(@). “)

Performing a similar calculation, we can obtain the
phantom field and potential
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871G ., , 1 .y
—¢" =Q,0(1+2)° —=(1+2)E7,

3H§¢ o(1+2) 3( 2)

871G , 1 ,, 1 3
—V=E"——(1+2E” - =Q,0(1 +2)°. 5
3H§ 6( 2) ) mo( 2) ()

Evidently, the function ¢? in Eq. (5) is opposite to ¢* in
Eq. (3). Therefore, the quintessence and phantom fields
cannot exist simultaneously. Similar to above quint-
essence scalar field, the cosmologist also modelled many
phantom potentials. Caldwell et al. [40] studied this scal-
ar field, and found that w < —1 would cause a significant
rip of the universe. Another study [41] considered five
models, and showed that they fit well with the observa-
tional data, with no special position being occupied. To
solve the problem of w crossing —1 in the near past from
w>—1 to w< -1, Feng et al. [16] proposed a quintom
model with a double exponential potential in the Lag-
rangian by combining the quintessence and phantom
fields

1 1
L =5 P10 $1 — §5y¢23”¢2
A A
-V [CXP(——¢1)+CXP(——¢2)], (6)
mp mp

where ¢; and ¢, denote the quintessence and phantom
fields, respectively. Note that this is different from the
quintessence or phantom fields. It presents more complic-
ated dynamics. The authors found that this model also
satisfies the observations. The parameters were set as
Vo =838x107"m} and 1=20. This model can realize
the transition of w from w > -1 to w < —1.

Concerning the tachyon scalar field, it is a different
scalar field with respect to the two aforementioned scen-
arios. Its energy density and pressure are

py= VO
e
Po=-V(@)1-¢% (7

In combination with the Friedman equations, i.e., Eq. (1),
the tachyon field and potential can be solved as

_ (1 +Z)E2/ - 3gsz(l +Z)3

#
3E2—3Q,0(1 +2)°

8nG 1+z

V= B - —ZEYE - Qu(1+2)7. (8

312 3 o(1 +2) (®

Several points must be highlighted about this solution.
First, the term 1—¢? in Eq. (7) must be positive. Second,
we found that the solutions ¢? and V in Eq. (8) are not-

ably different from the ones in the two scenarios previ-
ously described. Regarding the function ¢, it is immune

. 8nG .
from the nuisance parameter 3? Concerning the poten-

0
tial V, it should be non-negative in the square root of Eq.

(8). Evidently, any negative values in Eq. (8) can lead to
failure of the tachyon field. In cosmology, several tachy-
on models were studied. In Ref. [42], the authors numer-
ically investigated tachyon models with a range of poten-
tials. Compared with the canonical quintessence models,
they exhibit similar phenomenology. In Ref. [43], the au-
thors also studied some models, and found that some of
them are not strongly disfavoured by observations. For a
single tachyon field with an inverse square potential, Guo
et al. [44] found that the universe could accelerate only at
nearly Planck energy densities. However, the accelera-
tion can also be obtained for multiple tachyon fields at
lower-Planck energy densities.

To obtain the potential V(¢), we must solve the field
¢ from the function ¢*>. Using the relation df=

dz, we can transfer the derivative of the scalar

C(1+)H

field > over time ¢ to redshift z, namely,
d¢ ’ = ¢—2 )
dz) — (1+z)?H?

Here, we must be careful with the units of the function

p)
(d_z) in different scenarios. In our calculations, we re-

duced it to a dimensionless quantity. To obtain such a di-
mensionless quantity, the function ¢* in the quintessence
and phantom fields, and the potential V(z) in the three

fields are in units of ﬁ The function i—gb is in units of
0
Hy. Theoretically, the function % can take two signs. In
z
this study, we considered positive values. Finally, the
scalar field can be obtained by

_ (42
¢—fdzdz. (10)

In our calculations, we set an initial value ¢y = 0. There-
fore, the scalar field ¢(z) can be obtained over a function
of redshift z. After performing the preparations above de-
scribed, the dimensionless potential V(z) and scalar field
#(z) can be simultaneously reconstructed. Thus, the po-
tential V(¢) can be modelled as a function of the scalar
field via a model-independent approach.

B. Methodology

The data we used in this study are background data
from supernova and Hubble parameters and perturbation
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data from redshift-space distortions (RSD).

Concerning the background data, the theoretical dis-
tance modulus of supernova in the Friedmann-Robertson-
Walker universe is

Hin(z) = Slogodr(2) + 25, (11)
with luminosity distance function
c ©dz
dr(z)=—(1+ —_—. 12
10 =41+ [ 55 (12

By introducing a dimensionless comoving luminosity dis-
tance
Hy di(z)

D)= — ,
@ c 1+z

(13)

we can obtain the relation between the Hubble parameter
and distance D(z) via Egs. (13) and (12),

1
E@) =1 (14)

Therefore, the Hubble parameter data can be used as the
derivative of the distance function D(z).

Concerning the perturbation data, we considered a
background universe filled with dark matter and scalar
field as the unclustered dark energy. Regarding the dark

. . . 0Pm
matter, its density contrast is defined as §(z) = L(z). At

scales much smaller than the Hubble radius, tﬁg evolu-
tion of the density contrast must obey a second order dif-
ferential equation,

§+2H6 - 4nGpyo =0, (15)

where p,, is the background matter energy density, and
6pm represents its first-order perturbation. This is an
equation describing matter growth under the assumption
of homogeneity and isotropy with zero dark energy per-
turbations. The density contrast is in the linear regime,
i.e., 6 < 1. If the dark energy is clustered, the perturba-
tion would influence the evolution of the matter density
contrast [45-48]. Thus, the anisotropic stress of the dark
energy fluid proves to be an important discriminator
between modified gravity and dark energy models. The
authors also concluded that anisotropic stress affects the
weak lensing and galaxy power spectrum.

According to the relation between scale factor and
redshift, we can transfer the derivative of the density con-
trast & over cosmic time ¢ into derivative over redshift z.
Thus, the Hubble parameter in Eq. (15) can be expressed
as [49, 50]

2 00
EX(2) = 3Q (1+Z)‘f‘ T%;(—aqdz (16)

mO 5,(Z)2 :

We found that the Hubble parameter E%(z) tends to zero
when the redshift in the integral implies z — co. When the
redshift z = 0, we have the initial condition

300 f°° ) ,
= —0")dz. 17
0(z=0)2 J, 1+z( )z a7

Using this initial condition, we rewrite the Hubble para-
meter in Eq. (16) as

"z 6 ,
=07, _ fo T

1(7)2 00 :
o 1+z

Observationally, the perturbation §(z) cannot be dir-
ectly measured by current cosmological surveys, but can
be provided by a related observation. It is the growth rate
measurement fog from RSD. Here, the function f de-
notes the growth rate, which is defined by the derivative
of the logarithm of perturbation § with respect to the log-
arithm of the cosmic scale

ﬁ@=u+ﬁ5 (18)

_dlng
“dlna

dIno o
(1+z)d—Z =—(1+z)g. (19)

f

The function

6(2)
0(z=0)

o3(z) = 03(z=0) (20)

is the linear theory root-mean-square mass fluctuation
within a sphere of radius 84~' Mpc. According to the
above two definitions, their combination is written as

_08(z=0)

5z =0) (1+2)¢, 21

fog=

which is called the growth rate of structure. Therefore, we
can obtain

,__ 6z=0) fog
= 22
= 0) 142 22
Evidently, we can reconstruct the derivative §’ of the per-
turbation via the observational RSD data fog. Taking an
integral to the two sides of Eq. (22) over redshift, we
have

5(Z=O) ZfO'g

5=6(z=0)—
C=0-TG=0 ), T+2

dz. (23)

For the constant §(z = 0), the normalization value is usu-
ally considered, i.e., 6(z=0)=1 [32]. Concerning the
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other constant, we set it as og(z = 0) = 0.8159 [6].

Generally, to obtain the goal function g(z), the para-
metrization constraint usually restricts the application of a
prior template on it. Departing from this method, the GP
technique is model-independent, that is, it does not rely
on any particular dynamical parametrization. It only
needs a probability prior on the goal function g(z). In this
study, we assumed that each observational distance D
obeys a Gaussian distribution with a particular mean and
variance. Consequently, the posterior distribution of all
observed distances D would obey a joint Gaussian distri-
bution. Note in this process that the covariance function
k(z,7) is a key ingredient. It correlates the distance D(z) at
different points z and Zz. Commonly, we have several
types on the covariance function k(z,7). Most of them are
associated with two hyperparameters, oy and ¢, which
can be determined by observational data via a marginal
likelihood. By training the covariance function, we can
extend the distance D(z) to more redshift points. If we
want to reconstruct the goal function g(z), such as w for
the dark energy, we must use the relation between the and
distance D. Given that this method is model-independent,
it has been widely applied to reconstruct the dark energy
EoS [22], or to test the concordance model [23, 24].

In the GP method, many types of covariance function
k(z,Z) are available. In the present study, we adopted the
most commonly used form, i.e., squared exponential,

—lz—7?
202 |

k(z,2) = 0']% exp[ (24)

With this covariance function, the scalar field can be re-
constructed. We modified the package GaPP, which is
publicly available in Ref. [22]. We also recommend this
reference because many more details on the GP method
can be found.

In the above framework, we introduced the back-
ground evolution of the scalar field. For the sake of a
comprehensive study, the perturbation of the scalar field
was extensively researched. In the conformal Newtonian
gauge, the perturbed metric is

ds? = > ()[(1 +2¥)dr? — (1 - 20)dx'dx;]. (25)

Concerning the quintom field, the perturbation equation
was obtained as follows [51]

8; =—(1+w)(6; = 3D) = 3H(1 —w))s;
Wi +3H(1—w?)
H———"6

kz 1> (2 6)

. K2
0; = 2HO; + ——6; + k>, (27)
1+w;

where the subscript i in each case denotes the quint-

essence and phantom fields, respectively. The function 6,
is defined as 6; = (k*/$;)0¢;. We can refer to studies by
Gong-Bo Zhao et al. [52] and Yi-Fu Cai et al. [53]. In
Ref. [52], the authors considered a potential

1 . .. .
V(g) = Emlqulz The authors studied the radiation-domin-

ated period and matter-dominated era, respectively. Us-
ing the specific scalar factor a = A7 and Hubble paramet-
er H = 1/7, they obtained the solution of the scalar fields
¢1 and ¢,. However, note that the potential V, scalar
factor a, and Hubble parameter H in this study are mod-
el-dependent. It is difficult to reconstruct the potential
and scalar field ¢ without artificial perturbations ¥ and
®. However, note that a model-independent reconstruc-
tion of f(T) gravity was performed via Gaussian pro-
cesses [54, 55]. In future work, we would also like to per-
form a further analysis on the quintom scalar field under
reasonable assumptions and approximations.

III. OBSERVATIONAL DATA

In this section, we introduce the related observational
data.

Regarding supernova data, they were extracted from
the joint light-curve analysis (JLA) datasets issued by the
SDSS-IT and SNLS surveys [56]. The redshifts of these
JLA samples have a wide span of 0.01 <z < 1.3. These
samples contain a total of 740 SNIa data points. They in-
clude three-season data from SDSS-II (0.05<z<0.4),
three-year data from SNLS (0.2<z<1), HST data
(0.8 < z< 1.4), and several low-redshift samples (z < 0.1).
For these supernova samples, the data are usually presen-
ted in tabular form, including distance modulus and er-
rors. For each SNIa, its distance modulus is given by

ﬂSN=m§+(Y'X1—ﬁ'C—MB, (28)

where mj; is the observed peak magnitude in rest frame B
band, the parameter X, is the time stretching of light-
curve, and the parameter C describes the supernova color
at maximum brightness. The last parameter Mp is the ab-
solute B-band magnitude, which is assumed to be related
to the host stellar mass (Mgeiar) by a simple step function
[56]:

M} for Mgejiar < 10'°M,,
MB _ { B tella O] (29)

lez +Ay  otherwise.

Note that o, 8, M., and Ay are nuisance parameters in
our calculation. They must be determined simultaneously
with other cosmological parameters.

To determine the nuisance parameters, the observed
data are usually fit in a ACDM cosmology [27, 56]. In
the calculation, the full covariance matrix Cov of the JLA
sample is defined as
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Cov = Dy + Cypa + Csys . (30)

Here, the matrix Dy is the diagonal part of the statistic-
al uncertainty. It can be expressed as

2

2 2 2 2
(Dstar)ii =0, it 0y ; +8 et 2Q/Cm,,xl,i - 2,3Cm,,c,i

L

50, \
—2aBCx, c.i+ 0, + (z,ln—zll()) +ok,

€2y
In the first line, o, ; describes the standard errors of the
peak magnitude; oy, ;, and o¢; are standard errors of the
above light-curve parameters X; and C, respectively. In
the second line, the terms Cy,x, i, Cm,c.i» and Cx,c,; re-
spectively denote the covariances among the observed
quantities mp, X;, C for the i-th SN. In the last line, the
term o7, = denotes the variation of magnitudes caused by
gravitational lensing. The second term denotes the uncer-
tainty in cosmological redshift produced by peculiar velo-
cities. The term O-goh is the intrinsic variation in SN mag-
nitude. In Eq. (30), Cya and Cyys respectively denote the
statistical matrices and systematic covariance matrices.
They can be given by

Cota + Csys =Vo+ a'zva +182 Vb +2aVoa = 2BVo» =20V ap »
(32)

where Vo, V., Vi, Vou, Vou, and V,;, are related matrices
(refer to Ref. [56]). Because of the degeneracy between
the Hubble constant Hy, and the parameter Mg in con-
structing the Hubble diagram, we considered their effects
on the scalar field reconstruction in the present study.
According to the results in Ref. [27], we respectively ha-
ve (@B, Mk, Ay)=(0.14+0.01,3.10+0.09,-19.08 +0.02,
—0.07 +0.03) in the prior of Hy = 69.6+0.7 km s™' Mpc~!,
and (a.B,M},Ay)=(0.14£0.01,3.11+0.09,-19.01 £0.02,
—0.07+£0.03) in the Gaussian prior of Hy=73.24+1.74
km s™! Mpc~!. In addition, we must take into account the
theoretical initial conditions D(z=0)=0 and D’(z=
0) = 1 in the related calculation.

Regarding H(z) data, direct products cannot be ob-
tained from a tailored telescope. However, two ap-
proaches are available to acquire them. The first one is
called cosmic chronometer, which is based on the calcu-
lation of differential ages of galaxies [57-59]. The second
approach is derived from the BAO peaks. To be specific,
we can deduce it from the galaxy power spectrum [60,
61] or from the Lya forest of QSOs [62]. For the latter
method, an underlying cosmology increases its model-de-
pendence in the calculation of the sound horizon. In this
study, we used the 30 cosmic chronometer data points.
We compiled them in a recent work of ours [25]. Consid-
ering the uncertainty of the Hubble constant, the uncer-
tainty of E(z) can be determined as

2 2
» 9y H 5
Or=—"2+—07%. 33
E Hg Hg Ho (33)

Using the prior of Hy, namely Hy=73.24+1.74
km s~! Mpc~! with 2.4% uncertainty [63] and Hy = 69.6+
0.7 km s~! Mpc~! from the 1% determination [64], un-
certainty of the dimensionless Hubble parameter can be
calculated. Departing from most of previous studies, we
used them through combination with supernova data,
rather than using H(z) data alone. That is, the Hubble
parameter was used as a derivative of the distance D,

4

1 . .

D = m Meanwhile, we must consider E(z=0)=1 as
bd

an initial condition in our calculation.

Concerning the RSD data, they can be obtained from
the galaxy distribution observation. In particular, they are
generated from an effect. In galaxy distribution measure-
ments, the observed distance of a galaxy is different from
its true distance in redshift space. This is because velocit-
ies in the overdensities deviate from the cosmic smooth
Hubble flow expansion. It is known that the cosmic struc-
ture growth is correlated with the anisotropy in the clus-
tering of galaxies. According to General Relativity, an
anisotropy can be produced. Moreover, a smaller devi-
ation from this theory indicates a smaller anisotropic dis-
tortion. In virtue of the above distinct superiority, RSD
data are very promising in distinguishing the cosmologic-
al models. Because of its sensibility, a similar back-
ground evolution has a very distinct growth of structure
in different cosmological models. To date, many studies
used RSD data to study cosmology. In the present study,
the most recent RSD data from 6dFGS, 6dFGRS, SDSS
MGS, SDSS LRG, GAMA, BOSS DR12, WiggleZ, VI-
PERS, FastSound, and BOSS DR14 redshift surveys
were utilized. Because some data are cosmology-depend-
ent and the covariance for different datasets is unknown
[65], we used the compilation from Planck Collaboration
[66]. For these data, the BOSS DR12 and WiggleZ
present a full covariance matrix, including systematic er-
rors.

IV. RESULTS

Note that the determination of the scalar fields and
potentials introducted in Section II is dependent on the
matter density parameter Q,, Hubble parameter E(z),
and its derivative E’(z). Concerning the matter density
parameter, we considered a moderate estimation, i.e., Q.0 =
0.279+0.025 [67]. Concerning the function V(¢), act-
ively researched in previous studies, many models were
proposed in the past few decades, as mentioned above. In
this study, we first reconstructed the scalar field ¢(z) over
the redshift z and potential V(z) using the GP method,
then, we tried to fit the function V(¢) using their mean
values. Owing to the model-independence of the GP
method, we consider that it can provide a more scientific
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test on the scalar field. Therefore, we expect a better un-
derstanding about the dynamics of dark energy.

A. Reconstruction from the JLA and H(z) data

To test the effect of the Hubble constant on the cor-
responding reconstructions, we distribute the results in
two subsections.

1. Hy=73.24+1.74kms 'Mpc™!

In Figs. 1 and 2, we plot the derivative of scalar field,
#?, and the potential ¥ in the quintessence and tachyon
fields with Hy=73.24+1.74 km s~! Mpc~'. Theoretic-
ally, the function ¢? should be ¢? > 0. Indeed, the plots
show that ¢? in these two fields are positive within 68%
confidence level at low redshift. However, it turns to neg-
ative at high redshift. Moreover, it is difficult to determ-
ine the sign of this function within 95% confidence level.
Concerning the potential V' in these two fields, it in-
creases softly first and then sharply at redshift z ~ 1.0in
both cases. The initial value is Vy = 0.70. In Ref. [42], the
authors found that the tachyon models considered in their
study presented phenomenology similar to that of the ca-
nonical quintessence models. Comparing the reconstruc-
tions in these two plots, they are really similar. Let us
now return to the function ¢*>. The vacillating ¢* indic-

3

1.0
z z

Fig. 1. (color online) GP reconstruction in the quintessence
field for JLA and H(z) data with Hubble constant
Hy=73.24+1.74 km s~! Mpc~!.
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Fig. 2. (color online) GP reconstruction in the tachyon field
for JLA and H(z) data with Hubble constant Hy =73.24+1.74
km s~! Mpc~!.

ates that the single quintessence field, phantom field, or
tachyon field are all difficult to be favored by the data.
Therefore, we cannot depict the function V(¢) using a
single field. However, because the function ¢? in the
quintessence field and the phantom field are opposite, we
can also conclude that it keeps switching between the two
fields. Consequently, the quintom field proposed by Feng
et al. [16] may be a better building on the scalar field.
Next, we treated the GP reconstruction in Fig. 1 as a
quintom field, i.e., as a combination of quintessence and
phantom fields. According to their mean values, we
found that the function ¢ changes from ¢ <0 to ¢> > 0,
which indicates that the scalar field changes from the
phantom field to the quintessence field with the cosmic
evolution. Solving the Eq. (10), we can acquire the scalar
field ¢(z) over the redshift z, as shown in Fig. 3. We
found that the scalar field ¢(z) increases with the increas-
ing redshift. Using the mean values of ¢(z) and V(z), we
eventually obtained the potential V(¢) as a function of the
field ¢. The potential is also an increasing function. For a
field such that ¢ < 0.23, the quintessence field dominates
the evolution of the universe. For a field such that
¢ >0.23, the phantom field plays a dominant role. We
treated this transformation as a quintom scalar field. We
fitted this reconstruction with high R-square =0.9998,
and found that the quintessence field obeys a 2-order ex-
ponential  function,  V(¢,) = 0.7002¢%5978% + 8.449x
10%¢*44: | whereas the phantom field satisfies a 2nd-or-
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Fig. 3. (color online) Field ¢(z) and potential V(¢) from their
mean values for JLA and H(z) data with Hubble constant
Hy=73.24+1.74 km s~! Mpc~!.
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e_(wf);:ﬁw), where ¢, and ¢, are the quintessence and
phantom fields, respectively. The fitted potential indic-
ates that each potential must satisfy a double function
with high probability. We must reiterate that this fitting
was performed via their mean values. In the past, many
parameterizations, such as the power-law and single ex-
ponential, were proposed. With the improvement in ob-
servation accuracy, the fitted potential can provide a more
important reference.

2. Hy=69.6+0.7 kms~'Mpc™!

In this prior, the JLA and H(z) data present a slightly
different reconstruction on these scalar fields.

In Fig. 4, we plot the reconstructions in the quint-
essence field. First, compared with the reconstructions in
Fig. 1, note that the function ¢* also increases first and
then decreases with increasing redshift. Second, we found
that mean values of the function ¢*> > 0, which means that
the quintessence scalar field is favored to a certain de-
gree. This situation is different from the above recon-
struction. However, we must pay special attention to the
fact that it cannot prevent the condition ¢ <0 at higher
redshift within 68% confidence level. That is, consider-
ing the uncertainties of ¢, the quintom field is still a fa-
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Fig. 4. (color online) GP reconstruction in the quintessence
field for JLA and H(z) data with Hubble constant
Hy=69.6+0.7 kms~! Mpc~'.
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Fig. 5. (color online) GP reconstruction in the tachyon field
for JLA and H(z) data with Hubble constant Hy = 69.6+0.7 km
s~! Mpc~!.

vourite model. This result is consistent with the recon-
struction in Hy =73.24+1.74 km s~! Mpc~!. Finally, the
reconstruction of V(z) shows that the data present an in-
creasing potential. In particular, for redshift z > 1, it in-
creases sharply. At redshift z =0, we have a model-inde-
pendent estimation Vy=0.71, which is similar to the
above reconstruction.

In Fig. 5, we plot the reconstructions in the tachyon
field. We found that the data present a similar reconstruc-
tion to the quintessence field. That is, mean values of the
function ¢ are also positive. A slight difference is that
the potential V(z) decreases first and then increases.
Within 68% confidence level, the function ¢? <0 is still
supported by the data. Thus, the tachyon field cannot be
convincingly favored by the data.

In Fig. 6, we plot the scalar field ¢(z) and potential
V(¢) using their mean values. This plot shows that the
field ¢(z) also increases in the two models. However, in
the middle redshift, they evolve slightly differently. For
the initial value of potential, the data present the same
value, V= 0.71, as in the quintessence field. Concerning
the potential V(¢), the values are the same for the field
¢ <0.10. However, in the middle region, they present a
significant difference. Therefore, the potential V(¢) in
these two fields may reflect different models.

Next, we fitted the function V(¢) in different fields;
the results are listed in Table 1. We found that V(¢) in the
quintessence and tachyon fields are really different. Con-
cerning the quintessence field, the mean values favor a
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Fig. 6. (color online) Field ¢(z) and potential V(¢) from their
mean values for JLA and H(z) data with Hubble constant
Hy=69.6+0.7 km s~! Mpc~!.
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In Fig. 9, we plot the field ¢(z) and function V(¢) us-
ing their mean values. As pointed out above, the function

#* in Fig. 7 cannot fulfill ¢*>>0 at all redshifts. It

changes from positive to negative at redshift z ~0.90.

Table 1. Function V(¢) obtained by their mean values in dif-
ferent scalar fields for different observational data.
JLA+H(z): ;
(Hy = 7324+ 1.74) quintom
Exponential: V(gy) = 0.70026%378% + 8.449 x 107643444
. $p=02559 % $p=0.2307\2
Gaussian : Vg, = 1501 (555) 02606 | o1 )
JLA+H(z): ;
(Ho = 69.640.7) quintessence
Exponential: V() =0.7177¢703419 43,102 x 10742723
JLA+H(2):

(Hyp =69.6+0.7) tachyon

o _( 6-0.6406 [ -0.0302
Gaussian : V() = 1.192x 10%¢ (%552°) +0.7157¢ (53¢)
RSD: quintom
Exponential: V(¢g) = 0.4981¢3328%4 16,073 x 1077 €3%429¢
. ¢p—04315\2 $p-0.3107 \2
Gaussian : Vg, = 1951 T ) 0 4538 )

double exponential function, V(¢) = 0.7177¢79341¢ 1. 3.102x
1074¢%723¢ For the tachyon field, a more complex double
Gaussian function is required.

B. Reconstruction from the RSD data

In Fig. 7, the reconstruction in the quintessence field
is plotted. We found that these results are similar to the
reconstruction for JLA and H(z) data. First, the function
#* from the background and RSD data presents a trans-
formation from positive to negative in both cases, namely
a direct transformation from the quintessence field to the
phantom field. However, the difference with respect to
the background data is that ¢*> from the RSD data
changes more dramatically. Moreover, ¢* at high red-
shift from the RSD data is completely negative within
68% confidence level. This indicates that the RSD data
exhibit a higher potential to support the quintom model.
Second, concerning the potential Vit is also an increas-
ing function, but increases slower than that from the
background data. The initial value of potential is
Vo = 0.50, which is different from V; = 0.70 for the back-
ground data. Therefore, we hypothesize that the RSD data
may represent a different scalar field model.

In Fig. 8, we plot the reconstruction in the tachyon
field. The mean values of the function ¢? also change
from positive to negative, which is a case similar to Fig.
2. Considering their uncertainties, ¢>>0 cannot be en-
sured at high redshift within 68% confidence level.
Therefore, we conclude that the tachyon field cannot be
convincingly favored by the data. This determination is
also extracted from the results for JLA and H(z) data.
Concerning the potential V, it is also an increasing func-
tion. However, considering its errors, the potential V" at
high redshift is negative, which is invalid in terms of the
definition in Eq. (8). In short, we conclude that the tachy-
on field is disadvantageous when it comes to describing
the cosmic evolution.

Scalar fields also naturally change from the quintessence
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Fig. 7. (color online) GP reconstruction in the quintessence
field for RSD data.
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Fig. 8.

(color online) GP reconstruction in the tachyon field

for RSD data.
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mean values for RSD data.
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field to the phantom field, as shown in this figure. Simil-
ar to the above reconstruction from the background data,
the field ¢(z) is also a monotone increasing function. To
describe the reconstructed scalar field, we deemed it as a
quintom field that changes from phantom field to quint-
essence field with the cosmic evolution. The plot shows
that it is also a complicated model similar to that of Fig.
3. From Table 1, we found that V(¢,) must satisfy a
double exponential function, and V(¢,) is a double Gaus-
sian function, which is fully consistent with the recon-
struction from the background data.

V. CONCLUSIONS AND DISCUSSION

In this study, a test with model-independence on the
scalar field was put into operation to explore the source
of dark energy, using the Gaussian processes approach.
We used the combination of supernova data and H(z)
data, and growth rate data.

Although we investigated the dark energy using the
GP method in a previous study of ours [32], we must em-
phasize that it still has important physical significance.
Compared with our previous study, the present one
clearly shows which scalar field is the candidate for dark
energy. According to the reconstruction results, we found
that it is neither the quintessence field nor the phantom
field. It is probably another substance, namely the quin-
tom field. Moreover, the fitting of potential V(¢) is still
beyond our imagination. It can provide an important ref-
erence on the scalar field study.

In the past few years, the scalar field was studied via
many parameterizations. The focus of attention was
which template was the best dynamical description of
dark energy. The research presented in this paper consti-
tutes a template-free analysis. We not only reconfirmed
that the dark energy must be dynamical but also recon-
structed the potential over the scalar field.

According to the background data, we found that they
do not favor a single quintessence field, phantom field, or
tachyon field in the prior of Hy=7324+1.74 km s~!
Mpc~!. Their mean values indicate that they favor a quin-
tom field, which is a transformation between phantom
field and quintessence field. The fitted potential V(¢) in
the quintessence field is a double exponential function,
whereas V(¢) in the phantom field is a double Gaussian
function, as shown in Table 1. We also tested the effect
from the Hubble constant and found that H, has a marked
influence on the reconstruction. When considering their
uncertainties, the reconstructions also favor the quintom
field.

Our study also solves another point. In a previous
study [42], it was found that the tachyon models present
phenomenology similar to that of canonical quintessence
models. We found that they are really similar at low red-
shift (or small ¢). However, they also present an unnegli-

gible difference at middle redshift, as shown in Fig. 6.
Moreover, the background and RSD data reveal that the
tachyon field is disadvantageous when it comes to de-
scribing the cosmic acceleration.

According to the RSD data, a quintom field is also
suitable. This determination is identical from the analysis
conducted from the background data. Moreover, the RSD
data are more potential to support the quintom model
within 68% confidence level. Their mean values show
that the potential V(¢) is fully consistent with the recon-
struction from background data.

Discussions about the dynamics of dark energy re-
volved around whether it evolved or not. Our analysis
clearly reveals that the dark energy must be dynamical,
regardless of considering background data, i.e., super-
nova and H(z) data or perturbation data, i.e., RSD data.
Moreover, the corresponding reconstructions favor the
quintom field. In a recent study by Zhao et al. [ 7], the
authors investigated the Kullback—Leibler divergence us-
ing the latest data, including CMB temperature and polar-
ization anisotropy spectra, supernova, BAO from the
clustering of galaxies and from the Lyman- « forest,
Hubble constant, and H(z). The study reveals that a dy-
namical dark energy can moderate the Hubble constant
tension. Moreover, it is preferred at a 3.5 - C.L. In addi-
tion, the forthcoming dark energy survey DESI++ can
provide a decisive Bayesian evidence. In future work, we
would like to incorporate more observational data on the
study of the scalar field to conduct a clearer analysis on
cosmic dynamics.

Another point we must emphasize is the importance
of the Hubble constant. We note that it has a notable in-
fluence on the determination of dark energy dynamics.
The tension in Hy raised great concern. Some previous
studies [68, 69] concluded that it may be a signature of
new physics. To date, its measurement window spanned
from traditional cepheids, tip of the red giant branch,
SNIa, surface brightness fluctuations, masers, and gravit-
ational lens time delays, to fashionable gravitational-
waves [70]. The detection of GW170817 involved the
merging of a binary neutron-star system with a strong sig-
nal. The identification of its host galaxy implied a com-
pletely independent and consistent determination with ex-
isting measurements [71]. Moreover, it can also be meas-
ured with neutron star black hole mergers from advanced
LIGO and Virgo [72]. The future multi-messenger astro-
nomy will enable the Hy and cosmic dynamics to be con-
strained with high precision.
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