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Abstract: We extend the auxiliary-mass-flow (AMF) method originally developed for Feynman loop integration to

calculate integrals which also involve phase-space integration. The flow of the auxiliary mass from the boundary

(o0) to the physical point (07) is obtained by numerically solving differential equations with respective to the auxili-

ary mass. For problems with two or more kinematical invariants, the AMF method can be combined with the tradi-

tional differential-equation method, providing systematic boundary conditions and a highly nontrivial self-consist-

ency check. The method is described in detail using a pedagogical example of ete™ — y* — 7+ X at NNLO. We

show that the AMF method can systematically and efficiently calculate integrals to high precision.
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I. INTRODUCTION

With the good performance of the LHC, particle
physics has entered an era of precision measurement. To
further test the Standard Model of particle physics and to
probe new physics, theoretical calculations at high order
in the framework of perturbative quantum field theory are
needed to match the precision of experimental data. One
of the main difficulties for higher-order calculation is the
phase-space integration. On the one hand, there are usu-
ally soft and collinear divergences under integration
which make it impossible to calculate phase-space integ-
ration directly using a Monte Carlo numerical method.
On the other hand, in general it is hard to express the res-
ults in terms of known analytical special functions. Signi-
ficant progress has been made in the last few decades,
however.

The mainstream strategy to calculate divergent phase-
space integration is to divide the integrals into a singular
part and a finite part, so that the first part can be calcu-
lated easily (either analytically or numerically) and the
second part can be calculated purely numerically using a

Monte Carlo method [1-18]. If the process under consid-
eration is sufficient inclusive, one can map phase-space
integrals onto corresponding loop integrals by using the
reverse unitarity relation [19-21]
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where Of =k? —m? can be interpreted either as a mass
shell condition or as an inverse propagator on the cut. In
this way, techniques developed for calculating loop integ-
ration can be used, such as integration-by-parts (IBP) re-
lations [22], differential equations (DEs) [23, 24], dimen-
sional recurrence relations [25-27], and also methods de-
veloped by introducing auxiliary mass (AM) [28-34].
Furthermore, loop integration and phase-space integra-
tion can be dealt with as a whole because they are not sig-
nificantly different from each other for these techniques.
To be definite, a schematic cut diagram for a general
process is shown in Fig. 1, where L* is the number of
loop momenta (denoted as {/{'}) on the Lh.s. of the cut, L~
is the number of loop momenta (denoted as {/7}) on the
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Fig. 1.
loops, M unintegrated external legs, and N cut legs.

Schematic diagram for a process with L=L%+L"

r.h.s. of the cut, L=L*+L"
momenta, M is the number of external momenta (de-

is the total number of loop

dPrr

noted as {g;}) which contains not only initial state extern-
al momenta but also fixed and unintegrated final state
momenta, and N is the number of cut momenta (denoted

{k;}) which are on mass shell, with m; being the corres-
ponding particle masses. L* >0, L >0, M > 1 and N > 1
are reasonable. We denote Q as the total cut momentum-

M N
which satisfies Q:Zq,-:Zk,- if {¢;} are labeled to

flow into the diagraml alnd {kil} how out of the diagram. A
complete set of kinematical invariants after performing
loop integration and phase-space integration is denoted as
§ , with Q? as a special component.

A general phase-space and loop integration with AM
to be studied in this work is

le‘

rin= o] g | n(sz’

where the non-integer spacetime dimension D =4 —2¢ is
introduced to regularize all possible divergences, D!, are
the inverse of tree propagators which do not depend on
loop momenta, D/ are the inverse of loop propagators on
the Lh.s. of the cut which do not depend on loop mo-
menta on the r.h.s. of the cut, D, are the inverse of loop
propagators on the r.h.s. of the cut which do not depend
on loop momenta on the Lh.s. of the cut, the vector v = (v},
Voot VI VE Vi Vip Vapsoo) With v <0, the
vector 7j = (ntl,ntz,--- 13755705115, +) denotes the in-
troduced AM terms, and dPSy is the measure of N-
particle-cut phase-space integration. For the total cross
section, we have

’VI_’VE’.“

N
dPSy = 2m)P6? [Q Zk]ﬂ B ———2m(DHOK? — m;),

- 3)

where © is the Heaviside function.” Differential cross
sections can be obtained by introducing constraints into
dPSy, e.g. an introduction of &(y—k;- p1/k;- p2) can give
rise to the rapidity distribution of the i-th particle [20,
21], where p; and p, are the momenta of initial-state
particles.

The corresponding physical integral can be obtained
from the above modified integral by taking all AMs to
zero,

(z)+ _i_ln+)v/j fl_[ (27T)D l_l (D— _1 )y ( l )_ (2)

F(¥#,5,0) = lim F(;5,7). 4)

i—0*

It is reasonable to take 7} and 7, to zero from the posit-
ive side of their real parts, because this is exactly the rule
of Feynman prescription for Feynman propagators which
guarantees the correct discontinuity of Feynman propag-
ators. For 7, we can take them to zero from any direc-
tion as far as all tree propagators are either positive-defin-
ite or negative-definite. Our choice is to take all 7!, to
zero from the positive side so that tree propagators on the
Lh.s. of the cut can be combmed with the same propagat-
ors on the r.h.s. of the cut.”

For our purpose, we can choose components of 77 to
be either fully related to each others or completely inde-
pendent. One extreme is to choose all the components of
77 to be the same, and the opposite extreme is to choose a
strong ordering for all components of 7. Although all
these choices are workable, to be definite in this work we
assume that components of 77 can only be either 0" or 7.
In this way, F only depends on one AM 7, and we de-
note it as F(¥;5,n) in the rest of this paper.

In this work, we study the calculation of physical
F(#;5,0) based on the auxiliary-mass-flow (AMF) meth-
od originally proposed in Ref. [28] for pure loop integra-
tion, where flow of n from o to 0* is obtained by solv-
ing DEs w.r.t. . We will see that this method is not only
systematic and efficient, but can also give high-precision
results. The rest of the paper is organized as follows. In
Sec. II, we describe the general strategy to calculate in-

1) Note that we use ®(k? —m;) instead of usual @(k?) here. Although they are equivalent in the definition of Eq. (3), the advantage of @(k? —m;) is that its derivat-
ive (being Dirac delta function) can be safely set to zero in dimensional regularization. It is guaranteed by the fact that Dirac delta function restricts all space compon-
ents of k; to be at the origin, where is well regularized by dimensional regularization. Therefore, our choice is convenient to use inverse unitarity.

2) Positive (or negative) definiteness of tree propagators is alway satisfied in the narrow-width approximation, where particle production and decay are factorized and
can be calculated separately. Otherwise, we should distinguish 7\, on the two sides of the cut and take it to i0* or —i0" respectively.
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tegrals involving both loop integration and phase-space
integration. In Sec. III, the method is explained in detail
using the pedagogical example e*e™ —» y* —>F+X at
NNLO. We also verify the correctness of our calculation
by various methods. Finally, a summary is given in Sec.
IV. The calculation of basal phase-space integration
without a denominator in the integrand is given in Ap-
pendix A.

II. AUXILIARY MASS EXPANSION AND FLOW

The advantage of introducing 7 is that, by taking
n — oo, F(V,5,n) can be reduced to linear combinations of
simpler integrals. As scalar products among external mo-
menta and cut momenta are finite, we have the auxiliary
mass expansion (AME) for tree propagators

1 oo 138 (—1); )f )
t 9
D, +1n mig\on
1 —00 1
ooy ©
a (07

which removes a tree propagator from the denominator if
n has been introduced to it. Because loop momenta can
be any large value, one cannot naively expand loop
propagators in the same way as tree propagators. However,-
the standard rules of large-mass expansion [35, 36]
imply that, as 1 — oo, linear combinations of loop mo-
menta can be either at the order of |5]'/? or much smaller
than it. Therefore one can perform the following AME,

1 e 1 [ -k, Y
FTET il e Z(~+ ) ™
o +177 Dg +in 5\ D5 +1n

1 +00 -K, J .
. _ Z(~ : ) if DF #0,
222 ) DF +i0* S\ D +i0*
DE+i0+ 1 £ B <0
(®)

where we decompose D} = D} +K, with D} including
only the part at the order of |5|. Similarly, we can do the
expansion for loop propagators on the r.h.s. of the cut.
The AME of loop propagators either removes some
propagators from the denominator (if n presents in the
propagator and D} =0) or decouples some loop mo-
menta at the order of |5|'/? from kinematical invariants.
The latter effect results in some single-scale vacuum in-

tegrals being multiplied by integrals with fewer loop mo-
menta.

We find that, as 5 — oo, F(¥;5,n) is simplified to a
linear combination of integrals with fewer inverse
propagators in the denominator (maybe multiplied by
single-scale vacuum integrals). If the simplified integrals
still have inverse propagators in the denominator (except
propagators in single-scale vacuum integrals), we can
again introduce new AM n and take n — oo. Eventually,
F(V;§,n) is translated to the following form

FG:5m) — Z ¢ X FU x phub, )

where ¢ are rational functions of § and n, F™® includes
only single-scale vacuum bubble integrals, and F de-
notes basal phase-space integrations with the integrands
being polynomials of scalar products between cut mo-
menta. F? have been well studied up to five-loop order
(see Refs. [37-43] and references therein). F°* can easily
be dealt with because the only nontrivial information is
the cut propagators, which will be explicitly studied in
Appendix A. With this information in hand, the next
question is how to obtain physical integrals.

It was shown in Ref. [44] that, for any given problem,
Feynman loop integrals form a finite-dimensional vector
space, the basis of which is master integrals (MIs). The
step to express all loop integrals as linear combinations of
Mls is called reduction. With the reverse unitarity rela-
tion in Eq. (1), one can map phase-space integrations onto
corresponding loop integrations. Therefore, integrals over
the phase-space and loop momenta defined in Eq. (2) can
also be reduced to corresponding Mls.

Reduction of a general integral to Mls can tradition-
ally be achieved by using IBP relations based on Laporta's
algorithm [45-50]. Alternatively, one can achieve IBP re-
duction using finite-field interpolation [51-56], module
intersection [57], intersection theory [58], or AME [29].1)
In any case, the search algorithm proposed in Refs. [29,
32] can significantly improve the efficiency of reduction,
which makes the reduction of very complicated problems
a possibility. Reduction can not only express all integrals
in terms of Mls, it can also set up DEs among Mls [23,
24, 59-62]. Especially, DEs w.r.t. the AM n are given by

0 - > - 7

%J(S,TI)ZM(S,U)J(S’U)’ (10)
where J(5,n) = {F(WV,5,n), F(7',5,n),--} is a complete set
of Mls and M(5,n) is the coefficient matrix as a rational
function of § and 5. The boundary condition of the DEs
can be chosen at n — co, which can easily be obtained by

1) IBP reduction can be achieved by AME for the specific F(¥;§,n) with 5 introduced to all inverse propagators (not for cut propagators), which is a generalization
of the original method for pure loop integration. With this strategy, coefficients of the expansion are polynomials of kinematical invariants.
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the AME discussed above. By solving the above DEs
(usually numerically) one can realize the flow of  from
oo to 0*. In this way, we get a general method to calcu-
late physical Mls J(5,0) with any fixed §.

Furthermore, in the case of more than one kinematic-
al invariant, the AMF method can also be combined with
DEs w.r.t. § to obtain MIs at different values of 5.

We emphasize that, in practice, one should first re-
duce the scattering amplitude to MIs without AM, and
then calculate these MIs by introducing AM. Therefore,
the AMF method does not change the step of reducing
scattering amplitude. It does make the step of setting up
DEs w.r.t. AM 5 more complicated than the traditional
DE method because one more scale is involved.
However, the cost is always tolerable as it is still simpler
than the step of reducing full scattering amplitude.

III. EXAMPLES: MASTER INTEGRALS FOR
efe” - y* - 11+ X AT NNLO

As a simple but nontrivial example, we calculate the
MIs encountered in the NNLO correction for # produc-
tion in an e*e” collision mediated by a virtual photon to
demonstrate the validity of the AMF method. For the pur-
pose of total cross section, there are only two kinematical
invariants (Q? and m?) besides . Thus we can introduce
dimensionless integrals

E@x,y) = s PYE@ S, (11)

4mt

where 5= Q?, x , V= 7 and v is the summation of
N

all components of ¥. Because the problem is simple, we
make the following unoptimized scheme choice:
fﬁ=n§ =n=n = (12)

with 77‘1 < 7. More precisely, if {D,} or {D}} depends
on §, we choose 7| =0" and 7y =n; otherwise, we

choose 7| =7 (the introduction of ] is unnecessary in
this case). The publicly available systematic package
FIREG6 [47] is sufficient to do all needed reductions in
this simple exercise.

There are many subprocesses at the partonic level.
We use VE'RN-1VL to distinguish processes with differ-
ent numbers of independent loop momenta and cut mo-
menta. The presence of N—1 instead of N is a result of
momentum conservation, which reduces one independent
cut momentum. For completeness, we first provide MlIs at
NLO in Sec. Il A. The calculation of MIs for 4-particle
cuts at NNLO (RRR) is presented in Sec. III B. The cal-
culation of Mls for 3-particle cuts at NNLO (VRR) is
presented in Sec. III C, and the calculation of Mls for 2-
particle cuts at NNLO (VVR or VRV) is presented in
Sec. III D. Verification of these results is given in Sec. III
E. We note that all these results have already been calcu-
lated in the literature using other methods (see, e.g., Refs.
[63-66]) although they are not fully publicly available.
We provide our results as ancillary file with the arXiv
version of this paper.

A. RRand VR

For RR, i.e. the y* — tfg process, the inverse propag-
ators can be written as

D =k —m?, D =13 —m?, D =(Q—ki —k2)%;

Dy =(Q~k)* =i, Dy =(Q~ko)* ~m. (13)
The 2 physical MIs obtained are F5%, and F5Y,, which

are calculated in Appendix A.
For VR, the inverse propagators can be written as

Di=ki-m;, D5=(Q~k)’~mi;
= (ky + 1) —m?,

D =(Q-ki — [} —m?,Df =17, (14)

We obtain 1 familyl) with ¥ of the characterized MIs be-
ing {1, 1,0}. Physical MIs are given by

1

s, [0 o, &4
f zf 2mP DF +i0* zf @mP

dpPs aor !
f Zf Qm)P (DF +10°)( D +i0%)

where @, = f dPS, is defined in Eq. (AS5) and the remain-

. 9
—m? +i0*

dPrr 1
QmP 1+ —m2 +10*)((IF — Q)2 —m? +i0%)

(15)

ing 1-loop integrals are easy to calculate analytically.

1) A family of integrals are characterized by the kinds of inverse propagators presented in the denominator of the corresponding integrand. As usual, we use the
corner integral, which has no inverse propagator in the numerator and has the maximal kinds of inverse propagators in the denominator with power of each inverse

propagators being unit, to represent the family.
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B. RRR

For RRR, i.e., y* —fgg or tigg processes, the in-
verse propagators can be written as

D =k —m;, D§=k’—m],
DS =k, D§=(Q-ki—ky—ks)*;

D =(Q—ki—k)*, Db=(ky+ks)* —m},

Dy =(Q-k -k =mi, Dy=(Q-k)’—mj,

D =(ky + ks> =my,  Df=(Q—ki —k3)* —m,

D5 =(Q—k1)* = m, (16)

where Q? = s. The phase-space integrals can then be ex-
pressed as

F({-1,1,0,1,1,0,1};

| =

7
A ; . 1_[ 1
F(l_/)’ _x’y) = S4—§D+Z Vo fdPS4 m (17)
p «

a=1

Using FIRE6, we find that there are 37 MIs for finite n
and the number is reduced to 15 as n Vanishing.l) These
MIs can be classified into 2 families, with ¥ of the char-
acterized MlIs being

{0,1,1,0,1,1,0} and {0,1,0,1,1,0,1}, (18)

which can also characterized by Feynman diagrams Fig.
2(a) and (b), respectively. Using our method, we can cal-
culate all physical MIs with any fixed x. The result of the
most complicated MI with e.g. x=1/2 is

,0] =4.54087957883195468901389004370 x 10~ +0.0000105911293014536670979999400899¢

+0.000124406630344529071923178953167€> + 0.000983063887963543479220271851806¢
+0.00589205324016960475844728350032¢* + 0.0286458793127880349046701435743€°
+0.118038608602644851031978155328¢€° + 0.425508191586298756000765241113€’
+1.37520023939856884048640232783€5 + - - -,

where we truncate the expansion to order €® with about
30-digit precision for each coefficient. Physical MIs with
other values of x can be calculated similarly.

In the following, let us take a sub-family
{0,0,0,0,0,0,1}, shown in Fig. 2(c) , as an example to il-
lustrate the calculation procedure for Mls. For brevity, we
define the MlIs for this family as:

D+ (Dy+1) ™
(D5 +m)”
(20)

F({Vll,vg,vg};x,y)=s4‘§D+""+V5+"‘7ﬁlPS4

W
>

(@)

Fig. 2.

*

Representative Feynman diagrams for y* — 17gg or rigg processes, where (a) and (b) define the two most complicated families

(19)

[
with v{,v, <0 and v} > 0. This family contains 5 Mls for
finite n (or y)

{ﬁ({o»o,oﬁx,y)yﬁ({_l’o,o};x’)’),ﬁ({o,_1,0}§X»Y),
F({0,0,1};x,y), F({-1,0, 1} x, )}, 21

and 4 MIs as 5 — 0"

{£(10,0,0}:x,0), F({-1,0,0}: x,0),
F({0,-1,0}:x,0), £({0.0, 1}; x, 0)}. (22)

and (c) defines a sub-family of (b). The thick curves represent top quarks, the thin curves represent massless particles, and the vertical

dashed lines represent the final state cut.

1) Note that the number of MIs in this work may not be the minimal value. It does not matter as far as it is finite.
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It is clear that the first three Mls of the two sets are just
linear combinations of F* that have been calculated in
Appendix A.

To calculate the last physical MI in Eq. (22), we set
up DEs for corresponding MlIs with x = 1/2 and finite 7,
which gives

1 (3—4E+l4y—125y—8yz) 12(_1 + ) 1
P {0,0,1};—,y) S kol =9 F({o,o,l};—,y)
9 2 y(1=8y)(1+4y+2y?) y(1-8y) 2
O R 1 —7+6€—-39y+46€y N 1
’ F({—l’o’l};g,y) —4l+e 2" ) F({—I,O,l};z,y)
1-8y (1=8y)(1+4y+2y?)
_2(15—165+53y—46ey)
—124y2+132€y> —48(—-1+¢)(1 —y) —144(-1+e)(1 _y)
YA =8)(1+4y+2y?)  y(1-8y)(1+4y+2y?)  y(1-8y)(1+4y+2y?)
+ ) 17-18€+85y
(—785}’—88y2+965y2 -56(-1+¢) -8(-1+¢€)(23-16y)
(1=8)(1+4y+2y?) (1-8)(1+4y+2y?) (1-8y)(1+4y+2y?)
F({0,0,0}; !
O U5 S Y
\ 1
. 1
F O’ -1 ) O ST
({ } 3 y)
The boundary condition of these DEs is given by
3 1\ e s5ap(l 1 )
F {Os 03 1}5 =, Y|—5 ? - dPS4 - _2 dPS4D7 .
2 n n x=1/2
A l — 00 3 1
F({—I,O, 1} -,y) L s4-zD(fdPs4 - - fdPsét(z)‘1 —Dg)) . (24)
2 n x=1/2
By solving the DEs (23) with the boundary condition we obtain, e.g.,
. 1
F({O, 0,1}; 5,0) =1.08703304446867684362962983900 x 1078 +2.35523252532576916745398951290 % 10~ "¢
+2.54552584682491818967669600707 x 10-°€> + 0.0000183017607702920607720306203025¢€
+0.0000985014117985155673601315129686€* +0.000423451568312682839128853965245¢€°
+0.00151532069472999876700566927592€% +0.00464561935910925265889327482252¢’
+0.0124659262732530489584879132787€% +--- . (25)
Finally, the DE w.r.t. x is given by
0 - —2+3x+4e—6x€ A —11+42x+12e—2xe€ A
—F({0,0,1}; x,0) = F({0,0,1};x,0 F({0,0,0}; x,0
e F10.0.10:.6.0) === P E (0,0, 1,0) + —— S == ({00,050
—12(-1+¢€) A -36(—1+¢€) A
—F({-1,0,0};x,0) + ————F({0,—1,0}; x,0). 26
Tl F10.0500)+ =222 A10,-1,01:2,0) (26)

With the boundary condition at x = 1/2 given in Eq. (25),
solving the above DE can also give F{0,0,1};x,0) at any
value of x.

C. VRR

013115-6
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D =ki —m?, rals can be expressed as
D5 =k% —m?, )
Z); =(Q —k _k2)2; F(V X, y) _S% ID+Y VANV fdPS3 l_[ (_Z)t )V‘
a=1 a
D =(Q-ky)* —m?, avrs
Dy =(Q—ki)* - mi; ﬂ (28)
2 r (2m)P a)+my

D} =(ky +1})* —m,
N o We find that there are 71 MlIs for finite n (or y) and the
D; =(ky = 1})"—my, number is reduced to 27 when  — 0. These MIs can be

D :lfz, classified into 2 families,
Df =(Q-k —k +1}),

{1,0,1,1,1,0,0,1} and {1,0,0,1,0,1,1,1}. 29
Dt =(Q-ky+ 1) —mj, 29)

D; =(Q-k —1}) —m;, (27)  The first family is the most complicated. It can also be
characterized by the Feynman diagram in Fig. 3(a). Us-
ing our method, the result of the most complicated MI

where Q2 =s. Then the 1-loop 1 — 3 phase-space integ- with, e.g., x = 1/2 is

. 1
F({2,0,1,1,1,0,0,1}; E’O =(4.35941187166437229714484148598 x 10~° — 4.87955595721663859057448350469 x 10 %i)e >

+(0.000290878052291807102955726741096 + 0.0000377131137166912517182237529831)e !
+(0.00232637225490549068317799097260 + 0.001619135001080498777283344435441)
+(0.0064623807207395294287699841138 + 0.01436811695853830713604536702931)¢e

—(0.0244064366687345660260807481505 — 0.06814106378185886743212475117451)€>
—(0.324062211265101500673336745067 — 0.176280502471673558710833935083i)¢>
—(1.84537524457279855776436524767 — 0.05103632828295095891823713650i)€*
—(7.60322033887241114962526507189 + 2.00523602305209729225222600674i)€>

—(27.2739377963678526029153832666 + 12.03574683646683137215429982171)€5 + - - -
(30)
In the following, let us take a sub-family {1,0,1,1,0,0,0,0} , shown in Fig. 3(b) , as an example to illustrate the cal-
culation procedure for MIs. For brevity, we define the MIs for this family as:
1 d?1f 1
O J CoP (D +in) (D3 +in»

I:”({vtl,vf,v;};x,y) = $i Dy fdP 3 (31
This family contains 7 Mls for finite 5
{F({0,0,1};x,y), F({=1,0,1}; x,), ({0, 1, 1}; x,), E({=1, 1, 1};x,y), F({0, 1,2}, x,y), FA 1, 1, 1}, x6,y), FA1, 1,2 x5,y)),  (32)

'

and 6 MlIs as n — 0*

(b)

Fig. 3. Representative Feynman diagrams in VRR, where (a) defines the most complicated family and (b) defines a sub-family of (a).
The thick curves represent top quarks, the thin curves represent massless particles, and the vertical dashed lines represent the final state
cut.

013115-7



Xiao Liu, Yan-Qing Ma, Wei Tao et al. Chin. Phys. C 45, 013115 (2021)

{F({0,0,1}; x,0), F({—1,0,1}; x,0), F({0,1,1}; x,0), F({0,1,2}: x,0), F({1,1, 1}; x,0), F({1,1,2}; x,0)}. (33)

To calculate the last 2 physical MIs, we set up DEs for corresponding MIs with x = 1/2 and finite n, which gives

0 A 1 N 1
—F({1,1,1}; = =-2iF({1,1,2}; =
By ({ .1, },z,y) 1 ({ .1, },Z,y),

9 - 1\ _16i(1-26)3e=1) 4 1\ 4(G+8y—die=6dye) 1

a_yF(“’l’Z}’Z’y)‘ i 8nG+8) F(“"”’Z’ )+ i+ 8 +8) F(”’I’Z}’Z’y)
64(5—11e+6€?) . 1 768(-1+¢€)? . 1
_y(—i+8y><i+8y>F({O’O’”’E’y)+y(—i+8y><i+8y>F({_1’0’”’i’y)

N 8(1 —26)(5—41y—6e+81y6)ﬁ({0,1’1};1,}})4_ 32(1 —26)(—3+46)F({_1’1’1};%’y)

y(=i+8y)(i+8y) 2 y(=i+8y)(i+8y)
A4(-i+4y)(~1+2¢€) A 1
- Cirsy) F({O,I,Z},z,y). (34)

The boundary condition for these DEs is given by

A l ~00 3 D i D_2 l
F({l,l,l};E,y)”—sé‘anz‘21(—)F§’ﬂb(D)(fdPs3—) ,
x=1/2

2 D)
Pli101,20 5| oyt CEREE =D g [apsa ) (5)
2 8 Dy
where and f dPS3% can again be calculated by the method in-
1
FoUb (D) = f P (36) Sec. III B or obtained from RR in Sec. III A. Knowing
N N 124+ the first 5 MIs, by solving the DEs (34) with the bound-

ary condition we obtain e.g.,

. 1
F({ 1,1,2}; 5,0) =(7.78790446721069262502850093774 x 107° +2.91319469772237394135356308348 x 107%i)

+(0.000130430373015787655604488198861 + 0.0000684041694582011842919200921231)e
+(0.001077434813828191909787186362432 + 0.000750926876250745472210277589430i )€
+(0.00584278150920839062615612508136 +0.00527570101382158661589031061691i)€’
+(0.0233461280012444372334494219123 + 0.02708597369516175245639662828681)*
+(0.0730918539437148667076104654800 + 0.1095165249743204252589933869672i)€
+(0.185975373883125986488613881520 + 0.366393770042708443331564801509i )€
+(0.393093986188519076512424694564 + 1.052172170765638116257825410632i)€’
+(0.6977527729960686 1048706250047 + 2.672825461220083830226151042891)€® + - -- . 37)

Finally, the DEs w.r.t. x are given by
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o ( Fd1,1,1};x,0) ) 76 % F{1,1,1};x,0)
a{ﬁm,l,z};x,m)_ (1-20Ge-) x+de- 10z [F({l,l,z};x,m]
(-1+x)x 2(-1+x)x
6(—1+€)(—4 — x + 4e+2x€) —72(~1+¢€)? —2(~=1+2€) -2
(=1+x)2x2(=1+2€) (=1+x)?2x2(-1+2¢) (-l+x)x -1+x
—4(4+3x—8e—8xe+4€*+5x€?)  48(-1+€)? 2(1-2€)? 2(-1+2e¢)
(=1 +x)2x3 (=1+x)2x3 (=1+x2%x (-1+x)?

£({0,0,1}; x,0)
F({~1,0,1};x,0)
F{0,1,1};x,0)
F({0,1,2};x,0)

With the boundary condition at x = 1/2 given in Eq. (37),
by solving the above DEs we can also evaluate
F({1,1,1};x,0) and F({1,1,2};x,0) at any value of x.

(38)

D. VVRand VRV

For VVR, the inverse propagators can be written as

DS =k —m?, D5 =(Q -k —ml; DF = (ki + 1] +13)* —m2, D} = (ky +13)* —m?, D} = (ky +1})? —m?,

Df = (k= [} + Q) —m?, Dt =112, Df = [, D% = (=ky — [ + QP —m2, Df = (=ky — [T [ + 0)* —m2, D} = (1T + ).

Then the phase-space integrals can be expressed as

dPrrdPr 2 1
F —»; ) — 2—§D+2ny fdPS f .
Fx,y)=s 2 | o (];! DL+
(40)
We find that there are 53 MIs for finite n and the number

is reduced to 21 when  — 0*. These MIs can be classi-
fied into 3 families

{1,1,0,1,1,1,0,1,0} and {1,1,1,1,0,1,0,0,1} and

{1,1,1,0,0,1,1,1,0}. (41)

The first family is the most complicated. It can be charac-
terized by the Feynman diagram in Fig. 4(a). We use the

S
X

(@)

(39

same method (note, F*'® up to 2-loop is needed to calcu-
late boundary conditions) in VRR to calculate MIs for
these families.

For VRV, the inverse propagators can be written as

DS =ki—m}, D5 =(Q—k)* —m?;

D =k +1)? =m2, D} = (kg + 1 = Q) —m?, DF =11,

Dy =k + 12 =m2, D5 = (ki +1] = Q) —m2, D5 =[],
(42)

in addition to which there is a scalar product [} -I;. The
obtained family is:

{1,1,0,1,1,0,0}, (43)
which can also be characterized by the Feynman diagram

(b)

Fig. 4. Representative Feynman diagrams in VVR and VRV, where (a) defines the most complicated family for VVR and (b) defines
the family for VRV. The thick curves represent top quarks, the thin curves represent massless particles, and the vertical dashed lines

represent the final state cut.

013115-9



Xiao Liu, Yan-Qing Ma, Wei Tao ef al.

Chin. Phys. C 45, 013115 (2021)

Fig. 4(b). Because loop integrations in MlIs of this case
are factorized, their calculation is as simple as the one-
loop case.

E. Verification of the results

On the one hand, the AMF method can be used to cal-
culate Mls at any given value of x. On the other hand,
MIs at different values of x can be related by DEs w.r.t. x.
We have verified that the results of Mls obtained by the
two strategies for different values of x, e.g., x=1/2 and
x=2/5, are consistent with each other. This provides a
highly nontrivial self-consistency check because DEs
w.r.t. n and w.r.t. x are significantly different.

Our numerical values for F(;0,0), i.e. MIs for mass-
less QCD, are in full agreement with the known analytic-
al results of massless MlIs in the literature [67, 68].

For the RRR sub-process (Sec. III B), our numerical
results for £({0,0,0,0,0,0,1};x,0) and £({0,0,0,1,0,0,1};
x,0) show excellent agreement with the corresponding
analytical results in the literature [63] (74 and Ts in this
reference).

IV. SUMMARY AND OUTLOOK

In this paper, we have extended the AMF method ori-
ginally developed for Feynman loop integrals [28] to cal-
culate MIs which also involve phase-space integration.
As a pedagogical example, we used this method to calcu-
late the MlIs encountered in e*e™ — y* — 7+ X at NNLO.
Our results agree with results obtained by using other
methods (our full results are available as an ancillary file
with the arXiv version of this paper). Although the AMF
method depends on a reduction procedure to decompose
all integrals to MIs and to set up the DEs of Mls w.r.t. n,
the efficiency of reduction has been significantly im-
proved thanks to the recently proposed search algorithm
[29, 32].

It is clear that the AMF method can be used to calcu-
late Mls of any process, as systematically as the sector
decomposition method. However, compared with the lat-
ter method, the AMF method is much more efficient and
can provide very high precision. Its high-precision nature
makes it possible to obtain analytical results with a prop-

er ansatz. For problems with two or more kinematical in-
variants, where the DE method works, the AMF method
can not only systematically provide as many boundary
conditions as needed for DEs w.r.t. kinematical invari-
ants, but also provides a highly nontrivial self-consist-
ency check for the obtained results. All the above advant-
ages make the AMF method very useful for perturbative
calculation at high orders.
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APPENDIX A: CALCULATION OF F*

In this appendix, we calculate the MIs of basal phase-
space integration with no denominator. It is important to
note that, besides the masses presented in cut lines, these
MIs only depend on the square of the center of mass en-
ergy s= Q?, regardless of the configuration of external
unintegrated momenta. We use F;y  to denote the n-th
MI for N-particle-cut integrals with m; =---=m, = m and
myy1 =--=my =0, and we provide explicit results for
r=0, 1, and 2. Mls for general cases can be studied as
follows. By using the optical theorem (see e.g. Ref. [67]),
the calculation of the basal phase-space integral is trans-
lated to the calculation of the imaginary part of the cor-
responding sunrise pure loop integral. The latter can be
calculated by the AMF method for loop integrals [28].
Furthermore, a one-dimensional-integral representation of
all these MIs can be obtained from Ref. [69].

For r=0 and N > 2, there is only one MI, which is
given by

25—4N—25+2N5n3—2N—e+N6F(1 _ E)N
I((N =D -epI'(N(1 - )

N—-2+e-Ne

FS?I:/,IEfdPSN:
(AT)

For r=1, in general there are two MIs, which are given
by (n=1,2)

22(5—11—3N—25+2N5)ﬂ.%+N(E—2)—er(1 _ e)N‘IF(n —3+N+ ZE—NE)

F = f dPSy ((Q -k )2)”‘1 =

X

m2 2(n+N+€e—Ne)-5
sn—3+N+e—NE (1 _ _)
S

r'(~v-1nd —e))F(n— % +N+E—N6)F((N—2)(l —€))

2
XzFl(n—2+N+e—Ne,n—3+N+26—N6;2(n—2+N+e—Ne);1—m—), (A2)
S
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where ,F, are generalized hypergeometric functions only one MI F{* . For r=2, in general there are three

which can be evaluated using the publicly available pro- MIs, which are given by (n=1,2,3)
gram HypExp [70]. In the special case of N =2, there is

25+2N(5—2)—2eﬂ.3+N(6—2)—er(l +n— 26)F(1 _ E)N—lr(n _ E) 3 NeoNe
Ire-2e)[(n—-1+N—-Ne)l(n—2+N+€e—Ne)

1 4m?
X 3F> 6—E,Z—H—N+N€,3—H—N—€+N€;1—n+6,26—n;—
s

FiNa = f dPSy (ki +k2)?)" =

+

24+2N(e—2)ﬂ.%+N(e—2)—61—*(] _ E)N_IF(G _ 11) sn—3+N+5_N5 (4m2 )n—e

F(% —H)F((N— DI =e)I'((N =2)(1 -¢))

N

1 4m?
X3F2(}’l—E,3—N—2€+N€,2—N—E+N6;1+n—€,€;i)
s

+

24+2N(E—2)n%+N(E—2)_€F(1 _ E)N—ZF(E —~DI2e—1-n) 3N e Ne (4m2 )“’"‘25
K -
A

r(% —n+ e)r((zv— 2)(1 - )T (N =3)(1-e))

4’"2). (A3)

1
X3F2(§+n—E,4—N—3E+NE,3—N—2E+NE;2+H—2€,2—E;—
s

In the special case of N =2, there is only one MI, which  of elements of Q. Specifically, Q is chosen to be the set

cut cut cut
means F2,2,2 and F2’2,3 can be reduced to F2,2,1' In the

special case of N =3, there are only two Mls, which
means F5Y ; can be reduced to F5Y% , and F5Y%,. The num-
ber of MIs obtained here is consistent with the expecta-

tion in Ref. [71]. The results (A2) and (A3) agree with the

of massless particles for r = 1, and is chosen to be the set
of massive particles for r = 2. The phase-space volume of
the two-particle cut is used:

2—3+25n.71+er(1 _ 6)
partial results in the literature (see Eq. (B.7) in Ref. [72] D, = f dPS; = T3 s€
and Egs. (3.14-3.16) in Ref. [63]). (2-2¢) .
To obtain Egs. (A2) and (A3), we decompose the 1 2(m%+m§) m%—mg Y A5
measure of phase-space integration into two parts: 11 s - s ' (A3)
sa=k2 (Vs=Diam)’
dPSz\/(Q;{ki})S_—Q'Z f The following relations (which can be found from e.g.
- Kicam)?

dsa Ref. [73]) are also useful:

EdPSN—#gﬁ 1(Q; {kiga}, ka)dPSy, (ka3 {kica)), (A4)

Z
. . Fi(a,b;c;2) =(1-2)"2F (a,c—b;C;—), A6
where Q is a subset of {1,2,---,N} and #q is the number 2t ( )2 z—1 (46)

. 2-2a-2c¢ 1 472 -
2Fi@l —a;e) = (-2 (VI—z+ v=z) 2F1(a+c—1,c——;26—1' S ) (A7)

2 C(VT=z+ V=2)?

y el et o _f _F(c)r(c—a—b)r(ﬂ)r(l_a'_ﬁ) c—1_a+p-1
dex =07 (-2 2F1(a’b’c’1 y)— [(c—a)l(c=b)[(1 -a) )

><3F2(a—c+l,b—c+l,a;a+b—c+l,a+ﬁ;§)
y
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I eolra+b—c)I(Bl(a+b—c—a-LB+ 1)ya+b—lzc—a—b+a+ﬁ—l

INar'®)Xr(a+b—c—a+1)

c—a—b+a+,8;£)+
y

><3F2(1 —,B,a—c—a—ﬁ+2,b—c—a/—,8+2;2—a—,8,a+b—c—a—ﬁ+2;E).
Yy

><3F2(1—a,l—b,c—a—b+a/;c—a—b+1,

FOlNe@+B-DI(c—a-b+a+B-1) 1452
I'c—a+a+B-1DI(c-b+a+p-1)

(A8)
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