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Abstract: We revisit the hyperon weak radiative decays in the framework of the non-relativistic constituent quark
model. This study confirms the nonlocal feature of the hyperon weak radiative transition operators, which are domin-
ated by the pole terms, and an overall self-consistent description of the available experimental data for the Cabibbo-
favored hyperon weak radiative decays is presented. It provides a natural mechanism for evading the Hara theorem,
where  sizeable  parity-violating  contributions  can  come  from  the  intermediate  orbital  excitations.  Cancellations
between  pole  terms  also  explain  the  significant SU(3)  flavor  symmetry  breaking  manifested  by  the  experimental
data. We also discuss several interesting selection rules arising from either the electromagnetic or the weak interac-
tion vertices. These features suggest nontrivial relations among various hyperon decays.
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I.  INTRODUCTION

J/ψ
J/ψ

Although  ground-state  hyperons  were  discovered
more than 60 years ago and have played a key role in our
understanding of the weak interaction, there are still open
questions  concerning  their  weak  decay  mechanisms.  In
particular,  the  hyperon  weak  radiative  decays  provide  a
unique probe for  studying the weak,  strong,  and electro-
magnetic  (EM)  interactions  [1].  This  process  generally
has a very small branching ratio and is difficult to meas-
ure.  Recently,  BESIII  has  collected  more  than  1  billion

 events, which can provide a golden opportunity to in-
vestigate the properties of the hyperons produced in 
decays. In particular,  it  is  time to revisit  the detailed dy-
namics of the hyperon weak radiative decays.

Σ+→ pγ Ξ−→ Σ−γ

Σ+→ pγ

One  of  the  long-standing  questions  associated  with
the hyperon weak radiative decays is the so-called “Hara
theorem” [2]. It was shown in Ref. [2] that the parity-vi-
olating amplitudes for  and  are zero in
the limit of unitary symmetry within the pole approxima-
tion  [3].  However,  experimental  measurements  did  not
support this prediction, and the asymmetry parameter was
found  to  be  large  for ,  with  a  negative  sign  [4].

Σ+→ pγ

1/2−

There  is  an  abundant  amount  of  literature  regarding
theoretical  efforts  to  understand  the  physics  behind  the
Hara theorem and the  experimental  observations.  A uni-
fied theory was proposed by Zenczykowski et al. [5-12],
who  combined  the SU(6)  symmetry  with  the  vector
meson dominance for the study of the hyperon weak radi-
ative  decays.  It  was  shown  in  Refs.  [11, 12]  that  large
negative values for the asymmetry parameter in 
were due to the SU(3) flavor symmetry breaking effects.
In  Ref.  [13],  Close  and  Rubinstein  proposed  a  “modern
pole  model ”  and  illustrated  the  importance  of  long-dis-
tance contributions arising from intermediate pole terms.
By  estimating  the  relative SU(6)  spin-flavor  coupling
coefficients,  they  showed  that  the  intermediate 
states could have sizeable contributions to the parity-viol-
ating  amplitude.  Various  calculations  based  on  the  pole
dominance  scenario  in  the  quark  model  can  be  found  in
the  literature  [14-20].  The SU(3)  flavor  symmetry  and
pole model are combined to investigate the weak electro-
magnetic decays of hyperons in Ref.  [21].  In addition to
the  quark  model  approaches,  chiral  perturbation  theory
(ChPT)  has  also  been  applied  to  the  hyperon  decays,
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1/2−

Σ+→ pγ

S U(3) f

Σ+→ pγ

wherein  the  intermediate  states  were  found to  play
an essential role [22-25]. In Ref. [26], the radiative decay
of  was calculated using an extended QCD sum
rule  approach.  Unitarity  and  the  MIT  bag  model  have
also been employed to study hyperon radiative weak de-
cays in the literature [27, 28]. It is worth mentioning that
in  Refs.  [18, 29],  the  Hara  theorem was  shown to  result
from  the  old-fashioned  model,  which  cannot
avoid the  flavor-changing  neutral  current.  In  the  frame-
work  of  the  Glashow-Iliopoulos-Maiani  mechanism,  the
“penguin”  transition  process  can  evade  the  flavor-chan-
ging neutral  current  and  lead  to  a  nonvanishing  asym-
metry  parameter  for  [30].  However,  such  a
mechanism does not  seem to be sufficient  to explain the
large value of the asymmetry parameter.

Λc

The  recognition  of  the  importance  of  the  pole  term
contributions in the hyperon radiative decays [13] seems
to be crucial for a coherent interpretation of the puzzling
experimental  data.  Similar  phenomena  have  also  been
found in the hadronic weak decays [31, 32]. A recent in-
vestigation of the Cabbibo-favored  hadronic weak de-
cays also showed that the pole terms play a dominant role
in  the  transition  amplitudes  [33].  There  are  interesting
consequences arising from the pole models. First,  it  sug-
gests that the hadronic or radiative weak decays are driv-
en by nonlocal interactions, where the strong or radiative
interaction and the weak interaction are connected by in-
termediate propagators. Second, these pole terms may un-

1/2−

dergo  interference,  which  leads  to  large SU(3)  flavor
symmetry breaking  effects.  This  is  understandable  be-
cause a relatively small SU(3) flavor symmetry breaking
in each pole term can be amplified if destructive interfer-
ence is involved [31, 32]. Third, the inclusion of the 
states  can contribute  to  large  parity-violating  effects  and
thus evade the Hara theorem [13, 15, 25].  These general
points will be addressed in this analysis based on the sys-
tematic study of the hyperon radiative decays.

In this work, we will revisit the hyperon weak radiat-
ive decays  in  the  framework  of  the  non-relativistic  con-
stituent  quark  model  (NRCQM)  and  provide  a  coherent
description of  the  Cabbibo-allowed  weak  radiative  de-
cays. The rest of this manuscript is organized as follows.
The  details  of  the  framework  are  presented  in  Sec.  II.
Results and discussions are given in Sec. III,  and a brief
summary is given in Sec. IV. Conventions and analytical
amplitudes are provided in the Appendix.

II.  FRAMEWORK

su→ ud

An  obvious  feature  of  radiative  decays  is  that  the
charge  is  conserved.  This  suggests  that  the  Cabbibo-al-
lowed  weak  transition  processes  occur  at  leading  order,
either via a single-quark transition through a penguin dia-
gram, as shown in Fig. 1(a), or via a two-quark transition
process  through  an  internal  conversion  of ,  as
shown in Figs. 1(b)-(f). The penguin transition is strongly

Fig.  1.    Typical  weak radiative  transitions,  categorized as  follows:  (a)  is  the  typical  single-quark  transition  diagram.  (b)-(f)  are  the
two-quark transition diagrams, among which (c)-(f) are called pole terms. Note that every diagram actually stands for a group of dia-
grams, considering that the photon can be emitted by any quark.
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Ξ−→ Σ−γ
suppressed, primarily  because  it  involves  loops;  this  ex-
plains  the  small  partial  width  of .  In  contrast,
the internal  conversion  processes  are  tree-level  trans-
itions. These are focused in this work.

2M̃2/(M2
i −M2

f ) ≃ M̃/(Mi−M f )
M̃ ≃ (Mi+M f )/2

The two-quark transition processes can be further cat-
egorized into two classes, depending on whether interme-
diate  baryons  contribute  or  not,  i.e.,  the  short-distance
process and long-distance process. Figure 1(b) illustrates
the  short-distance  process,  which  stands  for  a  group  of
diagrams where the photon is radiated from any charged
particle. Figures  1(c)-(f) are  identified  as  long-distance
processes  because  intermediate  resonances  (pole  terms)
contribute to the transition matrix element. For the hyper-
on  weak  decays,  the  long-distance  pole  terms  become
leading contributions  because  of  the  closeness  of  the  in-
termediate baryons to either the initial or final-state bary-
ons.  A  coarse  estimate  of  the  enhancement  factor  is

, which arises from the in-
termediate  propagators  with ,  a  mass
scale set  by the initial  and final-state  hyperons.  We note
in  advance  that,  in  most  cases,  there  exist  cancellations
among the pole terms of Figs. 1(c)-(f) [31, 32]. Still,  the
dominance  of  the  pole  terms  is  evident.  We  thus  only
consider  the  pole  contributions  in  this  work.  Instead  of
trying to  perfectly  describe the available  data,  we intend
to appraise the overall quality of the NRCQM approach.

A.    Non-relativistic form of the effective Hamiltonian
Concentrating  on  the  transition  amplitudes  from  the

pole terms,  the internal  conversion via  the weak interac-
tion and photon radiation  via  the  EM transition  are  con-
nected by intermediate baryons. The weak interaction op-
erator can be described by [13, 31, 34]

HW =
GF√

2

∫
dx

1
2
{J−,µ(x), J+µ (x)}, (1)

where

J+,µ(x) =
(

ū c̄
)
·γµ(1−γ5) ·

(
cosθC sinθC
−sinθC cosθC

)
·
(

d
s

)
,

J−,µ(x) =
(

d̄ s̄
)
·
(

cosθC −sinθC
sinθC cosθC

)
·γµ(1−γ5) ·

(
u
c

)
.

(2)

HW  can  be  separated  into  two  parts,  with  either  parity-
conserving (PC) or parity-violating (PV) behavior, i.e.,

HW ≡ HPC
W +HPV

W , (3)

where

HPC
W ≡

GF√
2

∫
dx

[
j(−)
µ (x) j(+)µ(x)+ j(−)

5µ (x) j(+)µ
5 (x)

]
, (4)

HPV
W ≡

GF√
2

∫
dx

[
j(−)
µ (x) j(+)µ

5 (x)+ j(−)
5µ (x) j(+)µ(x)

]
. (5)

HPC,PV
WIn the non-relativistic limit, , can be reduced to [34]

HPC
W =

GF√
2

VudVus

∑
i, j

1
(2π)3 τ

(−)
i ν(+)

j

×
(
1−σi ·σ j

)
δ(p′i + p′j− pi− pj), (6)

and

HPV
W =

GF√
2

VudVus

∑
i, j

1
(2π)3 δ(p′i + p′j− pi− pj)τ

(−)
i ν(+)

j

× 1
2mq

{
−(σi−σ j) · [(p′i − p′j)+ (pi− pj)]

+i(σi×σ j) · [(pi− pj)− (p′i − p′j)]
}
, (7)

τ(−) ν(+)

τ(−)u = d ν(+)s = u
i, j

mq = mu = md = ms Vud Vus

where  and  are flavor changing operators that op-
erate  as  and , respectively.  The  sub-
scripts  are the quark labels. m is the constituent quark
mass.  In  this  work,  we  take  the SU(3)  flavor  symmetry
limit  with .  and  are the  Cab-
bibo-Kobayashi-Maskawa matrix elements.

The Hamiltonian for the EM interaction is written as

HEM = e
∫

dxq̄(x)γµq(x)Aµ(x) , (8)

e q(x) q̄(x)
jth

HEM

where  is the charge of the quark;  and  are the
 quark fields  before  and after  emitting the photon,  re-

spectively.  In  the  non-relativistic  limit,  can be  ex-
panded in momentum space as:

HEM =
∑

j

e jū(pf
j )γ

µu(pi
j)ϵµδ(pf

j + k− pi
j)

=
1

(2π)
3
2

1

(2k0)
1
2

∑
j

e j

ϵ0−

ϵ · pi
j

2m j
+
ϵ · pf

j

2m j
+i
σ j · (k× ϵ)

2m j




×δ(pf
j + k− pi

j), (9)

m j e j jth

pi
j pf

j
jth

k
(ϵ0,ϵ)

HEM

where  and  are the mass and charge of the  quark,
respectively;  and  denote the  three-vector  mo-
mentum  carried  by  the  quark before  and  after  emit-
ting the photon, respectively;  is the photon momentum,
and  is  its  polarization.  For  a  real  emitted  photon,
only the transverse polarizations can contribute.  can
thus be reduced to

HEM =−
1

(2π)
3
2

1

(2k0)
1
2

∑
j

e j

ϵ · pi
j

m j
+ i
σ j · (k× ϵ)

2m j


×δ3(pf

j + k− pi
j). (10)
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jth

The first term contributes to the electric-dipole transition,
which could  raise  or  decrease  the  orbital  angular  mo-
mentum by one  unit,  and  the  second term contributes  to
the magnetic-dipole  transition,  which  could  raise  or  de-
crease the spin of the  quark by one unit [13, 31, 34].

B.    Decay width and asymmetry parameter

k0 = k k = (0, 0, k)

(Ei, Pi) (E f , P f )
Pi = 0 k = −P f

With the operators defined in the previous subsection,
we can  calculate  the  pole  terms  in  the  NRCQM  frame-
work. We take the direction of the photon momentum as
the z-axis, i.e.,  and  are the energy and
three momentum of the photon, respectively. The energy
and momentum of the initial and final baryon are noted as

 and ,  respectively.  In  the  rest  frame  of
the initial baryon, we have  and .

⊗

The nonlocal  operators  for  the  weak  and  EM  trans-
itions  will  distinguish  processes  between Figs.  1(c) and
(e) (or between Figs. 1(d) and (f)). With the baryon wave-
functions  constructed  on  the  basis  of SU(6) O(3) sym-
metry  and  by  separately  calculating  the  weak  internal
conversion and EM transition couplings, Figs. 1(c) and (e)
together will be evaluated explicitly with the quark labels
tagged to the interacting quarks, and similarly, Figs. 1(d)
and (f) will be evaluated. Note that in the literature, e.g., [18],
Figs.  1(c) and (d) (or Figs.  1(e) and (f))  are  sometimes
treated as  two different  transition processes according to
whether  or  not  the EM transition operator  is  involved in
the weak internal conversion process. If the symmetry is
properly accounted for regarding both wavefunctions and
operators,  in  principle,  there  is  no  need  to  distinguish
between Figs.  1(c) and (d),  or  between (e) and (f).  For
convenience,  we  label  the  amplitudes  of Figs.  1(c)-(d)
and Figs. 1(e)-(f) by the subscripts A and B, respectively.

Proceeding  to  the  calculation  of  the  full  transition
amplitudes, we separate the parity-conserving and parity-
violating parts as follows:

M =M(ϵ,S z
f ,S

z
i ) =MPC+MPV, (11)

S z
f S z

i

ϵ = ∓(1,±i,0)/
√

2

ϵ = −(1, i,0)/
√

2
MPC

MPV

where  and  are  the third component  of  the spin of
the  final  baryon and  initial  baryon,  respectively,  and  are
omitted to simplify the representation. Also omitted is the
photon polarization . Owing to the sym-
metries and  hermiticity  of  the  Hamiltonian,  the  amp-
litudes  corresponding  to  the  two  possible  polarizations
are related, and it  is sufficient to perform the calculation
with the polarization , abbreviated as "+".
The  parity-conserving  amplitude  and  parity-violat-
ing amplitude  are then given by the pole terms via
the process A or B, i.e.,

MPC =MPC,A+MPC,B, (12)

MPV =MPV,A+MPV,B, (13)
where

MPC,A ≡
∑
Bm

⟨
B f (P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣Bm(Pi,S z
i )
⟩

× i
̸pBm
−MBm

+ i
2ΓBm

⟨
Bm(Pi,S z

i )
∣∣∣HPC

W

∣∣∣Bi(Pi,S z
i )
⟩
,

(14)

MPV,A ≡
∑
B′m

⟨
B f (P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣B′m(Pi,S z
i )
⟩

× i
̸pB′m −MB′m +

i
2ΓB′m

⟨
B′m(Pi,S z

i )
∣∣∣HPV

W

∣∣∣Bi(Pi,S z
i )
⟩
,

(15)

MPC,B ≡
∑
Bm

⟨
B f (P f ,S z

f )
∣∣∣∣HPC

W

∣∣∣∣Bm(P f ,S z
f )
⟩

× i
̸pBm
−MBm

+ i
2ΓBm

⟨
Bm(P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣Bi(Pi,S z
i )
⟩
,

(16)

MPV,B ≡
∑
B′m

⟨
B f (P f ,S z

f )
∣∣∣∣HPV

W

∣∣∣∣B′m(P f ,S z
f )
⟩

× i
̸pB′m −MB′m +

i
2ΓB′m

⟨
B′m(P f ,S z

f )
∣∣∣∣HEM

∣∣∣∣Bi(Pi,S z
i )
⟩
,

(17)

Bm

B′m 1/2+ 1/2−

⟨B|HPC/PV
W |B′⟩

⟨B|HEM|B′⟩

where  a  complete  set  of  intermediate  baryon  states 
( )  with  quantum  numbers  ( ) has  been  in-
cluded in  processes A and B,  respectively. 
and  are  the  weak  and  EM  transition  matrix
elements, respectively. The weak matrix elements are cal-
culated in a manner similar to that reported in Refs. [32,
33].  In the following,  we provide some details  about the
calculations of the EM transition matrix elements.

HEM

Taking advantage of the fact that we use baryon wave
functions  that  are  fully  symmetric  with  respect  to  the
space, spin,  and  flavor  degrees  of  freedom  (see  Ap-
pendix),  can be replaced by

H+EM =
∑

j

(H+EM) j→ 3(H+EM)1

=− 1

(2π)
3
2

1

(2k0)
1
2

3e1√
2m1

×
[
p+1 +σ

+
1 k

]
δ3(pf

1 + k− pi
1), (18)

where

p+ ≡ px + ipy, σ+ ≡
σx + iσy

2
. (19)

Λ→ γnTaking the decay of  of the A-type as an example,
the EM transition amplitude can be obtained as
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⟨
B f (P f ,S z

f )
∣∣∣∣H+EM

∣∣∣∣Bi(Pi,S z
i )
⟩

=

⟨
1
√

2
(ϕρnχ

ρ
1/2,S z

f
+ϕλnχ

λ
1/2,S z

f
)Φ00;00

00 (pf
1 , p

f
2 , p

f
3 )

∣∣∣∣∣∣H+EM

×
∣∣∣∣∣∣ 1
√

2
(ϕρnχ

ρ
1/2,S z

i
+ϕλnχ

λ
1/2,S z

i
)Φ00;00

00 (pi
1, p

i
2, p

i
3)
⟩

=C⟨Φ00;00
00 ({pf

j })|p
+
1 |Φ

00;00
00 ({pi

j})⟩

+D⟨Φ00;00
00 ({pf

j })|k|Φ
00;00
00 ({pi

j})⟩. (20)

Φ(p1, p2, p3) = Ψ(P, pρ, pλ)Here  is the wavefunction writ-
ten in terms of individual momenta and spelled out in the
Appendix as a function of the Jacobi coordinates, and its
indices denote both the internal and global radial and or-
bital  excitations.  Accordingly,  the  two  last  brackets  are
the  matrix  elements  of  these  spatial  wave  functions  in
momentum  space,  and  the  coefficients C and D are  the
factors extracted in the spin-isospin space. The first term
will raise the orbital angular momentum projection of the
interacting  quark  by  one  unit,  and  the  second  one  will
raise its spin projection by one unit. A general definition
of the convolution integral is as follows:

⟨· · ·O(p) · · · ⟩ = In f
ρℓ

f
ρ ;n f

λℓ
f
λ ;L f M f ;ni

ρℓ
i
ρ;n

i
λℓ

i
λ;Li Mi (O(p))

=

∫
d(3) pf d(3) piδ3(pf

1 + k− pi
1)δ3(pf

2 − pi
2)

×δ3(pf
3 − pi

3)Φ∗
n f
ρℓ

f
ρ ;n f

λℓ
f
λ

L f M f (pf
1 , p

f
2 , p

f
3 )O(p)

×Φni
ρℓ

i
ρ;n

i
λℓ

i
λ

Li Mi (pi
1, p

i
2, p

i
3), (21)

O(p) p+1where  is  a  function of  quark momenta,  such as 
and k. For the transitions between two ground states, it is
easy to verify that

I(p+1 ) = 0, I(k) = ke−
k2

6α2 . (22)

H+EM

S z
i = −1/2 S z

f = 1/2

This  indicates  that  only  the  term  proportional  to D,
namely the magnetic-dipole part of  in Eq. (20), can
contribute  to  the  transitions  between  the  two  ground
states. With fixed spin projections in the initial and final
states,  i.e.,  and ,  coefficient D can be
calculated in the spin-flavor space:

D =− 3

(2π)
3
2

1

(2k0)
1
2

⟨
1
√

2

(
ϕ
ρ
nχ

ρ
1/2,1/2+ϕ

λ
nχ

λ
1/2,1/2

)∣∣∣∣∣∣ e1σ
+
1√

2m1

×
∣∣∣∣∣∣ 1
√

2

(
ϕ
ρ
nχ

ρ
1/2,−1/2+ϕ

λ
nχ

λ
1/2,−1/2

)⟩
=

e

6
√

2π3/2
√

k0mq

.
(23)

Finally, we have

⟨
n
(
P f ,

1
2

)∣∣∣∣∣∣H+EM

∣∣∣∣∣∣n
(
Pi,−

1
2

)⟩
=

ek

6
√

2π3/2
√

k0mq

e−
k2

6α2 . (24)

1/2− 1/2+
Analogously, the  radiative  transitions  between  the  inter-
mediate  baryon and final  baryon can be calcu-
lated. In such processes, the contributions will come from
the  term  proportional  to C in Eq.  (20).  The  wavefunc-
tions and  detailed  expressions  of  the  transition  amp-
litudes are provided in the Appendix.

With the explicit amplitudes for the PC and PV trans-
itions, the partial decay width for the hyperon weak radi-
ative decays can be obtained as follows:

Γ = 8π2 |k|k0E f

Mi

1
2S i+1

∑
S z

f ,S
z
i

2
(
|M+,S

z
f ,S

z
i

PC |2+ |M+,S
z
f ,S

z
i

PV |2
)
,

(25)

M+,S
z
f ,S

z
i

PC M+,S
z
f ,S

z
i

PV
ϵ+

S i Mi

where  and  are the  PC  and  PV  amp-
litudes, respectively, with the photon polarization , and

 and  are the spin and mass of the initial baryon, re-
spectively.

The  parity  asymmetry  parameter  can  be  extracted  in
the quark model. Generally, the amplitude of the hyperon
weak radiative decay at  the  hadron level  has  the follow-
ing form:

M =GF
e
√

4π
ϵµū(p′)(A+Bγ5)σµνqνu(p), (26)

ϵµ u(p)
ū(p′)

where  is  the  polarization  vector  of  the  photon; 
and  are  the  spinors  of  the  initial-state  hyperon and
final-state  nonstrange baryon,  respectively. A and B rep-
resent the PC (P-wave) and PV (S-wave) amplitudes, re-
spectively. The  asymmetry  parameter  is  defined  as  fol-
lows:

αγ ≡
2Re(A∗B)
|A|2+ |B|2 . (27)

αγ

By matching A and B to the quark model amplitudes,
the asymmetry parameter  can be expressed in terms of
the quark  model  amplitudes  for  the  PC  and  PV  trans-
itions, i.e.,

αγ =
2Re(M∗PCMPV)

|MPC|2+ |MPV|2
. (28)

With  this  asymmetry  parameter,  the  angular  distribution
of  the  final-state  baryon  in  the  rest  frame  of  the  initial
hyperon can be written as follows:

dN
dΩ
=

N
4π

(
1+αγPh · p̂

)
, (29)

Phwhere  is the polarization vector of the decaying hyp-
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p̂eron,  and  is the  direction  of  the  three-vector  mo-
mentum of the final-state baryon.

Λ→ nγ Σ+→ pγ Σ0→ nγ Ξ0→ Λγ Ξ0→ Σ0γ

Σ0→ Λγ

The  following  processes  are  included  in  this  work:
, , , , and . Al-

though  the  partial  width  of  is  saturated  by  the
EM interaction,  we  still  evaluate  the  weak  radiative  de-
cay contribution here as  a  comparison with the EM pro-
cess.

III.  RESULTS AND DISCUSSION

Λ→ nγ
Σ+→ pγ Σ0→ nγ Ξ0→ Λγ Ξ0→ Σ0γ

|∆I| = 1/2 |∆s| = 1

JP = 1/2+

1/2−

Λ

RPC = |(M2
Λ
−M2

p)/(M2
Λ
−M2

N∗(1440))|2 ≃ 0.20
RPV = |(MΛ(1405)2−M2

p)/
(M2
Λ(L=3)−M2

p)|2 ≃ 0.12
N∗(1440)

Λ(L = 3)
Λ

L = 3
MΛ(L=3) = 2

These  weak  radiative  decay  processes,  i.e., ,
, , , and , are all Cab-

bibo-favored with  and  transitions. The
dominance of the pole terms in the transition amplitudes
suggests that all the intermediate states of  with
the proper  flavor  should  be  included  for  the  PC  amp-
litude, while all the states of  should be included for
the PV one. However, taking into account the propagator
suppression  effects  when the  intermediate  states  become
highly off-shell, we only consider the first orbital excita-
tion states for the PV amplitude. This approximation will
introduce  some  uncertainties  to  the  final  results.  Taking
the  decays as an example, the upper limit of the uncer-
tainties  can  be  estimated  by  the  ratios

 for the PC part
in  the  branching  ratio,  and 

 for  the  PV  part  in  the  branching
ratio. Here,  is the first radial excitation state of
the  nucleon,  and  denotes  the  second  negative
parity  orbital  excitation  state  of .  The  multiplets  with

 have not yet been established experimentally, so we
adopt  GeV for its mass as a conservative es-
timate.  Theoretical  calculations  in  the  literature  suggest
that their masses are well above 2 GeV [35] (see also Ref.
[36]  for  a  review  of  baryon  spectroscopy  in  the  quark
model and references therein).

The  intermediate  states  considered  in  this  work  are
listed  in Table  1.  These  states  are  either  ground  states

JP = 1/2+ JP = 1/2−

1/2− Λ(1405)
[70,2 1]

[70,2 8] [70,4 8]

Ξ(1620)
Ξ(1690)

[70,2 8]
[70,4 8]

with  or first orbital excitations with .
For the  intermediate hyperons,  is assigned
as  the  flavor  singlet  in  the  representation .  For
multiplets of representations  and , the cor-
responding states  have  not  yet  been  determined  experi-
mentally. Although the quantum numbers of  and

 have not been measured in experiments, they are
considered  to  belong  to  representations  and

, respectively.

1/2+ 1/2−

1/2+

With the EM and weak coupling matrix elements for
the  and  states  calculated  in  the  NRCQM,  we
can  obtain  the  analytical  amplitudes  for  each  pole  term;
they are provided in Appendix C. One can see that the PC
amplitudes are given by the intermediate  octet bary-
ons, and the decays are given through a P wave, while the
parity-violating ones are given through an S wave.

mq = mu = md = ms = 0.35

αρ αλ
ρ λ

mu = md = ms
αρ = αλ ≡ α

α3

α Ξ

Ξ

α = 0.45 Λ Σ

β = 0.38 Ξ

In  our  framework,  the  input  parameters  include  the
constituent  quark  masses  and  harmonic  oscillator
strengths.  In  the  present  calculations,  we  take  the SU(3)
flavor  symmetry  for  the  constituent  quark  masses,  i.e.,

 GeV, as  the  leading  order  ap-
proximation. This simplifies the baryon wavefunctions at
this moment.  Because  the  three-vector  momentum  car-
ried  by  the  photon  is  rather  small,  this  approximation
does  not  cause  significant  uncertainty  in  the  numerical
results. In contrast, the numerical results are more sensit-
ive  to  the  harmonic  oscillator  strengths,  i.e.,  and 
for the  and  degrees of freedom in the Jacobi coordin-
ate, respectively. In the equal mass limit of ,
these  two  parameters  satisfy .  One  can  see
later that the analytical amplitudes will be proportional to

. Thus, more uncertainties can arise from the harmonic
oscillator  strength .  Considering  that  contains  two s
quarks, the SU(3) flavor symmetry breaking effect should
not be ignored, so we adopt a different value for the oscil-
lator  strength  of  the  decays.  Thus,  in  the  numerical
studies,  we  adopt  GeV for  the  and  decays
and  GeV for the  decays.

The  numerical  results  of  amplitudes  are  given  in

Table  1.    Intermediate  states  considered  in  our  calculation.  The  baryon masses  and decay widths  (given  in  the  brackets)  are  taken
from PDG [37] (in units of GeV). Only the central values of the masses and widths are listed.

PC [56,2 8]

p n Λ Ξ0

0.94 0.94 1.12 1.31

Σ+ Σ0

1.20 1.20

PV

[70,2 8]
N(1535) Λ(1670) Σ(1620) Ξ(1620)

1.53(0.15) 1.67(0.035) 1.62(0.05) 1.62(0.03)

[70,4 8]
N(1650) Λ(1800) Σ(1750) Ξ(1690)

1.655(0.135) 1.8(0.3) 1.75(0.15) 1.62(0.03)

[70,2 10]
∆(1620)

1.61(0.13)
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Table 2. Some general features can be understood as fol-
lows.

Λ→ nγ Σ+→ pγ Σ0→ nγA.    , , and 
Σ+→ pγ Λ→ nγFor  the  processes  and ,  it  appears

that the A- and B-type processes have a destructive inter-
ference  in  the  the  PC channels,  but  become constructive
in  the  PV  channels.  This  results  in  the  value  of  the  PC
amplitudes  becoming  smaller  than  the  value  of  the  PV
ones  for  these  two  decays.  Furthermore,  this  leads  to  a
large value for the asymmetry parameter.

N(1650)
[70,4 8] JP = 1/2− Σ+→ pγ

Λ→ nγ Σ0→ nγ
N∗

[70,4 8] [56,2 8]

N(1650)
pγ

It  is  interesting  to  note  that  the  PV amplitude  of  the
,  which  is  assigned  as  the SU(6)  representation

 with ,  vanishes  in but contrib-
utes to the neutral channels of  and . This
is understandable via the EM coupling between the  of

 and proton . In such an EM transition pro-
cess,  the  so-called  “Moorhouse  selection  rule ”  [38]
should  play  a  role,  preventing  the  intermediate 
from decaying into .

ρTo be  more  specific,  one  can  prove  that  the  mode

[70,4 8]
[56,2 8]

ρ [70,4 8]

[56,2 8] λ

[70,4 8] [56,2 8]

N∗([70,4 8])→ pγ ⟨ϕλN∗+ |Σ3
i=1ei|ϕλp⟩ = 3⟨ϕλN∗+ |e3|ϕλp⟩ =

0 λ

decays  or  excitations  between  states  of  and
 via  the  EM  transition  operator  vanish.  Because

the  spin  and  orbital  angular  momentum  operators  are
symmetric  with  respect  to  the  quark  indices  of  the  first
two  quarks,  the  mode  spatial  wavefunction  of 
cannot orbitally decay into a symmetric spatial wavefunc-
tion  of .  The  mode  decays  or  excitations
between states of  and  are, in principle, al-
lowed.  However,  for  the  charged  channel  of

, one has 
. Thus, the  mode is also forbidden.

[70,4 8]
[70,2 8]

N(1535) N(1650)

Σ+→ pγ

It should be noted that representations of  and
 in  the  first  orbital  excitations  can  mix,  and  the

physical states  and  are actually mixing
states  of  these  two  configurations.  As  a  consequence,
both states can actually contribute to . This is an
interesting  phenomenon  that  may  provide  an  alternative
way to study the structure of these two resonances.

Σ+ [56,2 8] Σ∗+ [70,4 8]

A similar  relation  also  appears  in  the  EM transitions
of the PV B-type process, i.e., the EM transitions between

 of  and  of .  Again,  one  can  prove

(10−10 GeV−1/2)Table 2.    Numerical results of amplitudes for every channel, in units of .

Process PCA PVA PCB PVB Total (PC) Total (PV)

Λ→ nγ

n −6.68 N(1535) −4.72−0.99i Λ 3.97 Λ(1670) −1.54−0.047i

5.82 −14.91−1.48i

N(1650) 0.22+0.032i Σ0 8.53 Λ(1800) 0.072−0.017i

∆(1620) 0 Λ(1405) −4.27−0.28i

Σ(1620) −4.91−0.23i

Σ(1750) 0.24

Σ+→ pγ
p −19.06 N(1535) −9.65−2.39i Σ+ 24.16 Σ(1620) −5.75−0.27i

5.10
−15.40−2.66iN(1650) 0 Σ(1750) 0

∆(1620) 0

Σ0→ nγ

n 8.93 N(1535) 7.69+1.92i Λ −7.91 Λ(1670) 2.15+0.066i

6.69 1.33+1.37i

N(1650) −0.68−0.15i Σ0 5.67 Λ(1800) −0.20−0.046i

∆(1620) 0 Λ(1405) −5.58−0.36i

Σ(1620) −2.28−0.11i

Σ(1750) 0.22

Ξ0→ Λγ

Λ 5.79 Λ(1670) 4.73+0.26i Ξ0 −13.60 Ξ(1620) 6.33+0.22i

−7.81 −4.38−3.88i

Σ0 0 Λ(1800) −0.23−0.083i Ξ(1690) −0.46−0.014i

Λ(1405) −14.7−4.26i

Σ(1620) 0

Σ(1750) 0

Ξ0→ Σ0γ

Λ −8.15 Λ(1670) −10.75−0.59i Ξ0 0 Ξ(1620) 0

−8.15 −45.65−10.67i

Σ0 0 Λ(1800) 0.21+0.074i Ξ(1690) 0

Λ(1405) −35.11−10.15i

Σ(1620) 0

Σ(1750) 0
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λ
⟨ϕλ
Σ∗+
|Σ3

i=1ei|ϕλΣ+⟩ = 3⟨ϕλ
Σ∗+
|e3|ϕλΣ+⟩ = 0 λ

[70,4 8]
Σ+→ pγ

that only the  mode of transitions is allowed. However,
with ,  the  mode  of
transitions will also be forbidden. Thus, states of 
do not contribute to the PV amplitude in .

[70,2 10]

ρ
[70,2 10] [56,2 8]

λ ρ

Σ+→ pγ |∆I| = 1/2
∆(1620) [70,2 10]

Σ→ Nπ Λ→ Nπ

It  is  also clear that the states of  do not con-
tribute to the octet  radiative weak decays.  This  is  due to
the requirement of the  mode orbital excitations between
the spatial wavefunctions of  and  in asso-
ciation  with  the  spin-flavor  operators  in  Eq.  (7),  which
are  nonvanishing  between  and  modes. As  a  con-
sequence,  the  two  terms  in  Eq.  (7)  exactly  cancel  out.
This  vanishing transition was listed in Ref.  [15] but  was
not  discussed  much  there.  Note  that  the  transition

 does not violate the  rule. The vanish-
ing contribution of the  of representation 
can be regarded as a kind of dynamic selection rule in the
quark model.  In fact,  this selection rule also plays a role
in the hadronic  weak decays of  and .  A
recent study can be found in Ref. [33].

Ξ0→ Σ0γ ΛγB.     and 
Ξ0→ Σ0γ Λγ

Λ Σ

The  situation  in  and  is  different  from
that in  and  decays. Here, the contributions from the
PC  processes  are  larger  than  those  from  the  destructive
PV ones.

Ξ0→ Σ0γ

Σ(∗)

⟨ϕρ
Σ0 |τ(−)

1 ν(+)
2 |ϕ

ρ
Ξ0⟩ = 0

λ

⟨χλ1
2
S z
|(1−σ1 ·σ2)|χλ1

2
S z
⟩ =

0
Σ0

It  is  noticeable  that  the B-type  amplitudes  in
 vanish for  both  PC and PV transitions.  Mean-

while, the intermediate  states do not contribute to the
A-type transitions.  These are due to the weak interaction
operators. Note  that  the  flavor  transition  element  van-
ishes: .  In  the  PC B-type  transition,
this leaves the  mode to contribute. However, one finds
that  the  spin  transition  element 

, with the spins of the first two quarks in parallel. There-
fore,  the  intermediate  does  not  contribute  to  the  PC
amplitude.

Σ∗0

[70,2 8] [70,4 8]
⟨ϕρ
Σ0 |τ(−)

1 ν(+)
2 |ϕ

ρ
Ξ0⟩ = 0

ϕλ
Σ0 (χ

ρ
1
2
S z
ψ
ρ
11Lz

(ρ,λ)−χλ1
2
S z
ψλ11Lz

(ρ,λ)) [70,2 8]

ρ λ

For  the  PV A-type  transitions,  the  intermediate 
belongs to either representation  or . Again,
with , it leaves the wavefunction com-
ponent  of  to
be considered. From the PV operators in Eq. (7), one can
easily  prove  that  only  the  transitions  between  and 
modes  in  the  spin  and  spatial  spaces  can  survive.

Σ∗0

[70,2 8] Σ∗0 [70,4 8]
ρ

However, the two terms in Eq. (7) have the same average
values but opposite signs. They will thus cancel and lead
to  vanishing  contributions  from  the  intermediate  of

.  For  the  intermediate  of ,  one  finds
that  the  corresponding  spatial  transitions  between  the 
mode will vanish.

Ξ(∗)0

[56,2 8] [70,2 8]
Σ0

Ξ(∗)0

Σ0

Ξ0→ Σ0γ

For  the B-type  transitions,  the  intermediate  can
be  in  either  (PC)  or  (PV). Their  trans-
itions into the final  vanish for the same reason, arising
from the weak transition operators. Thus, we have the in-
teresting result  that all  the  pole terms in the B-type
processes  and  all  the  pole  terms  in  the A-type  ones
vanish in .

C.    Branching ratios and asymmetry parameters

Ξ0→ Σ0γ

α, β mq

∼

α3/mq β3/mq

αγ
α3/mq β3/mq

Proceeding to the calculation of experimental observ-
ables, the  calculated  branching  ratios  and  parity  asym-
metry parameters are listed in the last columns of Tables 3
and 4, respectively, in comparison with other models. As
shown in Table 3, the central values of the branching ra-
tios  are  similar  to  the  experimental  results,  except  for

. By introducing 0.5% errors to the quark mod-
el  parameters,  i.e.,  and , we can estimate the un-
certainties  of  our  model  calculations.  The  results  show
that the  uncertainties  with  the  branching  ratios  are  ap-
proximately  40% 50%  for  each  channel,  which  means
that the amplitudes are sensitive to the quark model para-
meters. This is understandable because the amplitudes are
proportional to  ( ). In contrast, the uncertain-
ties with the asymmetry parameter are relatively smaller.
As seen from the expression of Eq. (28) for , the uncer-
tainties  arising  from  the  dependence  of  or 
are largely cancelled out.

Note that there are only a limited number of paramet-
ers under the NRCQM framework. The overall quality of
our  model  calculations  turns  out  to  be  reasonable.  Our
results indicate that the lowest lying states play an essen-
tial  role  through  the  intermediate  pole  terms,  which  is
consistent  with  the  results  of  ChPT  [25]  and  previous
quark model calculations [15].

Σ+ Λ

Ξ0

In Table  4, one  can  see  that  the  signs  of  the  asym-
metry parameters are quite different. Our model gives the
correct signs for the  and  channel and prefers a large
value.  However,  for  the  channels,  the  sign  of  the

10−3Table 3.    Calculated branching ratios  (in  units  of )  compared with experimental  data  and other  theoretical  predictions.  In  Ref.
[25], the results are given by decay width.

Bi→ B f γ PDG data [37] Broken SU(3) [11] ChPT [25] Pole model [17] Pole model [15] Our result

Σ+→ pγ (1.23±0.05) 0.72 ≈ 16 0.75±0.30 1.15 1.06±0.59

Λ→ nγ (1.75±0.15) 0.77 ≈ 1.45 0.16±0.06 0.62 1.83±0.96

Ξ0→ Λγ (1.17±0.07) 1.02 ≈ 1.17 0.72±0.42 3.0 0.96±0.32

Ξ0→ Σ0γ 3.33±0.1 4.42 ≈ 1.14 2.6±1.2 7.2 9.75±4.18

Σ0→ nγ − − ≈ 10−9 1.8×10−9 10−10 ≈ 10−10
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Σ0→ nγ

asymmetry parameter  is  opposite  to  that  of  the  experi-
mental  data.  The  sign  of  the  asymmetry  parameter  of

 is positive, which is opposite to that of the other
model calculations [15, 17].

Σ0→ nγ

Σ0→ Λγ
Σ0→ nγ

J/ψ

In Table  5,  we  also  list  the  partial  decay  widths  in
comparison with the PDG values [37]. Note that the cal-
culated  partial  decay  width  of  is  comparable  to
those  of  the  other  channels,  although  its  branching  ratio
appears  to  be  very  small.  This  is  due  to  the  large  total
width  saturated  by  the  EM  transition  of .  The
partial  width for  has not been measured experi-
mentally. The measurement of this quantity may be pur-
sued at BESIII with large event samples collected for 
decays.

IV.  SUMMARY

In  this  work,  we  revisit  the  hyperon  weak  radiative
decays in  the  framework  of  the  NRCQM.  The  domin-
ance of the pole terms turns out to be crucial for achiev-
ing an overall  self-consistent description of the available
experimental  data  for  hyperon  weak  radiative  decays.
This  study  confirms  the  nonlocal  feature  of  the  hyperon
weak radiative transition operators, which provides a nat-
ural  mechanism  for  evading  the  Hara  theorem,  i.e.,  the
PV contributions can come from the intermediate orbital
excitations in the NRCQM. We also discuss several inter-
esting  selection  rules  arising  from  either  the  EM  or  the
weak interaction vertices. Moreover, there exist cancella-
tions between pole terms that can significantly violate the
SU(3) flavor  symmetry  in  the  observables.  These  fea-
tures suggest nontrivial  relations among various hyperon
decays. It is interesting to note that the dominance of the
pole terms  is  somewhat  counterintuitive,  taking  into  ac-
count the short-ranged property of the weak interactions.
Therefore, a  coherent  study  of  the  hyperon  weak  radiat-
ive decays and confirmation of the dominance of the pole
terms are crucial for a better understanding of the under-
lying dynamics.  Future  studies  of  possible  dynamic  ef-

fects  are  strongly  recommended.  A  better  description  of
the  transition  operators  will  make  the  hyperons  good
probes  for  long-ranged  weak-decay  dynamics  in  nuclear
few-body systems.
 

ACKNOWLEDGEMENTS

J.M.R. would like to thank the hospitality provided to
him at IHEP, where part of this work was completed, and
the  support  by  the  Munich  Institute  for  Astro-  and
Particle Physics  (MIAPP)  of  the  DFG  cluster  of  excel-
lence “Origin and Structure of the Universe” during the
Workshop “Deciphering Strong-Interaction Phenomeno-
logy through Precision Hadron-Spectroscopy.”

APPENDIX A: CONVENTION

The following conventions are adopted for  the quark
and anti-quark field:

q(x) =
∫

dp
(2π)3/2

(
m
p0

)1/2 ∑
s

us(p)bs(p)eip·x

+ vs(p)d†s (p)e−ip·x, (A1)

q̄(x) =
∫

dp
(2π)3/2

(
m
p0

)1/2 ∑
s

ūs(p)b†s(p)e−ip·x

+ v̄s(p)ds(p)eip·x. (A2)

The  commutation  and  anticommutation  relations  of  the
creation and annihilation operators are given by

{bs(p),b†s′ (p′)} = {ds(p),d†s′ (p′)} = δss′δ
3(p− p′). (A3)

u†s(p)us′ (p) = v†s(p)vs′ (p) =The  spinor  normalization  is 

Table 4.    Numerical results of the asymmetry parameter compared with experimental data and other theoretical predictions.

Bi→ B f γ PDG [37] Broken SU(3) [11] ChPT [25] Pole model (I) [17] Pole model (II) [15] Our result

Σ+→ pγ −0.76±0.08 −0.67 −0.49 −0.92 −0.80 −0.58±0.060

Λ→ nγ − −0.93 −0.19 0.91 −0.49 −0.67±0.060

Ξ0→ Λγ (−0.70±0.07) −0.97 0.46 0.07 −0.78 0.72±0.11

Ξ0→ Σ0γ (−0.69±0.06) −0.92 0.15 −0.75 −0.96 0.33±0.036

Σ0→ nγ − − − −0.65 −0.98 0.37±0.035

10−18Table 5.    Calculated partial decay widths (in units of  GeV) compared with the experimental data from PDG [37].

Bi→ B f γ Σ+→ pγ Λ→ nγ Ξ0→ Λγ Ξ0→ Σ0γ Σ0→ nγ

PDG data [37] 10.10±0.41 4.40±0.38 2.66±0.18 7.56±0.33 −

Our result 8.73±4.88 4.59±2.42 2.20±0.73 22.13±9.50 1.59±0.55
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(p0/m)δss′ . It should be emphasized that the convention of
quark  field  and  spinor  must  match  with  each  other  to
keep  the  nonrelativistic  Hamiltonian  independent  of  any
convention.

APPENDIX B: THE BARYON WAVEFUNCTION
WITHIN THE NON-RELATIVISTIC CONSTITU-

ENT QUARK MODEL

We adopt the nonrelativistic quark model wave func-
tions  for  the  baryons  [35]  in  the  calculation.  The  total
wavefunction of the hadron consists  of  four parts:  a)  the
color  wavefunction,  which  is  trivial  and  neglected  here;
b) the spin wavefunction; c) the flavor wavefunction; and
d) the spatial wavefunction.

The spin  wavefunctions  for  a  three-quark system are
written as follows:

χs
3/2 = ↑↑↑,

χs
−1/2 =

1
√

3
(↑↓↓ + ↓↑↓ + ↓↓↑) ,

χs
1/2 =

1
√

3
(↑↑↓ + ↑↓↑ + ↓↑↑) ,

χs
−3/2 = ↓↓↓, (B1)

χ
ρ
1/2 =

1
√

2
(↑↓↑ − ↓↑↑) ,

χλ1/2 =−
1
√

6
(↑↓↑ + ↓↑↑ −2 ↑↑↓) ,

χ
ρ
−1/2 =

1
√

2
(↑↓↓ − ↓↑↓) ,

χλ−1/2 =
1
√

6
(↑↓↓ + ↓↑↓ −2 ↓↓↑) , (B2)

ρ λwhere the superscripts s, a, , and  are used to label the
symmetry  types  of  the  corresponding  wavefunctions,
namely  overall  symmetric  and  antisymmetric  states,  and
mixed  symmetry  states  that  are  either  antisymmetric  or
symmetric under the exchange of the first two quarks, re-
spectively.

The  flavor  wavefunctions  for  the  octet  baryons  are
written as [34]

ϕλp =
1
√

6
(2uud−duu−udu),

ϕ
ρ
p =

1
√

2
(udu−duu),

ϕλn =
1
√

6
(dud+udd−2ddu),

ϕ
ρ
n =

1
√

2
(udd−dud),

ϕλΛ =
1
2

(sud+usd− sdu−dsu),

ϕ
ρ
Λ
=

1

2
√

3
(usd+ sdu− sud−dsu−2dus+2uds),

ϕλΣ+ =
1
√

6
(suu+usu−2uus),

ϕ
ρ
Σ+
=

1
√

2
(suu−usu),

ϕλΣ0 =
1

2
√

3
(sdu+ sud+usd+dsu−2uds−2dus),

ϕ
ρ
Σ0 =

1
2

(sud+ sdu−usd−dsu),

ϕλΞ0 =
1
√

6
(2ssu− sus−uss),

ϕ
ρ
Ξ0 =

1
√

2
(sus−uss).

(B3)

A basis of spatial wavefunctions in the momentum space
is given by [34]

Ψ
nρℓρ;nλℓλ
LM (P, pρ, pλ) =δ3(Pcm− P)

∑
m

⟨lρ,m; lλ,M−m|LM⟩

×ψnρlρm(pρ)ψnλlλM−m(pλ), (B4)

P pρ pλwhere , , and  are the usual Jacobi coordinates, and

ψn,l,m(p) =(i)l(−1)n
[

2n!
(n+ l+1/2)!

]1/2

× 1
αl+3/2 e−

p2

2α2 Ll+1/2
n (p2/α2)Ylm(p). (B5)

nρ nλ L
Lνn(x)

α Ylm(p)

 and  count the radial  excitations,  and  is  the total
angular momentum.  are generalized Laguerre poly-
nomials, and  is the oscillator parameter.  is solid
spherical harmonics.

The baryons are three-quark systems, and in the limit
of SU(3) flavor  symmetry,  their  total  wavefunctions  be-
come  totally  symmetric.  With  the  color  wavefunction
total  antisymmetric,  the  rest  of  the  total  wavefunction
should  then  be  symmetric.  The  total  wavefunction  (ex-
cept for the color part) of an octet baryon B is written as
follows:

|56,2 8,0,0, sz⟩ =
1
√

2
(ϕρBχ

ρ
sz
+ϕλBχ

λ
sz

)Ψ00;00
00 (pρ, pλ). (B6)
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[70,2 8] N(1535), Λ(1670), Σ(1620) Ξ(1620)
The total wavefunction of the first orbital excitation states
of  ( ,  and )  is
written as follows:

|70,2 8,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
1
2

S z|
1
2

Jz⟩
1
2

× [
(ϕρBχ

λ
S z
+ϕλBχ

ρ
S z

)Ψ1Lz;00
1Lz

(pρ, pλ)

+ (ϕρBχ
ρ
S z
−ϕλBχλS z

)Ψ0,0;1,Lz

1Lz
(pρ, pλ)

]
. (B7)

[70,4 8] N(1650),Λ(1800),Σ(1750) Ξ(1690)
The  total  wavefunction  of  the  first  orbital  excitation

states of  ( , and )
is as follows:

|70,4 8,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
3
2

S z|
1
2

Jz⟩
1
√

2

[
ϕ
ρ
Bχ

s
S z

×Ψ1Lz;00
1Lz

(pρ, pλ)+ϕλBχ
s
S z
Ψ

00;1Lz

1Lz
(pρ, pλ)

]
.

(B8)

[70,2 10] ∆(1620)
The total wavefunction of the first orbital excitation states
of  ( ) is as follows:

|70,2 10,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
1
2

S z|
1
2

Jz⟩
1
√

2

[
ϕs

Bχ
ρ
S z

×Ψ1Lz;00
1Lz

(pρ, pλ)+ϕs
Bχ

λ
S z
Ψ

00;1Lz

1Lz
(pρ, pλ)

]
.

(B9)

The total wavefunction of the first orbital excitation state

[70, 21] Λ(1405)of  ( ) is

|70,2 1,1,1, Jz⟩ =
∑

Lz+S z=Jz

⟨1Lz;
1
2

S z|
1
2

Jz⟩
1
√

2

[
ϕa
Λχ

λ
S z

×Ψ1Lz;00
1Lz

(pρ, pλ)−ϕa
Λχ

ρ
S z
Ψ

00;1Lz

1Lz
(pρ, pλ)

]
,

(B10)

where

ϕa
Λ =

1
√

6
(uds+dsu+ sud−dus−usd− sdu). (B11)

APPENDIX C: AMPLITUDES

H+EM

MPC/PV,A/B(B) ϵ S f
z = +1/2

S i
z = −1/2

S F(B)

The transition amplitudes with the EM operator 
are given in this section. Note that only the nonzero amp-
litudes  are  listed.  The  nonzero  amplitudes  are  labeled

, where the spin indexes , , and
 are omitted. B in the parentheses is the name of

the  intermediate  baryon.  In  the  following  part, 
stands for  the propagator of  the intermediate baryon and
is written as follows:

S F(B) =
i(̸pB+MB)

p2
B−M2

B+ iΓBMB
≈ 2iMB

p2
B−M2

B+ iΓBMB
, (C1)

MB (ΓB) pBwhere  is the mass (width) of the baryon, and 
is its four momentum.

Σ+→ pγ● 

MPC,A(p) =
[
3α3GFVudVus

2π3/2

]
S F(p)

− ek

4
√

2π3/2
√

k0mq

e−
k2

6α2 , (C2)

MPV,A(N(1535)) =

−3iα4GFVudVus

2
√

2π3/2mq

S F(N(1535))

 ie
(
2α2− k2

)
24π3/2α

√
k0mq

e−
k2

6α2 . (C3)

MPC,B(Σ+) = e−
k2

6α2

− ek

4
√

2π3/2
√

k0mq

S F(Σ+)
[
3α3GFVudVus

2π3/2

]
, (C4)

MPV,B(Σ(1620)) = e−
k2

6α2

− ie
(
2α2− k2

)
24π3/2α

√
k0mq

S F(Σ(1620))

3iα4GFVudVus

2
√

2π3/2mq

 . (C5)

Λ→ nγ● 
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MPC,A(n) =

−
√

3
2α

3GFVudVus

2π3/2

S F(n)

 ek

6
√

2π3/2
√

k0mq

e−
k2

6α2 , (C6)

MPV,A(N(1535)) =
 i
√

3α4GFVudVus

4π3/2mq

S F(N(1535))

− ie
(
6α2− k2

)
72π3/2α

√
k0mq

e−
k2

6α2 , (C7)

MPV,A(N(1650)) =
 i
√

3α4GFVudVus

2π3/2mq

S F(N(1650))

 iek2

72π3/2α
√

k0mq

e−
k2

6α2 . (C8)

MPC,B(Λ) = e−
k2

6α2

 ek

12
√

2π3/2
√

k0mq

S F(Λ)

−
√

3
2α

3GFVudVus

2π3/2

 , (C9)

MPC,B(Σ0) = e−
k2

6α2

− ek

4
√

6π3/2
√

k0mq

S F(Σ0)
[
3α3GFVudVus

2
√

2π3/2

]
, (C10)

MPV,B(Λ(1670)) = e−
k2

6α2

 ie
(
6α2− k2

)
144π3/2α

√
k0mq

S F(Λ(1670))
− i
√

3α4GFVudVus

4π3/2mq

 , (C11)

MPV,B(Λ(1800)) = e−
k2

6α2

− iek2

144π3/2α
√

k0mq

S F(Λ(1800))
− i
√

3α4GFVudVus

2π3/2mq

 , (C12)

MPV,B(Λ(1450)) = e−
k2

6α2

− ie
(
2α2− k2

)
48π3/2α

√
k0mq

S F(Λ(1450))
 i
√

3α4GFVudVus

2π3/2mq

 , (C13)

MPV,B(Σ(1620)) = e−
k2

6α2

− ie
(
6α2− k2

)
48
√

3π3/2α
√

k0mq

S F(Σ(1620))
[
3iα4GFVudVus

4π3/2mq

]
, (C14)

MPV,B(Σ(1750)) = e−
k2

6α2

 iek2

48
√

3π3/2α
√

k0mq

S F(Σ(1750))
[
3iα4GFVudVus

2π3/2mq

]
. (C15)

Ξ0→ Λγ● 

MPC,A(Λ) =
2
√

3α3β3GFVudVus

π3/2 (α2+β2)3/2

S F(Λ)

 ek

12
√

2π3/2
√

k0mq

e−
k2

6α2 , (C16)

MPV,A(Λ(1670)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1670))

− ie
(
6α2− k2

)
144π3/2α

√
k0mq

e−
k2

6α2 , (C17)

MPV,A(Λ(1800)) =

−2i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1800))

 iek2

144π3/2α
√

k0mq

e−
k2

6α2 , (C18)
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MPV,A(Λ(1450)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1450))

 ie
(
2α2− k2

)
48π3/2α

√
k0mq

e−
k2

6α2 . (C19)

MPC,B(Ξ0) = e
− k2

6β2

 ek

6
√

2π3/2
√

k0mq

S F(Ξ0)
2
√

3α3β3GFVudVus

π3/2 (α2+β2)3/2

 , (C20)

MPV,B(Ξ(1620)) = e
− k2

6β2

 ie
(
6β2− k2

)
72π3/2β

√
k0mq

S F(Ξ(1620))

 i
√

6α3β4GFVudVus

π3/2 (α2+β2)3/2 mq

 , (C21)

MPV,B(Ξ(1690)) = e
− k2

6β2

− iek2

72π3/2β
√

k0mq

S F(Ξ(1690))

2i
√

6α3β4GFVudVus

π3/2 (α2+β2)3/2 mq

 . (C22)

Ξ0→ Σ0γ● 

MPC,A(Λ) =
2
√

3α3β3GFVudVus

π3/2 (α2+β2)3/2

S F(Λ)

− ek

4
√

6π3/2
√

k0mq

e−
k2

6α2 , (C23)

MPV,A(Λ(1670)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1670))

 ie
(
6α2− k2

)
48
√

3π3/2α
√

k0mq

e−
k2

6α2 , (C24)

MPV,A(Λ(1800)) =

−2i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1800))

− iek2

48
√

3π3/2α
√

k0mq

e−
k2

6α2 , (C25)

MPV,A(Λ(1450)) =

− i
√

6α4β3GFVudVus

π3/2 (α2+β2)3/2 mq

S F(Λ(1450))

 ie
(
2α2− k2

)
16
√

3π3/2α
√

k0mq

e−
k2

6α2 . (C26)

Σ0→ nγ● 

MPC,A(n) =
[
3α3GFVudVus

2
√

2π3/2

]
S F(n)

 ek

6
√

2π3/2
√

k0mq

e−
k2

6α2 , (C27)

MPV,A(N(1535)) =
[
−3iα4GFVudVus

4π3/2mq

]
S F(N(1535))

− ie
(
6α2− k2

)
72π3/2α

√
k0mq

e−
k2

6α2 , (C28)

MPV,A(N(1650)) =
[
−3iα4GFVudVus

2π3/2mq

]
S F(N(1650))

 iek2

72π3/2α
√

k0mq

e−
k2

6α2 . (C29)
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MPC,B(Λ) = e−
k2

6α2

− ek

4
√

6π3/2
√

k0mq

S F(Λ)

−
√

3
2α

3GFVudVus

2π3/2

 , (C30)

MPC,B(Σ0) = e−
k2

6α2

− ek

12
√

2π3/2
√

k0mq

S F(Σ0)
[
3α3GFVudVus

2
√

2π3/2

]
, (C31)

MPV,B(Λ(1670)) = e−
k2

6α2

− ie
(
6α2− k2

)
48
√

3π3/2α
√

k0mq

S F(Λ(1670))
− i
√

3α4GFVudVus

4π3/2mq

 , (C32)

MPV,B(Λ(1800)) = e−
k2

6α2

 iek2

48
√

3π3/2α
√

k0mq

S F(Λ(1800))
− i
√

3α4GFVudVus

2π3/2mq

 , (C33)

MPV,B(Λ(1450)) = e−
k2

6α2

− ie
(
2α2− k2

)
16
√

3π3/2α
√

k0mq

S F(Λ(1450))
 i
√

3α4GFVudVus

2π3/2mq

 , (C34)

MPV,B(Σ(1620)) = e−
k2

6α2

− ie
(
6α2− k2

)
144π3/2α

√
k0mq

S F(Σ(1620))
[
3iα4GFVudVus

4π3/2mq

]
, (C35)

MPV,B(Σ(1750)) = e−
k2

6α2

 iek2

144π3/2α
√

k0mq

S F(Σ(1750))
[
3iα4GFVudVus

2π3/2mq

]
. (C36)
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