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Abstract: Inspired by  the  hypothesis  of  the  black  hole  molecule,  with  the  help  of  the  Hawking temperature,  en-
tropy, and the thermodynamic curvature of black holes, we propose a new measure of the relation between the inter-
action and the thermal motion of molecules of the AdS black hole as a preliminary and coarse-grained description.
The proposed measure introduces a dimensionless ratio to characterize this relation and shows that there is indeed
competition  between  the  interactions  of  black  hole  molecules  and  their  thermal  motion.  For  a  charged  AdS black
hole, below the critical dimensionless pressure, there are three transitions between the interaction and thermal mo-
tion states. In contrast, above the critical dimensionless pressure, only one transition takes place. For the Schwarz-
schild-AdS and five-dimensional Gauss-Bonnet AdS black holes, a transition always occurs between the interaction
and thermal motion states.
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I.  MOTIVATION

The  exploration  of  the  microscopic  properties  of
black holes is a hot topic in theoretical physics. Tradition-
al general relativity holds that there is no matter structure
inside  a  black hole,  other  than the  singularity.  However,
the proposal  of  the  black  hole  temperature  and  area  en-
tropy  has  provided  a  new  perspective  for  reinterpreting
the properties of black holes [1-3]. With the development
of black hole thermodynamics [4-8], and specifically the
introduction  of  extended  phase  space  [9],  black  holes
have been found to show abundant critical behaviors [10-
13], indicating  that  they  possess  some  unknown  micro-
scopic characteristics.

Recently,  based  on  the  Ruppeiner  thermodynamic
geometry  [14],  a  new  abstract  concept  of  a  "black  hole
molecule" was proposed [15], which provides a new per-
spective  by  which  the  microscopic  behavior  of  black
holes  can  be  studied  roughly  and  phenomenologically.
The proponents of  this  concept describe the interior  of  a
black hole as a kind of fluid composed of black hole mo-

lecules that represent its microstructure. This is similar to
the  atomic  hypothesis  put  forward  by  Boltzmann  more
than  a  century  ago.  Although  we  do  not  know  exactly
what these black hole molecules are, as a preliminary ex-
ploration  of  black  hole  microstructure,  this  abstract
concept is  very  useful  for  understanding  certain  micro-
scopic properties of black holes. Among these properties,
the role of the Ruppeiner geometry is particularly import-
ant. It  introduces  a  thermodynamic  metric  for  represent-
ing  the  thermodynamic  fluctuation  theory.  Meanwhile,
the components of the inverse thermodynamic metric cor-
respond  to  second  moments  in  the  fluctuation  theory  of
equilibrium  thermodynamics.  The  original  form  of  the
thermodynamic metric is the second derivative of the en-
tropy  with  respect  to  other  generalized  coordinates  (or
other thermodynamic quantities).

When  studying  the  Ruppeiner  geometry  of  black
holes, the  thermodynamic  curvature  is  the  most  import-
ant physical quantity. It has two important roles:

● Analyzing  the  phase  transition. The  divergence  of
the thermodynamic curvature is believed to correspond to
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some  kind  of  phase  transition  within  the  system.  There
are  two  ways  to  understand  the  divergence.  On  the  one
hand,  the  divergence  of  the  thermodynamic  curvature
corresponds  to  the  configuration  of  an  extremal  black
hole, or perhaps, the black hole/extremal black hole trans-
ition [15-27]. Alternatively, the divergence of the thermo-
dynamic  curvature  corresponds  to  the  divergence  of  the
heat  capacity,  i.e.,  a  second-order  phase  transition  [28-
37]. However,  at  present,  there  is  no  theoretical  require-
ment  that  the  divergent  point  of  the  thermodynamic
curvature  must  correspond  to  the  divergence  of  the  heat
capacity  or  the  configuration  of  an  extremal  black  hole.
Irrespective of what the divergent point of the thermody-
namic curvature  corresponds  to,  both  ideas  can  be  re-
garded as reasonable and feasible ways to explain the di-
vergent behavior of the thermodynamic curvature.

● Discussing the interaction in a thermodynamic sys-
tem. As  with  any  new  physical  quantity,  we  only  care
about  the  role  of  thermodynamic  curvature  itself  in  the
context of the microscopic behavior of the system. In cer-
tain  statistical  mechanics  models,  there  is  an  empirical,
yet hypothetical, observation from the view of thermody-
namic  geometry,  that  is,  the  thermodynamic  curvature
can have  a  corresponding  relationship  with  the  interac-
tions  between  the  constituent  molecules  of  the  system
[38,39]. However,  for  the  black  hole  system,  the  situ-
ation is slightly different,  and we need to explain the lo-
gic  for  exploring  its  microscopic  behavior.  In  statistical
mechanics,  it  is  generally  accepted  that  if  we  know  the
microscopic  dynamics  of  a  system,  its  thermodynamic
properties  can  be  derived  from  the  statistical  physics  of
the system. In general, the inverse process does not hold,
namely we cannot  know the  micro-dynamics  of  the  sys-
tem from its  thermodynamics.  Turning to  the  black hole
thermodynamic  system,  although  its  thermodynamic
properties  have  been  discussed  at  length,  its  micro-dy-
namic  behavior  is  still  being  explored  owing  to  the  lack
of a theory of quantum gravity. Therefore, if we want to
explore  the  microscopic  properties  of  black  holes,  we
need to make some appropriate assumptions.  In compar-
ison with the mature research system of well-established
statistical  mechanical  models,  we  can  consider  applying
the abovementioned inverse process to the black hole sys-
tem. Coincidentally,  the  underlying  idea  behind  this  in-
verse process is reflected in the exploration of the micro-
scopic behavior of black holes by the Ruppeiner thermo-
dynamic  geometry.  Although  certain  aspects  of  this
scheme remain  the  subject  of  debate  within  the  research
community,  there  appears  to  be  no  method  that  is  more
suitable  from the  perspective  of  thermodynamics.  Aided
by  the  abstract  concept  of  the  black  hole  molecule,
through analogy, we can assume that  there is  an interac-
tion  among  the  molecules  comprising  a  black  hole,  and
thus,  the  above  empirical  observation  also  applies  to
black holes. The physical meaning of the thermodynamic
curvature in  a  black  hole  system  was  provided  by  Rup-

peiner [40]. Furthermore, Refs. [19,41] point out that the
absolute value of the thermodynamic curvature measures
the strength  of  the  interactions  among  black  hole  mo-
lecules phenomenologically or qualitatively. Recently, for
a  class  of  black  hole  systems  with  zero  heat  capacity  at
constant volume, two methods have been posited to deal
with  the  thermodynamic  curvature.  The  first  introduces
the  normalized  thermodynamic  curvature  by  treating  the
heat capacity at constant volume as a constant very close
to  zero  [41-43].  The  second  regards  the  entropy  in  the
thermodynamic metric as a function of the mass (i.e., en-
thalpy) and other thermodynamic quantities of AdS black
holes  [24-27].  Both  these  schemes  can  well  analyze  the
interaction among molecules of the black hole system.

Therefore, thermodynamic  geometry  can  be  con-
sidered as one of the best  methods for exploring the mi-
croscopic properties  of  black  holes  solely  from  the  per-
spective of  thermodynamics.  Previously,  only  the  posit-
ive/negative of the thermodynamic curvature was used to
analyze  the  type  of  interaction  occurring  between  black
hole molecules in the black hole thermodynamic system,
while the magnitude of the thermodynamic curvature was
used to  describe  the  strength  of  the  interaction  qualitat-
ively. We know that, at the microscopic level, the interac-
tions among  the  constituent  molecules  of  the  system  al-
ways compete  with  the  thermal  motion of  the  molecules
themselves.  Hence,  for  the  black  hole  thermodynamic
system, this competition should exist. This study focuses
on how best to describe this competition.

Under  the  black  hole  molecule  hypothesis,  the
product  of  the  temperature  and  entropy  of  a  black  hole
can reflect the thermal motion of black hole molecules in
terms of  the  theory  of  molecular  thermal  motion.  At  the
same time,  using  thermodynamic  geometry,  we  can  ap-
proximate  the  thermodynamic  curvature  as  a  measure  of
the interactions among black hole molecules. In our pre-
vious work [24], via analysis of the microscopic thermal
behavior of the Reissner-Nordström black hole, we spec-
ulated  on  the  relation  between  the  thermal  motion  of
black hole molecules and their interactions. In this paper,
with the help of these two important tools, we propose a
preliminary and  coarse-grained  description  of  the  rela-
tion between  the  interactions  among  black  hole  mo-
lecules and  their  thermal  motion  using  the  AdS  back-
ground, taking the AdS black holes as examples, with the
aim  of  elucidating  the  possible  microscopic  behavior  of
black holes.  We use the proposed description to identify
the transition point between the state dominated by the in-
teraction  and  that  dominated  by  thermal  motion  in  the
black  hole  system,  further  revealing  the  mechanism  of
black hole  phase  transition  at  the  microscopic  level  en-
tirely from the perspective of thermodynamics.

The paper is organized as follows. Section II provides
a brief introduction to the Ruppeiner thermodynamic geo-
metry.  In  section  III,  we  introduce  a  dimensionless  ratio
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to  characterize  the  relation  between  the  interaction  and
thermal motion of molecules in AdS black holes. Finally,
section IV presents our conclusions.

II.  RUPPEINER GEOMETRY

S
S B S E

S B≪ S E ∼ S

The  Ruppeiner  thermodynamic  geometry  originates
from the fluctuation theory of equilibrium thermodynam-
ics  [14,40]. Consider  an  equilibrium  isolated  thermody-
namic  system  with  total  entropy ,  and  divide  it  into  a
small subsystem  and a large subsystem . Addition-
ally,  we  require  that . Then,  the  total  en-
tropy of the system reads as

S (x0, x1, · · · ) = S B(x0, x1, · · · )+S E(x0, x1, · · · ), (1)

x0 x1 · · ·

S S 0 xµ0
µ = 0,1,2, · · ·

where the parameters , ,  are independent thermo-
dynamic variables.  For  a  system  in  equilibrium,  the  en-
tropy  has  a  local  maximum  value  at 
( ).  Therefore,  in  the  vicinity  of  the  local
maximum, the entropy is expressed as

S =S 0+
∂S B

∂xµB
∆xµB+

∂S E

∂xµE
∆xµE +

1
2
∂2S B

∂xµB∂x
ν
B

∆xµB∆xνB

+
1
2
∂2S E

∂xµE∂x
ν
E

∆xµE∆xνE + · · · . (2)

S B S E
S E

S E ∼ S

The first derivative terms in Eq. (2) cancel each other ow-
ing  to  the  conservation  of  entropy  for  the  equilibrium
isolated  system.  Compared  with  the  second  derivative
term  for ,  the  corresponding  term  can  be  ignored
because  is  of  the  same  order  as  the  whole  system
( ). Finally, we arrive at

∆S = S 0−S ≈ −1
2
∂2S B

∂xµB∂x
ν
B

∆xµB∆xνB. (3)

P ∝ eS
Then,  according  to  the  fluctuation  probability  given  by
Einstein’s formula , we obtain

P(x0, x1, · · · ) ∝ exp
(
−1

2
∆l2

)
, (4)

where

∆l2 = − ∂
2S

∂xµ∂xν
∆xµ∆xν, (5)

B
is referred  to  as  the  metric  of  the  Ruppeiner  thermody-
namic geometry (here, we omit subscript ).

dM = TdS +VdP+other terms

For a  system  comprising  a  black  hole  and  its  sur-
rounding  infinite  environment,  the  black  hole  itself  is  a
small  subsystem of  the  above.  Returning to  the  example
of an AdS black hole, the first law of thermodynamics is

.  For  the situation in  which

all  other  terms  are  fixed,  we  can  adjust  the  first  law  of
thermodynamics slightly to obtain

dS =
1
T

dM− V
T

dP, (6)

xµ = (M,P)
xµ yµ = ∂S/∂xµ = (1/T,−V/T )

∆l2 = −∆yµ∆xµ

which describes the entropy as a function of enthalpy (or
mass)  and  thermodynamic  pressure.  Now,  we  set

,  with  the  conjugate  quantities  corresponding
to  given  by .  Then,  the  line
element Eq. (5) becomes . Finally, we can
write  this  line  element  in  a  universal  form  for  the  AdS
black hole [25]:

∆l2 =
1
T
∆T∆S +

1
T
∆V∆P. (7)

{T,P,S ,V}

{T,P} {S ,V}
{T,V} {S ,P}

{S ,P}

{S ,P}

The phase space of the AdS black hole is .
For  the  theory  of  thermodynamic  geometry,  we  use  a
space  of  generalized  coordinates,  such  as , ,

, and  for the AdS black hole. As the thermo-
dynamic  curvatures  obtained  in  these  coordinate  spaces
are  same,  we  can  take  the  coordinate  space  as  an
example  for  the  subsequent  calculations  and  analyses  in
this  paper.  According  to  Eq.  (7),  the  line  element  of  the
Ruppeiner geometry for the AdS black hole takes the fol-
lowing form in the coordinate space :

∆l2 =
1
T

(
∂T
∂S

)
P
∆S 2+

2
T

(
∂T
∂P

)
S
∆S∆P+

1
T

(
∂V
∂P

)
S
∆P2, (8)

(∂T/∂P)
S
=

(∂V/∂S )
P

where  we  have  used  the  Maxwell  relation 
 based on the first law of thermodynamics.

In addition, we use the Christoffel symbols,

Γαβγ =
1
2

gµα
(
∂γgµβ+∂βgµγ −∂µgβγ

)
, (9)

to express the Riemannian curvature tensor,

Rαβγδ = ∂δΓαβγ −∂γΓαβδ+Γ
µ
βγΓ
α
µδ−Γ

µ
βδΓ
α
µγ. (10)

Consequently, we can obtain the thermodynamic (scalar)
curvature,

R = gµνRξµξν. (11)

III.  NEW MEASURE FOR THE THERMAL MI-
CROSCOPIC BEHAVIOR OF ADS BLACK

HOLES

To  study  the  relationship  between  the  interactions
among black hole molecules and their thermal motion, as
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a  preliminary  and  coarse-grained  description,  we  define
the  following  dimensionless  ratio  to  characterize  the

strength between the interactions and the thermal motion:

η :=
Interaction

Thermal motion
≈ The magnitude of thermodynamic curvature×Planck volume

Temperature × entropy
. (12)

There are  several  important  points  that  must  be  con-
sidered here:

● In regular thermodynamics,  the key notion used to
describe  the  phase  transition  is  the  free  energy,  which
measures  the  competition  between  interactions  and  the
thermal motions. In particular, for the free energy, the de-
gree of the thermal motion is measured by the product of
the temperature and entropy of the system.

[length]−1 [length]2 [length]3

[length]−2

PV

v |R|

● First, through analysis, it can be seen that the tem-
perature,  entropy,  and  volume  have  dimensions  of

, ,  and , respectively.  Mean-
while, the thermodynamic curvature has the dimension of

, which is consistent with the dimension of ther-
modynamic pressure in the natural system of units. To re-
tain the same dimension as that of the measurement (the
product  of  the  temperature  and  entropy)  of  the  thermal
motion, analogous to the  term in ordinary thermody-
namics, we  posit  that  the  combination  of  the  thermody-
namic  curvature  and a  certain  volume may be  a  suitable
physical quantity to describe the degree of the interaction
between  black  hole  molecules.  Second,  Ruppeiner  [40]
proposed that  if  we imagine the fluid as  separate  pieces,
each  with  volume ,  is the  average  number  of  correl-
ated  "pixels."  Next,  we  assume  that  each  pixel  occupies
approximately  one  Planck  volume,  because  the  Planck
length  is  often  suggested  as  a  physical  constant  for
quantum gravity. Therefore, we can approximate that the
product of the absolute value of thermodynamic curvature
and the size of each pixel qualitatively reflects the inter-
action strength. Again, this is only a preliminary explora-
tion and, at present, there is no direct evidence for such a
conjecture.

η
η = 1

● The dimensions of the numerator and denominator
in Eq. (12) are consistent. When the interaction represen-
ted by the numerator and the thermal motion represented
by the denominator are in balance with each other, the ra-
tio  is a fixed constant, and a fixed constant can always
be set to 1. Thus,  is special and important.

η > 1● If , the interactions between molecules domin-
ate the black hole system.

η < 1●  If , the  thermal  motion  of  molecules  domin-
ates the black hole system.

η = 1● If , the interactions between molecules and the
thermal motion of molecules reach a competitive balance,
and the whole system will be in transition from the inter-
action state to the thermal motion state, or vice versa.

Next,  we  use  the  newly  introduced  measurement  to
investigate the microscopic behaviors of several kinds of
AdS black holes. In the following discussion, we often set

the value of Planck volume as a unit.

A.    Four-dimensional charged AdS black hole
We  start  by  considering  a  four-dimensional  charged

AdS black hole, the metric of which can be expressed as
[11,12,30]

ds2 = − f (r)dt2+
dr2

f (r)
+ r2(dθ2+ sin2 θdφ2), (13)

f (r) = 1−2M/r+ r2/l2+q2/r2

M l
q

rh
f (r) = 0

where  the  function ,  in
which  is the mass of the black hole,  is the curvature
radius of the AdS spacetime, and  is the total charge of
the  black  hole.  The  horizon  radius  is  regarded  as  the
largest root of equation . Then, the temperature of
the black hole can be written as

T =
8PS 2+S −πq2

4S
√
πS

, (14)

S = πr2
h

P = 3/(8πl2)
V = 4πr3

h/3

where  the  entropy  is , and  thermodynamic  pres-
sure  is .  Furthermore,  the  thermodynamic
volume  is .  Hence,  according  to  Eq.  (11),  we
obtain  the  thermodynamic  curvature  of  the  four-dimen-
sional charged AdS black hole:

R =
2πq2−S

S (8PS 2+S −πq2)
. (15)

For the  sake  of  convenience,  we  introduce  some  di-
mensionless reduced parameters as follows [11,19]:

t :=
T
Tc
, s :=

S
S c
, p :=

P
Pc
, ζ :=

∣∣∣∣∣ R
Rc

∣∣∣∣∣ , (16)

where

Tc =

√
6

18πq
, S c = 6πq2, Pc =

1
96πq2 , Rc = −

1
12πq2 . (17)

ts
ζ

Next,  we  can  determine  the  dimensionless  ratio
between the dimensionless measurement  of the thermal
motion  and  the  dimensionless  measurement  of the  in-
teraction:

η =

∣∣∣∣∣∣ 32(1−3s)
√

s(3ps2+6s−1)2

∣∣∣∣∣∣ . (18)
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η
s p

Figure  1 shows plots  of  the  behavior  of  the  dimen-
sionless ratio  with respect to the dimensionless entropy

 at different values of the dimensionless pressure . Us-
ing these plots, we can analyze some novel properties of
the thermal microscopic behaviors of charged AdS black
holes:

● For the charged AdS black hole system, there is in-
deed  competition  between  the  interactions  among  black
hole molecules and their thermal motion.

s = 1/3

0 < s < 1/3
s > 1/3

●  At ,  the  thermodynamic  curvature  equals
zero. Therefore, we can divide the microscopic behaviors
of the  black  hole  into  two  branches.  Branch-1  (B1)  cor-
responds  to  the  interval  of  ,  while  branch-2
(B2) corresponds to the interval of .

p s
η

η = 1

● In B1, we can see that regardless of the value of the
dimensionless pressure , as the dimensionless entropy 
increases, the dimensionless ratio  decreases monotonic-
ally and always has an intersection with the curve .
This  implies  that  the  black  hole  always  experiences  a
transition from the interaction state to the thermal motion
state.

s
η

η = 1
p

p ≈ 3.93 0 < p < 3.93

● In B2, as the dimensionless entropy  increases, the
dimensionless  ratio  shows  a  trend  of  first  increasing
and then decreasing, while its intersection with the curve

 depends on the value of the dimensionless pressure
. Numerical calculation yields a new critical dimension-

less  pressure  of .  When , two  inter-
sections are observed. The first intersection represents the
transition from the thermal motion state to the interaction

p ⩾ 3.93

state, while  the  second  intersection  signifies  the  trans-
ition  from  the  interaction  state  to  the  thermal  motion
state.  When ,  the  two  intersections  merge  and
disappear, indicating that the black hole will always be in
the thermal motion state.

B.    Four-dimensional Schwarzschild-AdS black hole

q = 0
The  Schwarzschild-AdS  black  hole  is  a  special  case

of the charged AdS black hole for which . The tem-
perature and  thermodynamic  curvature  of  the  Schwarz-
schild-AdS black hole are [25]

T =
8PS +1

4
√
πS
, R = − 1

8PS 2+S
. (19)

u = 8PS

t s
ζ

To  these  expressions,  we  introduce  a  dimensionless
quantity ,  enabling the temperature, entropy, and
the thermodynamic curvature to be expressed as the res-
caled  temperature ,  entropy ,  and  thermodynamic
curvature 

t =
T
√

8πP
=

u+1
4π
√

u
, s = 8πPS = πu, ζ =

∣∣∣∣∣ R
8P

∣∣∣∣∣ = 1
u(u+1)

.

(20)

ηSubsequently, the dimensionless ratio  can be written as

η =
4

u3/2(u+1)
. (21)

η

S/S c P/Pc

Fig. 1.    (color online) The dimensionless ratio  between the interaction and the thermal motion with respect to the dimensionless en-
tropy  at the different dimensionless pressures  for a charged AdS black hole.
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η

u
u η

η = 1
u = 1

The behavior of the dimensionless ratio  between the
thermal  motion  and  the  interaction  with  respect  to  the
quantity  is plotted in Fig. 2. We can clearly see that as

 increases, the dimensionless ratio  decreases monoton-
ically and always has an intersection with the curve 
at .  This  implies  that  the  Schwarzschild-AdS  black
hole always experiences a transition from the interaction
state to the thermal motion state.

C.    Five-dimensional Gauss-Bonnet AdS black hole
dThe metric of the Gauss-Bonnet AdS black hole in 

dimensions is [44]

ds2 = − f (r)dt2+
1

f (r)
dr2+ r2dΩ2, (22)

in which

f (r) = 1+
r2

2α0

1−
√

1+
64πα0M

(d−2)rd−1Σ
− 64πα0P

(d−1)(d−2)

 ,
dΩ2 (d−2)

Σ M
P = (d−1)(d−2)/(16πl2) α0

α
GB

α0 = (d−3)
×(d−4)α

GB

where  is  the  square  of  line  element  on  a -di-
mensional  maximally  symmetric  Einstein  manifold  with
volume . The black hole mass is , and the pressure is

.  The  auxiliary  symbol  is re-
lated to the Gauss-Bonnet coefficient  via 

 for compactness.
d = 5

rh

When ,  the  temperature  and  entropy  of  the
Gauss-Bonnet AdS black hole take the following forms in
terms of the horizon radius  [44,45]:

T =
8πPr3

h +3rh

6π(r2
h +2α0)

, S =
π2rh(r2

h +6α0)
2

. (23)

Meanwhile,  the  thermodynamic  curvature  for  the
five-dimensional  Gauss-Bonnet  AdS black  hole  in  terms

rhof the horizon radius  is [46]

R = − 4
π2rh(r2

h +2α0)(8πPr2
h +3)

. (24)

t s
ζ

Similarly, the dimensionless temperature , entropy ,
and thermodynamic curvature  can be written as

t =
px3+3x
3x2+1

, s =
x3+ x

2
, ζ =

4
(3x2+1)(px3+3x)

, (25)

t = T/Tc s = S/S c p = P/Pc ζ = |R/Rc|
x = rh/rc

in  which , , , ,  and
, where [44-46]

Tc =
1

2π
√

6α0
, rc =

√
6α0, S c = 6π2α0

√
6α0,

Pc =
1

48πα0
, Rc = −

1
8π2α0

√
6α0
.

Thus, the  dimensionless  ratio  between  the  thermal  mo-
tion and the interaction is

η =
8

(px3+3x)2(x3+ x)
. (26)

η x
p

x η

η = 1

The behavior of the ratio  with respect to  for different
dimensionless pressures  is presented in Fig. 3. Clearly,
as  increases, the dimensionless ratio  decreases mono-
tonically  and  always  has  an  intersection  with  the  curve

. This implies that the five-dimensional Gauss-Bon-
net  AdS  black  hole  always  experiences  a  transition
between  the  interaction  state  and  the  thermal  motion
state.

IV.  SUMMARY AND DISCUSSION

In the absence of a complete theory of quantum grav-
ity, thermodynamic geometry is a strong candidate as an
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u

Fig. 2.    (color online) The dimensionless ratio  between the
interaction and the thermal  motion with respect  to  the quant-
ity  for the Schwarzschild-AdS black hole.
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Fig. 3.    (color online) The dimensionless ratio  between the
interaction and the thermal  motion with respect  to  the quant-
ity  for the five-dimensional Gauss-Bonnet AdS black hole.
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effective  means  to  study  the  microscopic  properties  of
black  holes  from  the  perspective  of  thermodynamics.  In
[24],  by  introducing  a  new  generalized  coordinate,  we
provided a preliminary solution to the puzzle of whether
the Reissner-Nordström black  hole  is  an  interacting  sys-
tem or  not.  Our  analysis  of  the  microscopic  behavior  of
the Reissner-Nordström black hole yielded some insights
into  relation  between  the  thermal  motion  of  black  hole
molecules  and  their  interaction.  Then,  in  [25], we  pro-
posed a scheme to solve the problem of the singularity of
thermodynamic geometry  for  static  spherically  symmet-
ric  AdS black holes.  We identified enthalpy as  the basic
thermodynamic potential of thermodynamic geometry for
such black holes,  from which we can obtain the thermo-
dynamic  curvature.  The  ideas  outlined  in  [25]  were  an
important  basis  for  the  analysis  presented  herein.  Our
method differs from others in the literature [41] by intro-
ducing the  normalized  thermodynamic  curvature  to  ad-
dress  the  divergence  of  the  thermodynamic  curvature,
while the internal energy is regarded as the basic thermo-
dynamic potential. In [26], supported by the scheme pro-
posed in [25], we analyzed the behavior of the thermody-
namic  curvature  for  the  BTZ  black  hole  and  provided  a
framework to  discriminate  between  different  thermody-
namic calculation schemes from the point of view of the
thermodynamic geometry of the BTZ black hole.

In this  paper,  using  the  concept  of  black  hole  mo-
lecules,  we  introduce  a  dimensionless  ratio  (Eq.  (12))  to
characterize the relation between the interactions and the
thermal motion  of  the  AdS  black  holes.  Using  this  pre-
liminary  and  coarse-grained  description,  we  find  that

there  is  indeed  competition  between  the  interactions
among black hole molecules and their thermal motion. As
such, we present the following conclusions:

p
p = 3.93

●  For  the  charged  AdS  black  hole,  the  microscopic
behaviors  of  the  black  hole  can  be  divided  into  two
branches (B1 and B2).  In  B1,  the  black  hole  always  ex-
periences  a  transition  from  the  interaction  state  to  the
thermal motion state,  whereas in B2,  the transition point
between the interaction state and the thermal motion state
depends  on  the  value  of  the  dimensionless  pressure .
Below  the  critical  dimensionless  pressure ,  two
transitions occur.  In  contrast,  above  the  critical  dimen-
sionless pressure, the transition disappears, and the black
hole is always in the thermal motion state.

8PS = 1

● For the Schwarzschild-AdS black hole,  there is  al-
ways  a  transition  between  the  interaction  state  and  the
thermal motion state. Meanwhile, the transition point sat-
isfies  exactly.

●  For  the  five-dimensional  Gauss-Bonnet  AdS black
hole,  a  transition  always  occurs  between  the  interaction
state and the thermal motion state.

In addition, our current approach is extendable to oth-
er  types  of  black  holes,  such  as  (charged)  Kerr  (-AdS)
black holes, thereby offering a versatile approach to ana-
lyze certain new microscopic thermal information of vari-
ous black holes.
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