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I.  INTRODUCTION

The  principle  of  renormalization  [1-6]  in  quantum
field theory [7-10] is to introduce divergent counterterms
in the  interaction  (perturbation)  Hamiltonian  (or  Lag-
rangian).  These terms naturally yield new terms in the S
matrix  [11].  They  are  the  counterterms  to  eliminate  the
ultraviolet divergence of Feynman integrals for all Feyn-
man diagrams to any given order [4].

Thus there  are  two  concepts:  1.  What  are  the  coun-
terterms  in  the  Feynman  integrals  for  a  given  Feynman
diagram [12],  and  are  they  enough  to  give  a  convergent
result  [4]? 2.  What  are  the  counterterms in  the  perturba-
tion Hamiltonian?  Can  they  precisely  give  the  coun-
terterms for the Feynman diagrams to a given order? The
first question  was  answered  by  the  BPHZ  renormaliza-
tion  scheme  [1,4].  The  second  question  can  easily  be
answered  for  Feynman  diagrams  without  a  symmetry
factor.  However,  for  symmetric  Feynman  diagrams,  the
situation  becomes  more  involved.  To  the  best  of  our
knowledge, the consistency of these two concepts would
still need  an  explicit  proof,  since  the  non-trivial  sym-
metry  factor  is  an  important  issue  in  perturbation  field
theory [13-15].
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In  this  paper,  we  study  the  symmetry  group  of  a
Feynman  diagram .  We  find  that  there  is  a  subgroup

 associated with a reduced Feynman diagram  which
keeps the union of the reduced part of  invariant.
Furthermore, the  symmetry  group  of  the  reduced  Feyn-
man  diagrams  is  the  quotient  group .  We

then  explicitly  give  the  counterterms  in  the  perturbation
Hamiltonian. We  further  prove  that  they  give  the  coun-
terterms  of  Feynman  integrals  for  Feynman  diagrams
with  symmetry  factors.  We  remark  that  the  idea  of  the
current paper arose when the authors were editing a text-
book  on  quantum  field  theory  [16],  and  this  paper  is  a
further  discussion  of  the  material  regarding  the  BPHZ
scheme in that textbook.

Γ̃

The paper is organized as follows. In the next section,
we introduce the symmetry group of a Feynman diagram
and derive the symmetry factor appearing in the S matrix
via Wick's theorem. In Section III,  we review the theory
of the BPHZ renormalization scheme, then give the sym-
metry group of  in Section IV. In Section V, we prove
that  we can consistently  introduce new interaction terms
(details  are given in Appendix A) corresponding to each
renormalization  part  of  the  Feynman  diagram  of  a  field
theory, which  will  naturally  give  the  counterterms  re-
quired in the BPHZ scheme.

II.  SYMMETRY FACTOR AND SYMMETRY
GROUP OF A FEYNMAN DIAGRAM

The S matrix of a perturbation field theory is

S f i =
∑

n

(−i)n

n!
⟨ f |T

{∫
d4x1 · · ·d4xnHI(x1)

· · ·HI(xn)
}
|i⟩ ≡

∑
n

S (n)
f i . (1)

        Received 4 August 2020; Accepted 23 October 2020; Published online 8 December 2020
      * Supported by the National Natural Science Foundation of China (11805152, 10575080, 11947301), the Natural Science Basic Research Program of Shaanxi
Province (2019JQ-107), and Shaanxi Key Laboratory for Theoretical Physics Frontiers in China
     † E-mail: haoke72@163.com

Chinese Physics C    Vol. 45, No. 2 (2021) 023107

     ©2021 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese
Academy of Sciences and IOP Publishing Ltd

023107-1



HI(x)Here  is the perturbation Hamiltonian density, and it
is  a  polynomial  of  derivatives  of  the  fields.  By  Wick's
theorem, the quantity

⟨ f |T
{∫

d4x1 · · ·d4xnHI(x1) · · ·HI(xn)
}
|i⟩ (2)

HI(x)

is expressed as a sum of the product of field (and derivat-
ive)  contractions  for  all  possible  combinations.  Each
combination  of  a  pairing  of  the  fields  corresponds  to  a
Feynman  diagram,  where  is related  to  some  ver-
tices.  For  each  Feynman  diagram,  one  can  calculate  a
Feynman integral  in  either  coordinate  space  or  mo-
mentum space [17].

HI(x)

ϕl

l!
x1 · · · xn

x1 · · · xn

n! n!

xi

Since in a vertex of  several fields may be equi-
valent, the corresponding vertex lines are equivalent. For
definiteness,  we  may  assign  numbers  to  the  fields,  i.e.
give a  number  to  each  vertex  line.  Changing  the  assign-
ment will,  in  general,  give a new term in the Wick's  ex-
pansion. Its value is equal to the original one. In this way,
for  a  vertex with  a  group of l equivalent  lines  in  the-
ory, we get a factorial . In Eq. (2), changing the assign-
ment of  for a given contraction in Wick's expan-
sion will  give a new term in this expansion. After integ-
rating  over ,  these  terms  give  the  same  result.  In
this  way,  we  get  a  factorial .  This  means  we  have 
equal terms,  each  of  them  corresponding  to  an  assign-
ment of vertices for a Feynman diagram.

HI(x)

x = xi 1,2, · · ·

A  given  perturbation  Hamiltonian  may  have
several  vertices.  Each  vertex  is  composed  of  a  vertex
point x and several vertex lines. Each of them represents a
field operator. Some vertex lines of the same vertex may
be equivalent (Fig. 1). Once we assign a coordinate num-
ber  to  a  vertex  point: ,  and  assign  numbers 
to each set of equivalent vertex lines (of the chosen ver-

HI(x)
tex), we actually fix all  of the field operators in a vertex
in  in  Eqs.  (1)  and (2).  Thus when all  these vertex
lines are connected pair-wise (including those in "in" and
"out"  states),  we get  a  certain  term in Wick's  expansion.
In this way, we get a Feynman diagram [12] with all ver-
tices given coordinate numbers and all  equivalent  vertex
lines of each vertex given line numbers.

x1, · · · , xm

p1, · · · , pm p1 = x1, p2 = x2 · · · , pm = xm

pa pb 1,2, · · ·

Labσ

Alternatively,  for a blank Feynman diagram, we first
assign  a  coordinate  number  ( )  to  each  vertex
point ( ).  Say, .  Next,
for each vertex  (and ), we assign numbers  to
each  end  (attached  to  each  vertex)  of  those  equivalent
vertex lines . Then we get a "marked" Feynman dia-
gram, which  corresponds  to  one  term  in  Wick's  expan-
sion.  Notice  that  only  for  topologically  different
"marked"  Feynman  diagram,  we  get  different  terms  in
Wick's  expansion.  While  for  different  assignment  of  a
blank  Feynman  diagram  but  topologically  equivalent,
they  correspond  to  the  same  term  in  Wick's  expansion
(Fig. 2).

The  operation  of  marking  a  blank  Feynman  diagram
can  be  related  to  a  group G.  Changing  the  assignment
(marking)  of  a  blank  (unmarked)  Feynman  diagram  can
be expressed as a group element

 

(a)
(b) α β

γ δ

Fig. 1.    Vertex with vertex point and vertex lines.  Three
vertex lines  are  equivalent.  The two vertex lines  and 
are equivalent, while  and  are equivalent.

Γ (a) Γ (b) (b′) (c) (c′)

(a) (b) (b′) 1 2 3 x1 1 2 3 x2 (c)
(c′) 1 2 3 x1 2 1 3 x2 (b) (c)

Fig. 2.    Marking a Feynman diagram .  A blank Feynman diagram  before marking. , , , and  are marked Feynman
diagrams of .  and  are topologically equivalent (lines , , and  of  connect to lines , , and  of , respectively).  and

 are topologically equivalent (lines , , and  of  connect to lines , , and  of , respectively), while  and  are not equi-
valent.
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g = gn×
∏

i

gi. (3)

gn S n

gi

pi

GΓ
GΓ
Γ

Here  is an element of the permutation group , which
corresponds to the reassignment of the coordinates of ver-
tices (the  permutation  group is  a  symmetry  of  the  Feyn-
man diagram only  after  the  integration  over  all  coordin-
ates is performed; this is also true for vertex lines).  is
an element  of  the symmetry group of  each vertex which
corresponds to the reassignment of  the equivalent  vertex
lines  of  vertex  point .  The  operations  of  reassignment
which  do  not  change  the  topological  structure  of  a
marked Feynman diagram form a set ,  and it  satisfies
the properties of a group.  is the symmetry group of a
blank Feynman diagram .

GΓ ⊂G gΓ ∈GΓ g ∈G
g′ = gΓg

We have . For element , , and the
element  of G:  gives  a  topologically  equivalent
marked  Feynman  diagram  to  that  given  by g.  Thus  the

m = |G|/|GΓ|number of coset  is the actual number of dif-
ferent  terms  in  Wick's  expansion  which  give  the  same
blank Feynman integral form (2).

gΓg ggΓ
We use the following (Figs. 3 and 4) to further illus-

trate the action of g, , and .
L(Γ) Γ

V(Γ) Γ

We denote  as  the  set  of  internal  lines  of  and
 as the set of vertices of . By Wick's expansion of

Eq. (2) we get

∑
Γ′(n)

∫
d4x1 · · ·d4xn

∏
Labσ∈L(Γ)

∆̃abσ
F (xa− xb)

∏
Va∈V(Γ)

Pa. (4)

Pa Va

∆̃abσ
F (xa− xb)

xa

xb

Γ′(n)

Here  is a numerical function depending on vertex ,
and  is  a  polynomial  of  derivatives  of  the
Feynman propagator with respect to 4-coordinates  and

.  The  summation  is  over  all  topologically  different
marked n point  Feynman diagrams . After  integrat-

g (a)
(b) p1 p2 p3 p4) p1 : α1β1γ1 p2 : α2β2γ2 p3 : α3β3γ3δ3 p4 : α4β4γ4δ4

(c) (a) (d) (e)
(a ( f )

(d) ( f ) (d) 1 2 · · ·
(a) (b) P2 P3 (a) x2

x4 (c) (d)

Fig. 3.    The action of  (Eq. (3)). The first factor of g acts on vertices, and the rest of factors act on attached vertex lines.  A blank
Feynman  diagram.  The  vertex  points  ( , , ,  and  and  vertex  lines  ( , , , ),
where all vertex lines are equivalent for each vertex.  An assignment of , which gives a marked Feynman diagram .  Anoth-
er assignment of ), which gives a marked Feynman diagram . The group element g is an operation changing the assignment, and it
acts on  giving . The group element g acts on , while the indices , ,  in the above expression of g refer to the indices of the
original blank Feynman diagram  (and ). For example, the first factor of g swaps  with  in , which means exchanging 
and  in  (also ). The aim of this way of labeling the Feynman diagram is to better classify different kinds of vertices and vertex
lines, and to avoid confusion. This concept is in accordance with the first paragraph in Section 4.
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xi
′sing  over  all ,  one  obtains  an  integral  expression  in

momentum space:

S =
∑

n

1
n!

∑
Γ′(n)

∫ ∏
Labσ∈L(Γ)

d4labσ

(2π)4 ∆
abσ
F (labσ)

∏
Va∈V(Γ)

× {
Pa({lab′σ′ })× (2π)4δ4(

∑
b′σ′

lab′σ′ −qa)
}
, (5)

Pa lab′σ′

Lab′σ′ qa Va

∆F

(−i)n ∏
Pa

δ

Γ′(n)

where  is a polynomial of  (the momentum of line
),  is  the  total  incoming  momentum at ,  while

 is  the  Feynman  propagator  in  momentum  space.  In
Eq.  (4)  the  factor  is  absorbed  into  the  term.
After integration of the momenta to eliminate  functions,
each  term  of  connected  leaves  an  overall

(2π)4δ4(Σqa)

Γ(n)

 function  and  an  integral  over  independent
momenta, since for the same blank Feynman diagram, in-
tegrals corresponding  to  different  marked  Feynman  dia-
grams  are  equal.  The  contribution  of  the S matrix  for  a
connected  blank  Feynman  diagram  with n vertices
is:

S Γ(n) =
1
n!
|G|
|GΓ|

∫
dk1 · · ·dkl

(2π)l I0
Γ(k)(2π)4δ4

∑
a

qa


=

1
n!
|Gn| × |

∏
i Gi|

|GΓ|

∫
dk1 · · ·dkl

(2π)l

× I0
Γ(k)(2π)4δ4

∑
a

qa

 . (6)

gΓg,g, ggΓ.

1 2 · · · gΓ P1 P2

(a) (a) (b) Γ (c) ψ P2 P3 (a)
x2 x3 (b) 1 2 3 P1 P2 P3 (d) gΓ

ψ P1 P2 x2 x1 (d) α3 β3 2 1 x3

(d) (e) gΓg ψ (c) gΓ gψ x1 x3 (c) P1 P2 (a)

1 2 x3 (c) α3 β3 (a) ( f ) ggΓ ψ (d)
gΓψ x1 x3 (d) P2 P3 (a) (c) (e) (c) ( f )

gΓgψ gψ (ggΓ)ψ gψ

Fig. 4.    The actions of  and  This is similar to the case in Fig. 3. Their first factors act on vertices, and the rest act on vertex
lines. Similarly, the indices , ,  in the above expression for g and  refer to the indices ( , , etc.) of the original blank Feyn-
man diagram .  Blank Feynman diagram  A marked Feynman diagram   The action of g on : it swaps  with  in ,
which swaps  with  in . Still , , and  in the first factor of g correspond to , , and , respectively.  The action of 
on : the first factor exchanges  with  (  and  in ), and the last factor exchanges vertex line  with line  (  and  of  in

).  The action of  on . Based on , further action of  on , which means swapping  with  in  (  and  in ),
and swapping  with  of  in  (vertex line  and line  in ).  The action of  on . Based on , further action of g on

 means to swap  and  in  (  and  in ). Here  and  are topologically equivalent, while  and  are topologically
unequivalent. Thus  and  correspond to the same term in Wick's expansion, but  and  do not.
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Thus one has:

S Γ(n) =
1
|GΓ|
×

∫
dk1 · · ·dkl

(2π)l |
∏

i

Gi|

× I0
Γ(k)(2π)4δ4

∑
a

qa


≡ 1
|GΓ|
×

∫
dk1 · · ·dkl

(2π)l IΓ(k)(2π)4δ4

∑
a

qa

 . (7)

(−i) I0
Γ
(k)

|∏i Gi| IΓ(k)
The  factor  is  absorbed  into  each  vertex  of ,
while the term  is absorbed into each vertex of .

The total S matrix is then:

S =
∑

n

∑
Γ(n)

S Γ(n) . (8)

The second  summation  is  over  all  blank  Feynman  dia-
grams with n vertices.

k1 · · ·kl
δ

{k1 · · ·kl}

In  Eq.  (6),  the  momenta  are  essentially  those
remaining  after  eliminating  the  functions.  The  set

 is denoted by k.

III.  BPHZ RENORMALIZATION SCHEME AND
VERTEX OF A REDUCED FEYNMAN

DIAGRAM

γ
d(γ) ⩾ 0

In the following, we deal mainly with diagrams which
are connected. If we cut any internal line of a connected
diagram and the diagram is still connected, we call such a
diagram a  proper  diagram.  A proper  diagram  with su-
perficial dimension [7-9]  is called a renormaliza-
tion part [4].

ΓWe have for a blank proper Feynman diagram  (7):

S Γ(n) =
1
|GΓ|

∫
dk1 · · ·dkl

(2π)l IΓ(k)(2π)4δ4
(∑

qa

)
. (9)

A  Feynman  integral  associated  with  a  proper  Feynman
diagram is defined as:

JΓ =
∫ ∏

Labσ∈L(Γ)

d4labσ

(2π)4

∏
Va∈V(Γ)

{(2π)4δ4(
∑

labσ−qa)}IΓ(q, l)

=

∫
dk1 · · ·dkl

(2π)l IΓ(k,q)× (2π)4δ4

∑
a

qa

 , (10)

V(Γ) Γ qa
Va L(Γ)

Γ Labσ Va
Vb labσ IΓ

where  is the set of vertices in ,  is the total in-
coming momentum at ,  is the set of internal lines
of , and the line  is one of the lines from a vertex 
to a vertex  with 4-momenta . The integrand  is

IΓ =
∏

Labσ∈L(Γ)

∆abσ
F

∏
Va∈V(Γ)

Pa , (11)

∆F Pa

{labσ} HI(x)
where  is the Feynman propagator, and  is a polyno-
mial of  determined by the vertex of .

ki
′s δ

qa Va

For further derivation, we need to specify the integral
parameters . Due to the  functions at each vertex, we
have nonhomogeneous linear equations for the incoming
4-momenta  at the vertex ,∑

bσ

labσ = qa , a = 1, · · · ,n, (12)

where

labσ = −lbaσ (13)

Labσ

Va Vb

is the 4-momentum on one of the lines  from the ver-
tex  to the vertex . The solution is not unique for∑

Va∈Γ
qa = 0 . (14)

ΓWhen  is connected, we define a solution for which the
quantity [4]

M =
∑

Labσ∈L(Γ)

l2abσ =
∑

(qabσ)2 (15)

{qa} Γ qabσ

qa
′s labσ

qa

kabσ

is minimal.  We call  it  a  canonical  distribution of incom-
ing momenta  for . One can prove that  is a lin-
ear  combination  of .  Then  generally  consists  of
two  parts.  One  part  comes  from ,  and  the  other  part
comes  from  integral  variables  like  (they are  mo-
menta that  form  inner  loop  flows  in  the  connected  dia-
gram)

labσ = qabσ+ kabσ.

kabσSo  here  satisfies  the  homogeneous  linear  equations
(compared with Eqs. (12) and (13)):∑

bσ

kabσ = 0 , kabσ = −kbaσ, a = 1, · · · ,n. (16)

γ ⊂ Γ
Labσ ∈ γ Labσ ∈ Γ qγabσ qΓabσ

qabσ qa

It  is  important  to  point  out  that  for  a  subdiagram 
with a line  (also ),  and  (we use
the  superscript  to  indicate  the  belonging)  are  different.
From the linearity of  with respect to , we have the
following statement.

qγabσ qΓabσProposition 1. The difference of  and  is the
canonical distribution

∆qa = −
∑
bσ

kΓabσ, Labσ ∈ L(Γ),Labσ <L(γ), (17)
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kΓabσ Γand thus they are linear functions of  of lines in .
Γ

kΓabσ
Γ

k1 · · ·kl (kΓabσ)µ, µ = 0,1,2,3 ϕ4

γ1, · · ·γc ⊂ Γ γ1, · · ·γc

γτ
γτ γτ

Γ̃

We can choose (not arbitrarily) some lines of  to fix
the parameters  and to further fix the solution. When

 has m loops,  we  can  fix m lines.  Then  the  integrals
 can  be  chosen  as  (for  the-

ory) of these lines. For  and when  are
disjoint diagrams, we can choose them in such a way that
when the chosen lines are in , they also form independ-
ent lines in each . In this case, each subdiagram  can
be reduced  to  a  vertex.  We  denote  the  lines  in  the  re-
duced diagram as:

LΓ̃abσ ∈ Γ/γ, Lγτa′b′σ′ ∈ γτ.

Then due to proposition 1, we can properly choose in-
dependent  lines  such  that  the  integral  over  independent
momenta is:

∫ ind∏
d4lΓ̃abσ

c∏
τ=1

ind∏
d4lγτa′b′σ′ =

∫ ind∏
d4kΓ̃abσ

c∏
τ=1

ind∏
d4kγτa′b′σ′ .

(18)

Γ

RΓ = RΓ(k,qa)

The  Feynman  integral  (10)  is  generally  divergent  at
large k for  with  loops.  The  BPHZ  renormalization
scheme  [7,8]  gives  a  finite  part  such  that
the renormalized integral converges:

FΓ =
∫

dk1 · · ·dkl

(2π)l RΓ(k,q)(2π)4δ4

∑
a

qa

 . (19)

RΓ(k,q)

Zimmermann proved the convergence of Eq. (19) [4]
by  an  application  of  Weinberg's  theorem [7]. The  integ-
rand  of Eq. (19) is defined by:

RΓ(k,q) = IΓ(k,q)+
∑
γ1···γc

IΓ/γ1···γc
(kq)

c∏
τ=1

Oγτ (k
γτ ,qγτ ) . (20)

γτ
τ = 1, · · · ,c
k = {k1 · · ·kl}

δ
IΓ/γ1···γτ = IΓ/

∏c
τ=1 Iγτ

Γ

The  sum is  over  all  sets  of  renormalization  parts ,
,  which  are  mutually  disjoint.  The  parameters
 are  essentially  the  remaining  momenta  after

integration  eliminates  the  functions  in  Eq.  (4).  In  Eq.
(20) we have defined , which is only
determined by vertices and lines contained in  but not in

γτ Oγany . The functions  are recursively defined as

Oγ(kγ,qγ) =− td(γ)
qγ

{
Iγ(kγ,qγ)+

′∑
γ′1···γ′c′

Iγ/γ′1···γ′c′ (k
γ,qγ)

×
c∏
τ=1

Oγτ (k
γτ ,qγτ )

}
. (21)

{γ′1, · · · ,γ′c′ }
γ {γ} Oγ

qγ ≡ {qa}

The sum extends over all sets of mutually disjoint renor-
malization  parts  (assuming they  are  subdia-
grams of ), but does not include . The function  is
a Taylor series with respect to the incoming independent
momentum ,

td
q f =

d∑
l=0

1
l!

∑
q1···ql

q1 · · ·ql

(
∂

∂q1
· · · ∂
∂ql

f (g)
)

q=0
. (22)

q j

{qa}
The sum of  extends over all components of independ-
ent incoming 4-momenta of .

Oγ

γ′ ⊂ γ

Since  is recursively defined, one must calculate it
step  by  step,  from  smaller  interior  renormalization  parts
to  bigger  outer  ones.  Due  to  the  fact  that  for ,  we
have proposition 1, we get:

qγ
′

a′b′σ′ =qγa′b′σ′ + linear combinations of {kγabσ}

kγ
′

a′b′σ′ =kγa′b′σ′ + linear combinations of {kγabσ} . (23)

Oγ

{qγa}
{kγabσ}

One can conclude that  is a polynomial of independent
components  of .  The  coefficients  are  functions  of

. Equation (19) can be rewritten as

FΓ =
{∫

dk1 · · ·dkl

(2π)l IΓ+
∑
γ1···γc

∫
dk1 · · ·dkl

(2π)l IΓ/γ1···γc
(k,q)

×
c∏
τ=1

Oγτ (k
γτ ,qγτ )

}
(2π)4δ4

∑
a

qa

 ≡ JΓ+
∑
γ1···γc

J̃Γ/γ1···γc
,

(24)

J̃Γ/γ1···γc
JΓwhere  are counterterms of . From Eq. (18) we

have:

J̃Γ/γ1···γc
=

∫
dk1 · · ·dkl

(2π)l IΓ/γ1···γc
(k,q)

c∏
τ=1

Oγτ (k
γτ ,qγτ )(2π)4δ4

∑
a

qa

 = ∫ ind∏
Labσ∈Γ/γ1···γc

d4kΓabσ

(2π)4 IΓ/γ1···γc
(kΓ,q)

c∏
τ=1

∫ ind∏
La′b′σ′∈γτ

×
d4kγτa′b′σ′

(2π)4 Oγτ (k
γτ ,qγτ )(2π)4δ4

∑
a

qa

 ≡ ∫ ind∏
Labσ∈Γ/γ1···γc

d4kΓabσ

(2π)4 IΓ/γ1···γc
(kΓ,q)×

c∏
τ=1

Qγτ (2π)4δ4

∑
a

qa

 , (25)
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ind∏
Qγτ

Qγτ

γτ

where  extends  to  all  independent  lines.  The  integral
 is divergent, but it is convergent after regularization.

Thus  we  may  regard  as a  new vertex  which  corres-
ponds to a renormalization part . We call it a vertex of
reduction.

Γ̃ Γ

γτ Q̃γτ

Equation (25) is a Feynman integral for Feynman dia-
gram . It is a reduced diagram from , in which all lines
and vertices of  are shrunk to a vertex .

∆LI

Qγτ γτ
Γ̃ G

Γ̃

Can  we  introduce  new  interactions  (with  divergent
coefficients) into interaction Lagrangian  which gives
precisely  these  counterterms  to  a  given  order?  This  is  a
consistency  problem  for  the  BPHZ  renormalization
scheme.  The  answer  is  affirmative.  We  would  like  to
prove  this  in  the  coming  sections.  It  can  be  proved  that
the  function  has  symmetry of  (Appendix A).  We
next study the symmetry group of  denoted by .

Γ̃

IV.  SYMMETRY GROUP OF A REDUCED
FEYNMAN DIAGRAM 

gi

g ∈G
Pa

Γ

x j
gΓ ∈GΓ

x j
gΓ ∈GΓ

gΓ

In the derivation in Section II, one group element " "
in  for  changing  the  number  of  equivalent  vertex
lines  in  a  vertex  is  attached  to  a  certain  point  of  a
blank  Feynman  diagram.  Generally,  the  vertices  are  of
different type at different points. For the symmetry group
of a Feynman diagram , we can alternatively attach such
a  group  element  to  a  running  coordinate . This  is  be-
cause  in , we  always  have  the  same  type  of  ver-
tices for the same  before and after reassigning. In this
way, we may regard the element of  as a continu-
ous mapping of a Feynman diagram into itself. This maps
a  vertex  (including  the  vertex  point  together  with  all  its
vertex lines) into another vertex of the same type. In the
following, we always refer  to the second meaning.

γτ
′sWe define a set A as the union of all 

A =
c∪
τ=1

γτ , (26)

γτ
′s Bτ

γτ γτ

which  includes  all  internal  lines  and  vertex  points  of  all
.  We  define  sets  as  all  internal  lines  and  vertex

points of ; actually it is  itself.
GΓ

GΓ
G(1)
Γ

(γ1 · · ·γc)

G(2)
Γ

(γ1 · · ·γc) =
∏c

τ=1

G(2)
Γ

(γτ) G(2)
Γ

(γτ) ⊂GΓ Bτ = γτ
G(2)
Γ

(γτ) γτ

G(2)
Γ

(γτ)
γτ

In the group , those elements which do not change
the set A (i.e. which map A to A) form a subgroup of .
We  denote  it  as .  This  is  because  the  set  of
such elements  is  closed  under  multiplication  and  inver-
sion. Similarly, we have a subgroup 

, where  maps each  to itself,
and  keeps  all  lines  and  vertex  points  outside 
invariant (identity). Since the mapping keeps the connec-
tion  relation  between  the  vertex  points  and  the  vertex
lines  of  any  vertex,  also  keeps  the  "boundary
points"  which  connect  exterior  lines  of  invariant.  We

G(2)
Γ

G(1)
Γ

G(2)
Γ

Γ̃

can prove that  is a normal subgroup of  since an
element  of  does  not  change  the  exterior  of A.  Then
we can further  prove that  the symmetry group of  the re-
duced Feynman diagram  is the quotient group

G
Γ̃
=G(1)

Γ
/G(2)
Γ
. (27)

Γ

Γ

γ1 · · ·γc Γ γ′1, · · · ,γ′c
GΓ

G(1)
Γ

gΓ ∈GΓ h ∈G(1)
Γ

gΓ
h ∈G(1)

Γ
g′ = gΓh

A′ =
∪
τ γ
′
τ GΓ/G

(1)
Γ

A′

Γ

This is  because  it  maps  the  reduced  vertices  to  them-
selves  with  their  symmetry.  We use  (Fig.  5)  to  illustrate
the  relation  between  a  Feynman  diagram  and its  re-
duced  Feynman  diagrams.  The  configuration  of  with

 can  be  mapped to  with  (in  the  same
blank  configuration)  by  each  element  of . Those  ele-
ments which keep the set A invariant form subgroup .
Let ,  and .  Then  for  a  certain  and  any

,  the  element  maps  the  set A to  a  set
.  Thus  the  coset  is  characterized  by

different " "s which are also sets of disjoint renormaliz-
ation  parts  of .  Therefore  the  renormalized  integrand
(20) can be written as:

RΓ(k,q) = IΓ(k,q)+
∑
Γ̌

1

∑
coset

2IΓ/γ1···γc
(k,q)

c∏
τ=1

Oγτ (k
γτ ,qγτ ) .

(28)

Γ̌ : Γ
γ1 · · ·γc

GΓ/G
(1)
Γ

Γ

The first sum extends over all configurations of  with
different ,  which  are  topologically  different  from
each other.  The  second sum extends  over  configurations
produced by coset elements  (acting on ).  After
integration one has the renormalized integral from Eq. (24):

FΓ =JΓ+
∑
Γ̌

1mΓ̌

∫ ind∏
Labσ∈Γ/{γ1···γc}

d4kΓabσ

(2π)4 IΓ/γ1···γc
(kΓ,q)

×
c∏
τ=1

Oγτ (2π)4δ4

∑
a

qa

 , (29)

mΓ̌ =
|GΓ|
|G(1)
Γ
|

Qγτ GΓ

where . In the derivation, we need the fact that

 is symmetric under the mapping of .

Γ̃

V.  CONTRIBUTION OF REDUCED FEYNMAN
DIAGRAM  TO THE S MATRIX

Q̂γ

∆LI = −∆HI

Γ̃

When  we  introduce  new  reduced  vertices  to
,  the S matrix  gets  many  new  terms  due  to

these  new vertices.  In  a  reduced  vertex,  the  order  of  the
original  perturbation  constant  is  more  than  one  since  it
contains more  than  one  original  vertex.  Thus  if  we  col-
lect terms according to the orders of original perturbation
constants  in  the S matrix,  say, n-th  order,  the  term  with
respect to a reduced diagram  may be with a "perturba-
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m < n S
Γ̃(n,m)

γτ
nγτ ⩽ n
γτ

gOγτ

Γ̃

tion order" m, . We denote such a term . As-
sume we have all reduced vertices associated with all 
(renormalization  part)  for , and  assume these  ver-
tices have the symmetry of . We denote the exact sym-
metry group for exterior lines of such vertices as  (see
Appendix  A for  details).  Due  to  the  perturbation  theory,
there  will  be  a  term  associated  with  in  the S matrix.
From Eq. (6) we have:

S
Γ̃(n,m) =

1
m!
|Gm| × |

∏1 GOγτ
| × |∏2 Gi|

|G
Γ̃
|

×
∫

dk1 · · ·dks

(2π)s I0
Γ̃
(2π)4δ4

∑
a

qa

 , (30)

Gm S m
∏1∏2

Γ̃ |Gm| = m!

where  is the permutation group ,  extends over
all  reduced vertices,  and  extends over  the remaining
original vertices in . Since , we obtain:
 

S
Γ̃(n,m) =

|∏1 GOγτ
| × |∏2 Gi|
|G
Γ̃
|

×
∫

dk1 · · ·dks

(2π)s I0
Γ̃
(2π)4δ4

∑
a

qa

 . (31)

S Γ(n)Together with , this gives:

S Γ(n)+S
Γ̃(n,m) =

|
2∏

Gi| × |
3∏

Gi|
|GΓ|

∫
dk1 · · ·dkl

(2π)l I0
Γ(2π)4δ4

∑
a

qa

+ | 2∏
Gi| × |

3∏
Gi|

|GΓ|
×
|GΓ| × |

1∏
GOγτ
|

|G
Γ̃
| × |

3∏
Gi|

×
∫

dk1 · · ·dks

(2π)l I0
Γ̃
(2π)4δ4

∑
a

qa

 , (32)

Γ Γ̃′s. (a) Γ A,B,C,D (b) γτ
′s Γ̌1 (c)

Γ̃1 Γ̌1 (d) (b) Γ̌′1 (e) Γ̃′1
Γ̌′1 Γ̃1 ( f ) {γτ} = {A,B,C,D} Γ̌2 (g) Γ̃2.

Fig. 5.    Diagram of  with   Diagram of  where  are renormalization parts.  Choose A and C as  to get . 
 from  (shrink all lines and points of A (and C) into a point).  Another configuration equivalent to , which gives .  

from , equivalent to .   gives .  
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∏3 ∪
τ γτ ⊂ Γ

|∏2 Gi| × |∏3 Gi| =∏
Gi

Γ S (n,m)
Γ̃

where  extends  over  all  vertices  in .  Thus
one  has ,  which  extends  over  all
vertices  of .  The  term  should match  the  coun-

γτ
∫ ∏

ind kγτabσO0
γτ

terterms in  the  BPHZ  renormalization  scheme.  We  de-
note the vertex of  as . Based on Eq. (25),
Eq. (32) can be written as:

S Γ(n)+S
Γ̃(n,m) =

|∏Gi|
|GΓ|

∫
dk1 · · ·dkl

(2π)l

I0
Γ +
|GΓ|

∏1 |GOγτ
|

|G
Γ̃
|∏3 |Gi|

I0
Γ/{γ1···γc}

∏
τ

O0
γτ

 (2π)4δ4

∑
a

qa


=
|∏Gi|
|GΓ|

∫
dk1 · · ·dkl

(2π)l

I0
Γ +
|GΓ||G(2)

Γ
|∏τ |GOγτ

|
|G(1)
Γ
|∏3 |Gi|

I0
Γ/{γ1···γc}

∏
O0
γτ

 (2π)4δ4

∑
a

qa


=
|∏Gi|
|GΓ|

∫
dk1 · · ·dkl

(2π)l

I0
Γ +
|GΓ|

∏
τ |Gγτ |

∏
τ |GOγτ

|
|G(1)
Γ
|∏3 |Gi|

I0
Γ/{γ1···γc}

∏
O0
γτ

 (2π)4δ4

∑
a

qa

 , (33)

|
G(2)
Γ

G(1)
Γ

| = 1
|G
Γ̃
| | GΓ

G(1)
Γ

|

Γ̃′s

where ,  and  is  the  number  of  cosets,

which  indicates  the  number  of  different  whose con-

Γ̃figurations are the same as .
ΓTaking  into  account  all  reduced  diagrams  of ,  we

have:

S Γ(n)+
∑

l

S
Γ̃l(n,m) =

∏ |Gi|
|GΓ|

∫
dk1 · · ·dkl

(2π)l

I0
Γ +

∑
l

∏
τ |GOγτ

||Gγτ |∏3 |Gi|

× I0
Γ/{γ1···γc}

∏
τ

O0
γτ

(2π)4δ4

∑
a

qa

 , (34)

{γ1 · · ·γc}
Γ

where l is  specified by the set  of mutually dis-
joint renormalization parts in .

|Gi|Next we absorb all factors  of symmetry groups of
the original  vertices  into  these  vertex  constants,  and  re-
quire

1
|Gγτ ||GOγτ

|Oγτ =
1
|Gγ̂τ |

Oγτ = O0
γτ
, (35)

O0
γτ

which corresponds to  in Eq. (34). We have:

S Γ(n)+
∑

l

S
Γ̃l(n,m)

=
1
|GΓ|

∫
dk1 · · ·dkl

IΓ+
∑
{γ1···γc}

IΓ/{γ1···γc}
∏
τ

Oγτ


× (2π)4δ4

∑
a

qa

 = 1
|GΓ|

FΓ . (36)

Ô0
γτ

γτ

This is just the BPHZ formula. The corresponding operat-
or of  in Eq. (35) is given in Appendix A, and it only
depends on the renormalization part .

VI.  CONCLUSION

Q̂0
γτ

∆LI

In  conclusion,  we  have  considered  the  procedure  for
introducing a new vertex  into  for all renormaliz-

γτ d(γτ) ⩾ 0
m ⩽ n

m′ ⩽ n

Γ

ation parts  (proper diagram with ) with num-
ber of vertices . When we collect all terms of origin-
al parameter order  (the order for original perturba-
tion  parameters)  in  the S matrix, then  it  will  automatic-
ally  give  the  counterterms  of  Feynman  integrals  as  the
BPHZ scheme requires for any Feynman diagram .

∆LI

Thus  the  BPHZ  scheme  is  consistent  with  adding
counterterms in .
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QγAPPENDIX A. Symmetry of vertex 

GΓ Gγ̂

γ

GΓ

Gγ Gγ̂ γ̂

γ L(γ̂)

Similar to , we define a mapping group  for the
Feynman  diagram . In  this  mapping,  we  allow  the  ex-
ternal  lines  to  be  mapped  to  equivalent  lines  of  another
vertex of the same type. This is different from , where
the  external  lines  always  keep  fixed.  We  find  that  the
group  is a normal subgroup of . We denote  with
external lines of  belonging to . We have:

Oγ = −tγ
Iγ +

∑
{γ1···γc}

′Iγ/{γ1···γc}
∏
τ

Oγτ

 , (A1)

and
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Qγ =

∫ ind∏ d4kγabσ

(2π)4 Oγ, (A2)

γτ ⊂ γ Oγτ

γτ Gγ̂τ Qγτ

due  to  Eq.  (25).  Assume  for  all  proper  renormalization
parts , are symmetric  functions  with  the  sym-
metry  of .  That  means,  under ,  the  value  of  is
invariant. We can write Eq. (A2) as:

Qγ = −tγVγ . (A3)

VγHere  is defined as:

Vγδ4
(∑

qγa
)
=

∫ ∏
Labσ∈L(r)

d4kγabσ

(2π)4 Ǐ0
γ

+
∑
′
∫ ∏

Labσ∈L(γ/{γ1···γc})

d4kγabσ

(2π)4 Ǐ0
γ/{γ1···γc}

×
∏
τ

Qγτ (2π)4δ4

∑
Va∈γτ

qγτa


 ,

(A4)

in which:

Ǐ0
γ =

∏
Labσ∈L(γ)

∆abσ
F

∏
Va∈V(γ)

Pa(2π)4δ4

 ∑
Lab′σ′∈L(γ̂)

lab′σ′


 . (A5)

Ǐγ/{γ1···γc}
Gγ̂

Vγ(s) Gγ̂

Vγ(ind)
qγa δ4(

∑a qa)
qγa

qγa

The  situation  is  similar  for , and  Eq.  (A4)  is  in-
variant  under  the  mapping  of .  Thus  we  can  always
choose  which  is  invariant  under .  On  the  other
hand,  we  can  also  choose  which is  only  a  func-
tion of independent . Due to  in Eq. (A4), the
number of  independent  is  less  than the number of  all

. We have:

Vγ(ind)δ4
(∑

qγa
)
= Vγ(s)δ4

(∑
qγa

)
. (A6)

One can show by truncating the Taylor series in Eq. (22)
that:

−tγ(ind)Vγ(ind)δ4
(∑

qγa
)
= −tγVγ(s)δ4

(∑
qγa

)
, (A7)

−tγ(ind)Vγ(ind) Qγ

Qγ

Gγ̂

Gγ

where  is  the  in  Eq.  (A2).  We  then
prove that  can also be chosen as a symmetric (invari-
ant)  function under  the mapping of .  It  is  fixed under

.  Thus  as  a  reduced  vertex,  we  have  the  symmetry
group,

GOγ
=Gγ̂/Gγ . (A8)

Qγ

f (x1, x2, x3) = f (x′1,
x′2, x

′
3)

Here we make a remark about invariants. If the momenta
of external lines change following the mapping, the func-
tion  is invariant. For example, under the mapping de-
picted  in Fig.  A1,  if  the  function  

, we say function f is invariant under the mapping g.
QγWe denote  as

δ4

∑
a

qγa

Qγ = −tγVγ({qγa})δ4

∑
a

qγa

 . (A9)

(
−i

∂

∂xa

)
qa

Qγ ∆LI

In  the  integral  equations  (1)  and  (2),  the  derivative

 operator  produces  a  momentum  factor.  Thus
the  function  can  be  realized  in  by  the  operator
proportional to

Q̂γ =i
d(γ)∑
l=0

1
l!

∑
ii···1l

(
−i

∂

∂xi1

)
· · ·

(
−i

∂

∂xil

)

×
∏

i

φai
(xa)

∏
j

φb j
(xb) · · ·

 ∣∣∣∣xa=xb=···=x

× ∂

∂qi1

· · · ∂
∂qil

Vγ(qγa)|q=0, (A10)

i1, · · · , il a = 1, · · · ,nγ
(nγ = number of vertices in γ) µ = 0,1,2,3.

{φai
, i = 1, · · · , la}

Va, · · ·

where  in  summation  run  over  all ,
,  and  In  Eq.

(A10),  fields  produce  external  lines  at
the vertex .

∆LI

From Eq.  (35)  the  operator  of  the  reduced vertex in-
troduced in  is then

Q̂0
γτ
=

1
|GOγτ
||Gγτ |

Q̂γτ =
1
|Gγ̂τ |

Q̂γτ . (A11)

Gγτ Gγ̂τ is a normal subgroup of , see Fig. A2 below.

 

x′1 = x2,

x′2 = x3, x′3 = x1

Fig. A1.    Mapping leading to an invariant function (
).
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