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Abstract: The observed rotation curves of low surface brightness (LSB) galaxies play an essential role in studying
dark matter, and indicate the existence of a central constant density dark matter core. However, the cosmological N-
body simulations of cold dark matter predict an inner cusped halo with a power-law mass density distribution, and
cannot reproduce a central constant-density core. This phenomenon is called cusp-core problem. When dark matter is
quiescent and satisfies the condition for hydrostatic equilibrium, the equation of state can be adopted to obtain the
density profile in the static and spherically symmetric space-time. To address the cusp-core problem, we assume that
the equation of state is independent of the scaling transformation. Its lower order approximation for this type of
equation of state can naturally lead to a special case, i.e., p ={p+ 25\/r2()t p, where p and p represent the pressure and
density, respectively, Vyo: depicts the rotation velocity of galaxy, and ¢ and € are positive constants. It can obtain a

density profile that is similar to the pseudo-isothermal halo model when € is approximately 0.15. To obtain a more
universally used model, let the equation of state include the polytropic model, i.e. p = p%pl” + ZeVrzot p, from which

we can obtain other types of density profiles, such as the profile that is nearly same as the Burkert profile, where s

and pg are positive constants.
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I. INTRODUCTION

The dark matter (DM) is an unsolved puzzle in cos-
mology and particle physics, and it probably consists of
particles that are weakly interacting. Though many astro-
nomical observations, like Cosmic Microwave Back-
ground and baryon acoustic oscillations, approximately
DM make up 23% of today's Universe. The cosmological
model based on cold DM in reproducing the large-scale
structure of the Universe is quite well and get great suc-
cess [1-7]. The most popular candidate for cold DM is the
weakly interacting massive particles (WIMPs), which are
particles with negligible self-interactions, they are stable
and collisionless. Their particle masses estimated are in
the range 10 GeV ~ 1 TeV.

However, several severe challenges to the cold dark
matter model have emerged on a small scale, such as the
scale of individual galaxies and their central core [2]. For

example, in the cold DM model, halos can be character-
ized by a power-law mass density distribution with a
steep power index at the central core, which is in contrast
with the observation in small scale, such as the observed
rotation curves of low surface brightness (LSB) galaxies.
This indicates the existence of a central constant-density
DM core [8] in LSB galaxies, which comprise a very
small proportion of ordinary baryonic matter, such that
their stellar populations make only a relatively small con-
tribution to the observed rotation curves. The rotation
curves of galaxies are important observational tools in de-
tecting their gravitational potential. Because the lumin-
ous component cannot fit the entire rotation curve of
galaxies, it requires a contribution by dark matter or oth-
er ideas, such as modified Newtonian dynamics (MOND)
[9, 10]. When we use dark matter to explain the observed
rotation curves of galaxies, several empirically spherical
dark matter halo profiles exist [11], such as the Navarro-
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Frenk-White (NFW) [12], Burkert [13] and pseudo-iso-
thermal profiles [14]. The Burkert and pseudo-isothermal
profiles are often used for LSB galaxies, and they can
perfectly fit the observed rotation curves of LSB galaxies
[15-17]. They both indicate the existence of a central con-
stant density. However, by adopting the cold DM model,
numerical N-body simulations cannot reproduce a central
constant-density DM core [18]. This phenomenon is
called the cusp-core problem.

Furthermore, LSB galaxies are valuable laboratories
for the indirect detection of DM [19]. They are late-type
disc galaxies with a face-on central surface brightness
fainter than that of the night sky. It is very difficult to de-
tect them owing to their very low surface brightness. LSB
galaxies are the most abundant objects in the Universe,
and they possibly contribute > 50% to the galaxy popula-
tion [17, 20]. In addition, they are generally isolated sys-
tems [21]. The pair annihilation of WIMPs can produce
high energy y-rays [22]. Star formation, accreting super-
massive black holes, or active galactic nuclei (AGN) can
also trigger y-ray emission. LSB galaxies generally have
very low star formation rates, and are characterized by
diffuse, metal poor, and very low surface density expo-
nential stellar discs. They are slowly evolving galaxies.
AGNs are rarely discovered in LSB galaxies [23].
Moreover, LSB galaxies are very rich in neutral hydro-
gen (H;) gas. On average, the masses of H; gas in their
gas discs range from 10® to 10'°M, [24]. The extended
gas discs can extend outward to approximately 2-3 times
their stellar disks [25, 26]. This enables us to measure
their rotation curves to large radii by adopting the H;
data. Their rotation curves can also be derived from the
other emission lines such as the H, line [15, 27, 28]. Ro-
tation curve studies demonstrate that LSB galaxies are
significantly dominated by DM and have simple a dy-
namical structure.

Other popular DM models are used to explain the
cusp-core problem, such as the self-interacting DM [29]
and warm dark matter model (WDM) [30, 31]. Two of
the most canonical candidates for WDM are the sterile
neutrino [32] and the gravitino [33]. The dark matter
particles are usually classified by their velocity disper-
sion given in terms of three broad categories: hot DM
(HDM), warm DM (WDM) and cold DM (CDM). In
principle, HDM is relativistic at all cosmological relev-
ant scales. When a particle's momentum is equal to or
less than its mass, it becomes non-relativistic. The WDM
has a higher velocity than the CDM because of their
mass. The typical mass of the WDM particle is approxim-
ateky 1 keV. On subgalactic and galactic scales, their
non-zero thermal velocities have a substantial suppres-
sion effect on the steep DM power spectrum [31].

In this study, we attempt to investigate the equation of
state of DM to elucidate the cusp-core problem. Based on
the nature of WDM, we hypothesize that DM has a

nonzero random motion in the density core. However,
when DM is a perfect fluid, the observations indicae that
the velocity of this random motion is significantly lesser
than the speed of light. In reality, this constant random
motion probably disappears at large radii; hence, this
term can be replaced by the polytropic model. Consider-
ing the properties of WIMPs, we can assume that the ran-
dom motion of dark matter particles is positively correl-
ated with their rotational motions at large scale.
Moreover, because several halo density profiles, such as
the NFW profile or pseudo-isothermal profile, can be ef-
fectively used to fit the density profile of the galaxies
from small sizes to large sizes, we can assume that the
equation of state is independent of the scaling transforma-
tion. In this study, we will demonstrate that its lower or-
der approximation for this type of equation of state can
naturally yield a result in which the random motion of
dark matter include a constant term, including a term that
is proportional to the particle rotational motions. In this
simple phenomenological model, we can observe that the
dark matter halo profile agrees well with the observa-
tions. It can provide a solution for the cusp-core problem.

The outline of this paper is as follows. In Section II,
we present three special cases for the equation of state of
DM and obtain the mass density profiles of DM halos.
We obtain an approximate analysis to describe the inter-
active effect between DM and black hole in Subsection
ILLA. In subsection II.B, we study the aforementioned
phenomenological model and compare it with the obser-
vations. In subsection II.C, to enable the constant ran-
dom motions disappear at large radii, this term is re-
placed by the polytropic model. We then study this novel
model. In Section III, we present the conclusions of this
study.

II. THE MODEL

The most general static and spherically symmetric
metric takes the following form

ds? = e?dr® —eBdr? — 2(d6” +sin” 6de?), (1)

where 4 and B are functions of . For conventions, the
gravitational constant and speed of light are set to 1. Us-
ing the above metric, the Einstein gravitational field
equation can be expressed as follows.
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By analyzing the stable circular orbits of a test particle,
the rotation velocity Vi, ofa test particle can be ex-
pressed as [34, 35]:

1
V2 rA’. (3)

rot:§

If pure DM is an isotropic perfect fluid, its energy
momentum tensor takes the form 7% = diag[p,—p,—p,—p]
for the spherically symmetric case. Let us set F =e 21,
N =A’, and x = In(r). Then Eq. (2) becomes

F+F. +81p=0, “)
(1+F)N+F =8nr’p, 5)
’ 1 2 1 ’ ’ 2
(1+F) NX+§N +§FXN+FX=16nr p- (6)
It yields
dp _ p+p
—=-FfN.
dx 2 )

. . d . .
This equation can lead to d—p = —pg in a non-relativ-
r

istic approximation, where g is the gravity acceleration.
Then, in a relativistic case, we have the following equa-
tion:

’
X

avr Mt t e r T ®

F. Z}N N?* F.-2F

To solve this equation, we need the equation of state
(EOS). Because combining Egs. (4) and (5) yields the fol-
lowing expression

)4 (I1+F)N+F

LA, ST 9
P F+F’ ©)

assuming that pressure p is the only the function of dens-
ity p, N is a function of x, F/, and F, and it is expressed as
N =G(x,F,F!). If F(r) is a solution and A is a positive
constant, then F(Ar) is also its solution. This assumption
leads to the equation N = G obviously does not contain x,
as it is an autonomous equation. However, this also leads
to pressure p being proportional to density p. To con-
sider more possible EOS, we just assume that NV is a func-
tion of F’ and F. The rotation velocity is significantly
less than the speed of light; hence, F is negligible. When
F and F’, are negligible, we can adopt the Taylor expan-
sion of equation G(F,F’) to replace them. Because Eq.
(9) can be solved by iteration,

NO:_Fs
3F. —5F — F?
Ni=-F|[1l+—=>— z—F1+§F;—§F,
4+4F-F', 4 4
1 5 3 3 .5
Ny~ —F|[l==F.—=ZF+=F" |- =(F")?,
2 (2)‘4+8”)8()‘)

(10)

Considering the above approximate iteration form of vari-
able N, we take two cases of the Taylor expansion of the
equation N = G(F,F’) to solve Eq. (9) in the following
Subsections II.A and I1.B. We then consider an extended
EOS of dark matter in subsection II.C. This EOS is not an
autonomous equation.

A. Casel

Using the first iteration formula Ny, we can assume
N =—F +(yF +€F")F, (11)
where y and € are constant. When |F| <« 1 and |F/| <1,
using Egs. (3)-(5), this assumption leads to the following
EOS:

_(I+F)N+F _ e(F.+F)F +(y—e—1)F?

8rr? - 8rr?
—e—1 (V2 \
zzevfotp+%(%‘”) . (12)

When |F| <« 1 and |F/| < 1, and setting M = In(-F), Egs.
(9) and (12) can be approximated by

2eU) +(4y—4e=3)U +4eU’+5-4y=0,  (13)

where U = M. This equation is a Riccati equation. When
(4y +4e—3)>—32¢ > 0, one of the solutions is

P
e 1+(1), 3> 0), (14)
re 140)
—4e-3 B~ Jly+de-37-32
where 3= 27473 B g VUytde-32-3%
8e 4 6

and the core radius ry are positive constants. Then the
density p is

F
p=- l-a+—2L | (15)

812 B
2+2(1)
ro

If density is characterized by a power-law distribution
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p ~r*, using Eq. (4), @ can be written as

/7 F/+F//
a=Lro T (16)
) F+F;

The absolute value of the slope @ should be higher in the
outer region. Considering the fact that DM density p has
a lower value and its absolute value of slope « is higher
in the outer region, @ should be equal to 1. This leads to
v =1+g¢, then it is easy to observe that p is proportional

to the term V2p, ie. p=x2eVip (e
1+F)N+F F . +F . L
d+HN+F =—eN———), and the variable N is given
8rr? 8nr?
by
F
N 17
1+F+€eF +¢€F’, a7

Thus, using Eq. (9) can lead to the following equation:

—6EXF F')? 1+2€F’,
2¢F" . +F. l—et 6 +E( ) x
1+F F 1+F
4€*F?
1—4€)F — = 13
+(1=4eF - — =0, (18)
and Eq. (15) is reduced into the form
b =
F=-2 1+(L) . (19)
r ro

When the core radius ry — oo, this solution can become
the vacuum Schwarzschild solution, and the parameter b
is the Schwarzschild radius in this case. Then the energy
density p can be approximated as

B
_Be-Db \ry

3267“’8 32—‘
r\ =
1+(—)
ry

(20)

This profile is a Zhao halos profile [36], which can ac-
quire both the form of a cusped or a cored profile with
three free parameters (@,8,%):

BINE]

When ry is significantly large, a transition zone exists
between the density core and outer region when density is
characterized by a power-law distribution p ~ r* for the

p= (21

ol
<1

profile in Eq. (21). In this transition zone, the slope is

2e-1 1+4
altered from o= to a=- €

. For example,

when € =0.5, the denesity distribution Eis dominated by a
central constant-density core, as well as by an outer
power-law density distribution p ~ 73, Because DM has
lower density in the outer region, the interaction force of
the DM decreases and variable € may be smaller at a lar-
ger radii; hence, we probably obtain a steeper outer
power-law density distribution in this more realistic case,

S o - . Unfor-
1+ 2

tunately, a severe problem exists. Becaﬁsre(tJ b is the
Schwarzschild radius, the mass of the dark matter within
the core radius is only V2 -1 times the black hole mass.
This is not consistent with the observations. The observa-
tions show that the mass of the central black hole is far
less than that of the DM halo for many types of galaxies
[37-39].

To test the approximate analysis in Eq. (20), we ad-
opt the odeint Python routine in the SciPy library to solve
Eq. (19). Because the energy density p cannot be solved
easily by Eq. (2), using Egs. (2) and (19), the energy
density p can be rewritten as

such as the pseudo-isothermal profile

F'+F. 1 eF’
In(8 2 P xx X _ 1—de+ X
SR =T T oL R

. eF.  2e’F, 2€X(F.)* 4€F
F1+F) 1+F F(1+F) 1+F]|
(22)

Then, using Eq. (23), we obtain the density p. In Fig. 1,
we compared our approximated analytical solutions with
the full numerical solutions for F and p. Notably, their
difference is negligible, i.c., the relative differences are
generally below 10~*, with most of them at 10~*-107°
level. The relative errors of density p become larger and
can obtain 107! at the inner region near the black hole.
The analytical solution can directly provide the density
profile form.

B. Casell

In the previous case, the solution that satisfies the
boundary conditions does not exist

F=0, a0 at r=0
a~-2 at r=oo.

(23)
Assume that

N=-F—{(F+F.)+(1+€)F*+€F.F, (24)

where ¢ is a negligible positive constant [34, 40]. When
|F| <1 and |F| < 1, using Egs. (3)-(5), this assumption
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Fig. 1.

(color online) Comparison results between the approximate analysis and numerical solutions. (top) The analytical solutions of

—In(-F) and p. The solid and dashed lines represent —In(-F) when e = 0.25 and 0.5, respectively. The dotted and dashed-dotted lines

represent p when € = 0.25 and 0.5, respectively. (bottom) The relative errors (|

AF Ap

Foum — F, — P .
=l num app =l Pnum ~ Papp |) for dif-

num

| and |

num Frum Prnum

ferent €. The subscripts num and app refer to quantities relating to the numerical solutions and approximate analysis, respectively. The

solid and dashed linescorrespond to | AF | when e = 0.25 and 0.5, respectively. The dotted and dashed-dotted lines give | pAp | when
€ =0.25 and 0.5, respectively. " "
leads to the following EOS: obtain:
4e—1 de+1
(I1+F)N+F —{(F+F)+elF.+F)F c T 2eV? x= 2 or a=— 2 (29)

= ~ = . € €

8mr? 8r? p rotf?

(25)

When |F| <« 1 and |F/| < 1, Egs. (9) and (25) can lead to
the following approximate equation:

(2¢H - 1)H,

X

+(1+H)H, +2e(H,)* +2H + (1 —4€)H*> = 0,
(26)

F .
where H = Z’ When |F| <« ¢, this case leads to the fol-

lowing approximate equation:

F!.—F.,-2F=0. (27)
Then its solution is
b 2
F:——_(L) , (28)
r ro

where b and ry are constants. This solution can include a
black hole or a constant-density core. A black hole and a
constant-density DM core can simultaneously be held in
one halo. When b =0, the black hole will not exist. It is
an optimal approximate solution near the halo center.

1 .
When { < |F| < 1, €2 7 and F’. = yF, using Eq. (27), we

The density can be described by the power-law distribu-
tion at very large radii, and the above formula can
provide its power index approximately (refer to the next
paragraph for details). The above approximate analysis
can help us understand the physical process of the DM
halo from small scale to large scale.

Because it is difficult to obtain the analytical solu-
tions of Egs. (9) and (25), the numerical solutions are re-

2
quired. The initial condition is F =—(—] . Then, the
0

power indexes « for the numerical solutions are presen-
ted in Fig. 2. The observed data are also presented. The
observed LSB sample involves 48 galaxies, which are
from obtained from the study by de Blok et al. (2001) [8].
These numerical models can perfectly respond to the ob-
served results. The pseudo-isothermal halo model is also
depicted by the dash-dotted line in Fig. 2. The numerical
solution with € = 0.15 is nearly the same with the pseudo-
isothermal halo model. In Fig. 2, it is evident that the val-
ues of a become flat at large radii, i.e., the density can be
approximately described by the power-law distribution.
The rotation velocity V., increases with radius, then

.. 1
|F| > ¢ at very large radii when € > 7 and ¢ > 0. Eq. (30)

can provide the power index a approximately.
The numerical solutions with € =0.5, 0.25, 0.15 are
adopted to fit the observed rotation curves. ¢ and ry are
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Fig. 2. (color online) Comparison results between the nu-

merical profile in Eq. (25) and the pseudo-isothermal profile.
The solid, dashed, and dotted lines represent the numerical
models with £=107% and €=0.5, 0.25, 0.15 respectively. The
dash-dotted lines represent the pseudo-isothermal model with
a core radius of 1.0 kpc. Filled circles depict the observed data
of the slope «, which are obtained from the sample presented
by de Blok et al. (2001) [8].

adjustable parameters. The observed rotation curves of
LSB galaxies are obtained from the study by Kuzio de
Naray et al. (2006, 2008, 2010) [15, 27, 28]. The data are
fitted via the least-squares method. The fitting results are
presented in Fig. 3. The best fit parameter ¢, ry, and the
reduced chi-square value y2 are presented in Table 1, and
{ 1s expressed in SI units.

If e=0, because |F| increases with the radii, as

100 1

V(km/s)

50 A

100 A
75 4

50 4

V(km/s)

25 1

r(kpc)
Fig. 3.

demonstrated in the initial condition, the term F? reduces
it; hence, F/. =0 at r=oo [34]. Finally, this condition
leads to F ~ -4/ at r = o0, i.e., a larger value of ¢ results
in a higher rotation velocity. The rotation velocity, Vi, is
zero at the galaxy center, such that ¢ is proportional to
the square of the velocity dispersion at the galaxy center,
the LSB galaxies with bigger velocity dispersions at the
galaxy center should have higher peak rotation speeds
(Vmax )- This phenomenon has already been reported [39].
The velocity dispersion at the galaxy center is signific-
antly less than the speed of light in Table 1. It indicates
that the dark matter is cold [34, 40]. Because the bigger
velocity dispersion can lead to a higher peak rotation
speed, to induce p to drop more rapidly than the pseudo-
isothermal density profile at the outmost region, the term
{p must disappear, or the velocity dispersion must be-
come smaller. In Fig. 2, it demonstrates that @ cannot be
less than -2 at large scale. To ensure that « is less than -2,
the term {p must disappear at large scale; hence, we ad-
opted the polytropic model to replace it in the following
subsection.

C. Caselll

There exist other density profiles, which are usually
adopted in LSB galaxies, such as thermal WDM halo
density profile [28, 41]

Po
[1+(r/ro)* PP’

| i

p= I<p<3. (30)

100 A

V(km/s)

V(km/s)

r(kpc)

(color online) Observed LSB galaxy rotation curves with the best-fitting dark matter model. The solid, dashed, and dotted

lines represent the numerical models with € = 0.5, 0.25, 0.15, respectively. The filled circles represent the observed data.
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Table 1. Best-fit parameters.
Galaxy VZ72/(km/s) ro/(kpc) Xy V72 (km/s) ro/(kpc) Xy VZ72/(km/s) ro/(kpe) Xy
€=0.15 €=0.25 €=05
F563-1 41.1+1.7 1.21+£0.14 0.54 37.5£2.5 1.01+0.17 0.72 31.4+54 0.69+0.25 1.08
F568-3 52.1+4.4 2.49+0.26 1.28 544+53 2.58+0.31 1.35 60.5+7.4 2.83+0.42 1.47
F583-1 347+ 1.3 1.53+0.09 0.48 345+ 1.6 1.44+0.10 0.57 34.8+2.7 1.33+0.15 0.80
F583-4 26.0+ 1.4 0.81+0.11 0.67 24.5+ 1.7 0.68+0.11 0.59 21.8+2.6 0.49+0.12 0.52
. 01
and the Burkert density profile [13]
i
3
Por
° (31)

Their indexes « are smaller than -2 in the outermost
region. To determine similar solutions to the above pro-
files, we assume that:

£ 1as
p==p"" +2eVip,

0

(32)

1 . .
where s = - and n represent the polytropic index. This
EOS includes the polytropic model. Using the initial con-

dition F = — L

It
Eq. (9) as Eq. 0(33). Then the slopes a of the numerical
solutions are plotted in Fig. 4. For clarifications the in-
dex a of the Burkert profile shift down -0.5 in Fig. 4.
When n=5 and € =0, the polytropic model can obtain
the profile in Equation (31) with 8=2.5 in the non-re-
lativistic approximation, and it is nearly the same with the
numerical solution with (n, €) = (1.7, 0.083), as presented
in Fig. 4. Therefore, there is a degeneracy between n and
€.

, we obtain the numerical solutions of

III. CONCLUSIONS

In this study, we investigate the EOS of DM, which is
considered a perfect fluid. When EOS is independent of
the scaling transformation, it does not explicitly contain
x. Because the rotation velocity is significantly less than
the speed of light, i.e., F' is very small, the Taylor expan-
sion is adopted to approximately represent EOS . Its first
order terms can indicate the fact that the pressure is pro-
portional to density. Its second order terms can naturally
indicate that the random motions of DM are correlated
with the particle rotational motions. Finally, we obtain
the simplest EOS, i.e. p={p+2eV2 p. This EOS is not
scale dependent, and can ensure a black hole and a con-
stant-density core hold simultaneously in one DM halo.

The term p can lead to a constant-density core. The
constant-density central core can exist in the region with

== = Burkert
| ==== B=15,Eq.(31)
— = B=2.5Eq.(31)
........ B=2.0,Eq.(31)
— ) = 3.6, € = 0.109
e 1= 2.3,€£=0.128
n=18,=0.1

n=1.7,6=0.083

-2.0 —i,S —140 —6.5 0?0 0?5 ltO 1t5 2.0
log(rin/kpc)

Fig. 4. (color online) The index a of the numerical profile in
Eq. (33), the profile in Eq. (31), and the Burkert profile. The
solid lines from upper right to bottom right represent the
numerical models with =107 and (n, €)=(2.3, 0.128),
(3.6, 0.109), (1.8, 0.1), and (1.7, 0.083) respectively. The dashed
line at the top, dotted line, and dash-dotted line represent the
profile in Eq. (31), with core radius of 1.0 kpc and
B=1.5,20,25 (from top to bottom). The dashed line at bot-
tom represent the index « of the Burkert profile. For clarifica-
tions, the index o« of the Burkert profile and the numerical
model with (n, €) = (3.6, 0.109) shift down -0.5.

|F| < ¢. The second order terms in the Taylor expansion
can trigger the existence of a transition zone between the
density core and outer region for power index @, where
density is characterized by the power law relation. It can
obtain a density profile that is similar to the pseudo-iso-
thermal halo model when e is approximately 0.15. By us-
ing the classical least chi square methodology, this pro-
file can perfectly fit the observed rotation curves of LSB
galaxies.

When ¢ =0, the term €V2 p can obtain a power law

IO

density beyond the region that includes a black hole. The
+4€. When ¢>0 and € is

. . 1

power index « is equal to —
. . . . ¢ 4e+1
big, this power law density with a = —

also exists

in the outermost region. If ¢ is proportionai to the square
of the velocity dispersion at the galaxy center, then the
LSB galaxies with bigger velocity dispersions at the
galaxy center should have higher peak rotation speeds.

To ensure that the constant random motions disap-
pear at large radii, we introduce the polytropic model.
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The polytropic model is scale dependent. For the equa-
tion of state that includes the polytropic model, i.e.

p= 7p1”+26Vr20tp, we can obtain the density profiles

with 4 constant-density core and an index « that is less
than -2 at very large radii, such as the profile that is
nearly the same with the Burkert profile. The polytropic
model is widely adopted, and can be obtained from sever-
al fundamental DM particle models, such as the Bose-
Einstein condensate dark matter model [42-44]; hence, it
is difficult to be in favor of a dark matter particle model.
The observations indicate that LSB galaxies nearly have a

constant core column density, i.e., Xpm =01~
75Mypc? [45, 46]. It may exert strong constraints on the
physical properties of the dark matter particle or core
formation mechanism [47]. For example, the fuzzy DM
model is difficult to explain [46]. pp and r( in our model
are free parameters, and their relationship is not con-
sidered in this study. We cannot currently explain the ob-
servation on the constant core column density; however,
we will focus on it in our future work.

Softwares: NumPY [48], SciPy [49], and Matplotlib
[50].
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