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Abstract: We develop a covariant kinetic theory for massive fermions in a curved spacetime and an external electro-

magnetic field based on quantum field theory. We derive four coupled semi-classical kinetic equations accurate to

O(h), which describe the transports of particle number and spin degrees of freedom. The relationship with chiral kin-

etic theory is discussed. As an application, we study spin polarization in the presence of finite Riemann curvature and

an electromagnetic field in both local and global equilibrium states.
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1 Introduction

Kinetic theory is widely used to study transport phe-
nomena in many-particle systems. The classical
Boltzmann kinetic theory has been established as the
framework to describe the evolution of the distribution
function in phase space. To study the effects of spin, the
quantum kinetic theory must be used, and a single distri-
bution function is usually insufficient for such a purpose.
For massless Dirac fermions, the leading spin effects ap-
pear at O(h); thus, two distribution functions are required,
one for right-handed chirality and the other for left-
handed chirality4). This established framework is the chir-
al kinetic theory (CKT) [1-3], which has been intensively
investigated recently [4-14]. The out-of-equilibrium dy-
namics of anomaly-induced phenomena, such as the chir-
al magnetic effect [15, 16] and chiral vortical effect [17-
19], have also been thoroughly investigated in the frame-
work of CKT.

Unlike the massless case, the spin of a massive fermi-
on is independent of the kinetic momentum. As a result,
the dynamic evolution of massive fermions is specified
with more than two degrees of freedom. If 6* is the unit
spacelike vector specifying the spin quantizing orienta-
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tion, the dynamical variables are two parameters used to
determine 6“, and two distribution functions, f., for
particles with spin parallel and anti-parallel to 64, respect-
ively. Therefore, the kinetic theory of massive fermions is
more complicated than the CKT, and extensive investiga-
tion of this framework is needed [20-23].

One of the motivations to develop the aforemen-
tioned kinetic theory is the spin-polarization phenomen-
on in heavy-ion collisions, which is an important probe of
the hot and dense quark gluon matter [24-27]. The first
signal of the global spin polarization of A hyperons
(hereafter, A polarization) [28] indicates the existence of
a very strong fluid vorticity [29-31]. The subsequent
measurements exhibit nontrivial features that cannot be
understood based on the simple vorticity interpretation of
the spin polarization [32, 33]. For example, the measured
longitudinal and transverse A polarizations show the op-
posite azimuthal angle dependence compared with the so-
called thermal vorticity [34-41]. This strongly indicates
that the spin polarization has independent dynamic evolu-
tion, in a non-equilibrium state, rather than being chained
to the fluid vorticity. A covariant kinetic theory for spin
transport (hereafter, spin kinetic theory for short) would
be a promising tool for capturing the dynamics of spin
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polarization.

In this paper, we derive the collisionless spin kinetic
theory at O(%i) in a curved background spacetime and an
external electromagnetic field. As an application, we in-
vestigate spin polarization using the spin kinetic theory.
We give the general expression for spin polarization in
terms of f. and 6*. We then specify the equilibrium con-
ditions from the spin kinetic theory and derive the spin
polarization at both local and global equilibria. We stress
that the present study differs from earlier works [20-23]
in the following aspects. First, we include curved geomet-
ric background spacetime as well as an electromagnetic
field. Such a general formalism should be applicable to
spin transport, not only in heavy-ion collisions and astro-
physical systems, but also in deformed materials and
thermal-gradient systems, which has attracted significant
attention in condensed matter physics. Second, we show
that the frame-choosing vector can always be eliminated
in the covariant kinetic theory of massive fermions, un-
like the massless case. Third, we discuss the underlying
physics of the Clifford components and their constraint
equations. Fourth, we provide the kinetic equations in a
more transparent way, exhibiting clear physical contexts.
In particular, we verify that, in the classical limit, these
equations are correctly reduced to the Vlasov equation,
Bargmann —Michel —Telegdi (BMT) equation [42], and
Mathisson—Papapetrou—Dixon (MPD) equations [43-45].
Finally, we discuss the global equilibrium in terms of the
spin vector ¢. The validity of this equilibrium state is
qualified by the resulting spin polarization, which is con-
sistent with that in Refs. [46, 47].

This paper is organized as follows. In Sections 2 and
3, we introduce the Wigner function and discuss the
physical meaning of the dynamic equation for each Clif-
ford component of the Wigner function. In Section 4, we
derive the semi-classical kinetic theory for massive fermi-
ons. In Section 5, we derive the kinetic representation of
the spin polarization for both massive and massless fer-
mions and investigate spin polarization at both local and
global equilibria. In this paper, we adopt the same nota-
tions and conventions as those in Ref. [13]; for instance,
V, denotes the covariant derivative in terms of diffeo-
morphism and the local Lorentz transformation, and p,
(y") is the momentum variable (its conjugate).

2 Wigner function

The Wigner operator covariant under the U(1) gauge,
local Lorentz transformations, and diffeomorphism is
defined as [13]

W p) = f dtyVge P (x,y) (1)

1) We employ the power counting scheme as p, = O(1) and y* ~ ihﬁ; =0(h).

pe.y) = B PP oe PPy (), @)
where y(x) is the Dirac spinor operator. Here, we intro-
duce the following notations: ¥(x)= zﬁ(x)yo and
11?85 [0y]™y® for an operator O, and [¥®¥lw = Upta,
with a,b being the spinor indices. The derivative D, is
called the horizontal lift of V,: D, =V,-T%y"d, in the
tangent bundle [i.e., the (x,y)-space]. Similarly the hori-
zontal lift in the cotangent bundle [i.e., the (x, p)-space] is
given by

Dy =V, +T},pad). 3)

This D, gives us a great advantage regarding analysis be-
cause of the property [D,,y"]=[D,,p,]=0. We note that
the gauge field A, should also be involved in D, when
acting on the Dirac spinor: D,y(x,y) = (V, —Fﬁyyvafﬁ
1A, /M (x,y) with y(x,y) = e Py(x).

The Wigner function is defined by replacing the oper-
ator p(x,y) with the ensemble average p(x,y) = (6(x,y)) in
Eq. (1). In this paper, we focus on the collisionless limit;
thus, we impose the spinor field to obey the Dirac equa-
tion (ifiy“ Dy, — myy(x) = §(x) (ih D, " +m) = 0. In this case,
we derive the kinetic theory of massive fermions in the
same manner as that in Ref. [13] (in particular, see Sec-
tion 3 and Appendices C, D, and E therein). After the
semi-classical expansion1 , and the decomposition in

terms of the Clifford algebra as W = 4—11[7"+in?+)/”(%,+

1 . .
ysy"ﬂﬂ + 50"”8,”], we arrive at the following system of

equations:

2

AW = ﬁ(VﬂRvp)ﬁ‘;(?;(V”, 4)

hA A = =2mP, ®)

I/
TA LA = €ype TPV = —ngmaf,fV", (6)
72

IL,VH = mF + §RW6’;(VV, (7
2

I, A" = nga’,‘,ﬂV, (8)

2

h
BV = Gupr TP AT =Sy = < Royn A (9)

h
T + S8 Sy =mVy, (10)
h vVQ h2 D Vv QPO
EA”P_H Sy =mA, - §Rvaa,,8 , (11)
s
P+ 5478, =0, (12)
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h n
EAﬂ—" -1r'S,, = _E(Rﬂvp(,agsf’" +2R"P00S,,)

(13)
with XY, = 3(X,.Y, - X,Y,). Here, Ry, = 2a[vrﬁ]g+
2F§[VF2](T is the Riemann tensor, Ry, = R’,,, is the Ricci

~ 1 -
tensor, and we define S = EE”VP"SPU and R =
1 .
Ee“ﬁp(’R“"pU. The operators IT, and A, are given by
n* n
H/J =Pu— E(VPFW)(?;HZ + ﬁRpWﬁZﬁ;pp
2
+ ZRm,@;,
L7
4
Ay =Dy — F/Map - E(VpRﬂv)agap
h2 2
- _(VAR o',uv)av 3Uappp U_”Vavao'D
hZ
57V Vi Fpy + 2R 0y F ) 95050, (14)

In equatlons (4)-(13), the spacetime curvature enters at
least at O(h?). We note that the Clifford coefficients ¥,
P, V., Ay, and S, are not totally independent. To pro-
ceed, we choose V¥, and A, asthe independent vari-
ables”. Thus, P, F, and S, can be expressed in terms of
YV, and A, using Egs. (5), (7), and (9). In Minkowski
spacetime, the same set of equations up to O(f) was first
derived in Ref. [48].

In the kinetic description, various physical quantities
are built from W, which is (the Wigner transformation of)
a two-point correlator of Dirac fields. For instance, the
vector and axial current are computed as

(- — i

J fptr[yﬂw] fpv , (15)

J = f |y w| = f A (16)
14 14

d*p .
with fp f W From these, the Clifford coef-

ficients V,, and A, can be identified as the correspond-
ing current densmes in phase space (see more discussion
in Sec. 5). In a similar way, ¥ is the scalar condensate
density (which in the classical limit is also interpreted as
the distribution function of the vector charge); # is the
axial condensate density; and S, is the electromagnetic
dipole moment density, up to a factor of m [see Egs. (50)-
(54)]. For convenience, we further represent the canonic-
al energy-momentum tensor, spin current, and total angu-
lar momentum current as

T = f R nprw f(V“p , (17)
p

h h
ShoP = f ul 00| = -3 f A, (18)
p 4 2 p
MY = HTY — ' TH 4 g4 (19)

where we define D, (¢, ®¥,) = ¥ @ Dytba — ¥y (5;4 Ry.

Note that S**” is not anticipated to be an observable
for spin because there exists the Belinfante-Rosenfeld
type pseudo-gauge ambiguity [49]; S** in Eq. (19) can
be absorbed into a redefinition of the energy momentum
tensor once the Belinfante tensor has been introduced. In-
stead, an unambiguous way to represent particle spin is to
employ the Pauli-Lubanski (PL) vector operator:

I L
WH = 2 P (20)

where the hat symbols denote quantum mechanical oper-
ators, P, and Mp(r are the canonical momentum and total
angular momentum operators, respectively, and the pre-
factor —1/# is introduced as our convention. It is import-
ant to note that the orbital part of the canonical angular
momentum does not contribute to the above equation.

Following Eq. (20), we may define the PL vector in
our kinetic theory as [50]

(W#(x,p) = -

T @1
where we define MpgzvﬂM 1pc With v being a unit
timelike vector, and the factor 1/p-v is introduced for
normalization. It can be easily checked that the above
definition of WH* excludes the orbital angular mo-
mentum part and can be reduced as

WH(x,p) = A(x,p). (22)

Note that this relation is independent of the vector »*.
The coincidence between W* and A* is expected. As an
example, for massless fermions, the magnetic-field-in-
duced spin polarization can be considered as the axial
current generation, which is the chiral separation effect
[51, 52]. The spin polarization density defined with the
PL vector is hence equivalent to the axial current:

1= [ Wi = [ Aep=sw. @)
p P

3 Physical interpretation

In this section, we discuss the physical meanings of
Egs. (4)-(13). To show this, we perform integration over

1) In fact, only two (for massless case) or four (for massive case) components of (V,,,A,) are independent.
2) This is not equivalent to the ensemble average of the PL vector operator “W* . Nevertheless, the resulting form (22) is the same as the one evaluated in the usual

quantum field theory therein.
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momentum space, which results in much simpler expres-
sions; most of the total-derivative terms vanish as surface
integrals [an exception in Eq. (5) is discussed later]. For
simplicity, we hereafter only focus on O(#) terms, so that
the Riemann curvature is neglected in Egs. (4)-(13) and
Eq. (14) is reduced to I1, = p,, and A, = D, — F},,3,,.

First, we demonstrate that Eqgs. (4) and (6) lead to
fundamental Ward identities. After integrating over mo-
mentum space, Eq. (4) yields the vector current conserva-
tion law:

V,Jh=0. (24)

It is obvious from this that Eq. (4) is the kinetic equation
of the vector charged particle. Integrating Eq. (4) after
multiplying by p”, we obtain the energy-momentum con-
servation law in the presence of an external field:

V(" +Thy) =0, (25)

where Th) =-FMFY +1g"FFF,, is the energy-mo-
mentum tensor of an electromagnetic field. Here, we have
used Maxwell's equation V, F’”’—JV and the Bianchi
identity V,F* =0 with F* = e/”P"F . On integrating

Eq. (6) over momentum space, we obtam
vV, SHPT =T —TP7, (26)

This, combined with Eq. (25), gives the conservation law
of the canonical total angular momentum:

V(M9 + MEET) = 0 27)

ext

with MY = T2 - T being the angular momentum
of electromagnetic field. This reflects the absence of the
Lorentz anomaly [53].

Next, we consider Egs. (8)-(13), the physical con-
tents of which are less transparent than those of Eqs. (4)
and (6). Equation (8) involves only A*; thus, it is a subsi-
diary condition for A*. Up to O(h), it reduces to

pﬂﬂ‘u =0. (28)

Based on the identification (22), WH = A*, the above
equation implies the following facts: spin must be either
perpendicular to the momentum (i.e., for massive fermi-
ons) or parallel to the momentum (i.e., for massless fer-
mions so that p> =0 on-shell classically). In Section 4,
we discuss the details with quantum corrections. The
electromagnetic dipole moment is derived from Eq. (9):

me,,v = —ffﬂypgppﬂa--f-hV[pJV], (29)
p p

where the first (second) term on the right-hand side rep-
resents the spin (orbital) contribution. Equations (10) and
(11) are Gordon decompositions for the vector and axial

1) In this paper we neglect the 3

currents. Upon integration over momentum, they separ-
ate the convection and gradient currents:

mJ“zfp”?’+EVny“", (30)
p 2 P
Ho_ Quv h H
mJg=— | pS”+ -V | P. 3D
P 2 P

We note that the second term in Eq. (30) is the covariant
form of the well-known magnetization current. Similarly,
Egs. (12) and (13) give

=fp“P+EVVfS’”, (32)
p 2 P
h
oz_fpvs,ﬁ_wfsf, (33)
P 2 p

where the right-hand sides are dual to those of Egs. (30)
and (31). We note that # is regarded as the source of spin
[see Eq. (5)]. Thus, Egs. (32) and (33) imply that there do
not exist vector and axial currents carrying ‘magnetic
charges’ in Dirac theory.

Finally, we consider quantum anomalies related to
Egs. (5) and (7). The momentum integral of Eq. (5) gen-
erates a nonvanishing surface term. After a technical
evaluation of such a term, we derive the anomalous axial
Ward identity:

V= gf——f? (34)

where o7 is the chiral anomaly originating from the sur-
face integral (see Appendix A). Similarly, from Eq. (7),
we obtain

T, =mf¢, (35)
P

which represents the Ward identity in terms of the dilata-
tion. We emphasize that up to O(%), no surface integral
contributes to Eq. (35). As a result, the trace anomaly does
not emerge here, while the chiral anomaly does, as given
in Eq. (34). Indeed, one can confirm from dimensional
analysis that the trace anomaly is O(%) higher than the
chiral anomaly For the same reason, the chiral anomaly
in Eq. (34) is not involved in the gravitational contribu-
tion, which is O(#?) higher than the electromagnetic one
[13]. In the kinetic theory involving O(#?) or O(%%) terms,
these additional contributions should enter the right-hand
sides of Egs. (34) and (35). We will leave discussion of
the higher-order kinetic theory to a future publication.

4 Kinetic equations at O(1)

In the kinetic theory up to O(%), the general solutions

in the volume element of the momentum phase space integral. Counting such an additional power of 7, one can write the well-

known anomalous Ward identities for massless fermions in Minkowski spacetime: 9, J =h2 ez e“""ﬁF wlap and TH, =1~ 1 ﬂ > F*Fy, with B being the B-func-

tion (we take ¢ = 1 but recover e explicitly).
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for V, and A, take the following forms (see Appendix
B):

pr =47T[6(§)(p“ f+ b%va“nvApﬁg)

+5’(§)hFﬂV(ﬂv—p 'ﬂnv)
pn

; (36)

A = 4| S@OA + 5 ORF p,f | (37)
where we utilize x¢’(x) =-6(x), and denote A, =D,—
Fy,8) and

E=p?—m?. (38)
The scalar function f = f(x,p) is to be considered as the
distribution function of vector charge, and »* is a unit

timelike vector that satisfies p-n# 0. According to Eq.
(8), the vector A* must satisfy the condition

PuS(E) =0. (39)

Here, A* isnot necessarily perpendicular to the mo-
mentum because of the presence of the delta function. To
proceed, we decompose A* as

A= pufs + AL, (40)
where A is perpendicular to the momentum: p- A, =0.
4.1 Massless case

In the massless limit, plugging Egs. (36) and (37) in-
to Eq. (9), we identify

uvpo
A=A, =S Pl (41)
2p-n
Then, the solutions (36) and (37) are reduced to
(V, AN =47T[5(P2){P” (f.f5) +HZ A, (fs,f)}
1 (PP py (3, ). (42)

This indicates that f5 plays the role of the axial charge
distribution function. The second term in the above equa-
tion is called the side-jump term (or the magnetization
current), and X" is known as the spin tensor at the spin-
defining vector n* [6, 7]; e.g., £ = €*0p, /2p, in the rest
frame »* =(1,0). Additionally, it is important to note
from the above A* that X" is connected to the canonical
spin current (18) through

S =Hh f 4ns(p*) p-n fs2. (43)
P

This relation more transparently accounts for why X"
characterizes the particle spin, and »* represents the
frame of the spin]) .

Note that Eq. (42) correctly reproduces the solution in

the CKT, with the replacement as R‘/LH = %(‘V + AWM
and fg/L = %( f=fs) [13]. Accordingly, the chiral kinetic
equations are also obtained from Eqgs. (4) and (5) with the
above solutions (42):

0=56p*% hFQBZZB)[p#A” fan
ho.
+ ﬂFwn"AV oy £ RN (A fr) L)] . (44)

More discussion about the CKT can be found, e.g., in
Refs. [8, 11, 13].

Now, we re-consider the chiral anomaly in the CKT.
Using the O(%) solution A in Eq. (42), we derive the an-
omalous Ward identity

Vi =
h - i Di
o =g [ 10
RN ST &
h .
=- FF,,f(0), 45
o2 v f(0) (45)
. . dp . .
with fp = f ek This reproduces the usual chiral anom-

aly when f'is (twice that of) the Fermi-Dirac distribution
(see details in Appendix A). The important fact is that ./
receives the contribution only from the singular term at
p?>=0, which generates the Berry monopole
6;',|17—|g =475°(p). The above covariant expression hence
'4

manifests that the chiral anomaly is a topological nature
of massless fermions in an electromagnetic field [1, 2].

4.2 Massive case

We now focus on the massive case, in which we can
perform two reductions for the solutions (36) and (37).
First, Eq. (39) for m # 0 implies

156(6) =0, (46)
with which one can remove the parallel part in A* from
the solutions (36) and (37). Second, the frame vector n*
in Egs. (36) and (37) can be absorbed into the distribu-
tion function f, redefined as (see Appendix C):

h fpvp(rp'unv
- fy—
=7 m2 2p-n

NAT. 47)
We emphasize that this redefinition is equivalent to
identifying the frame n* as the particle's rest frame
b = p*/m. The frame vector n* canbe removed be-
cause, in the massive case, there is a special choice of r*,
i.e., the rest frame nt_ . Thus, we can always redefine the
scalar distribution function f from »* to nl,, through a
local Lorentz boost. This procedure does not work for
massless fermions because of the lack of such a special

1) Strictly speaking, n* in Eq. (43) is in a subset of the n* s allowed to enter X" . The latter is defined in phase space while the former depends on x only.
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frame, making it inevitable to introduce rn*.

Because of the constraint p- A, =0, there are three
degrees of freedom in A" . One of them is interpreted as
the axial charge distribution, which specifies the norm of
A’ . Because the axial current density is identified as the
particle spin, as shown in Eq. (22), the other two corres-
pond to the parameters of the spin direction. In the
massive case, we hence parametrize A/ as

A = m (48)

where f, is the axial distribution function and 6* is a unit
vector (with two degrees of freedom). Note that ¢ is nor-
malized with the spacelike condition 6“6, =-1 and
pu = 0. In addition, it is useful for later discussion to in-
troduce the following tensor:

1
ng = %e’”p”@,pg , (49)

which may be regarded as the spin tensor of massive fer-
mions, as X" is for massless fermions (41). Indeed, it is
easily verified that 2? = €'/0g, /2 for the rest particle with
pu = (m,0).

Collecting the discussions above, we present the solu-
tions of the Clifford coefficients ¥, P, V,, Ay, and Sy,
as follows:

7 =4nlo@ms - ©mF S, g (50)
P = =21hA, (¢ f46(6)], (51
eHPT
A =47T[5(§)(p” fHhS—p.A, (errfA))
+8 (EhmF*g, fA], (52)
A = 4| 5@ me* fu + 5/ @RF pf | (53)

S :47r[6(§)(2m fAng—% pAY f)

— &' (E)hmF* f] (54)

with &= p?—m?. In Egs. (50)-(54), there are four inde-
pendent variables: two for the distribution functions f and
fa, and the other two for the spatial orientation of the
spin vector 6. Therefore, the covariant spin kinetic the-
ory up to O(h) is described by the following four inde-
pendent evolution equations:

0 =0(£ FHES Fop)
—
X [(p Ax 52/‘; (VpFuv _p/lR/lpuv)afJ)fi
T V,F,y— paR ) OOER
5= S (VoFur = PaR ) %4

1 .
=5 P73 (p- 00, - Frit'))| (55)
2m

0 =6<§>[pr NG~ fuF0,+ 6 p- Afy

h V) A
- E/leﬂ papa (V(TFVp - PAR (rvp)ala;f

S - Af], (56)
2m
. 1 . .
with f, = 3 (f £ fa). In Appendix D, we present the deriv-

ation of the above kinetic equations. With given initial
conditions, Egs. (55) and (56) determine the time evolu-
tions of f. and #" for massive fermions at the collison-
less limit. The flat-spacetime counterparts of Egs. (55)
and (56) were discussed recently in Refs. [20-22].

We provide some comments about Egs. (55) and (56):

(1) =" is related to ¢“ through its definition (49).
Thus, in Eq. (55), it is sufficient to keep only the O(1) or-
der contribution in ng, which is always accompanied by
an additional 7 factor.

(2) The delta function in Eq. (55) shows that the on-
shell condition is shifted by ¢h§;§ﬁ Fop. This term should
be regarded as the magnetization coupling, similar to
ThF, op 10 the massless kinetic equation (44).

(3) Note that f,. (f-) represents the distribution for
fermions that have spin parallel (antiparallel) to ¢. In-
deed, the particle number of such spin-aligned fermions
can be written with the Wigner function, as follows:

N, = f WP W] = f ansEFHEP Fopymfs,  (57)
p p

where &, = l(1 +y%y#6,) is the spin projection operator
in terms of 6* [54]. Moreover, this observation of f. is
consistent with Eq. (55); the two kinetic equations of fi
degenerate to the same Vlasov equation &(&)pH(0,+
05y ppd), = Fid)) fe = 0 in the classical limit, where spin-
up/-down particles are indistinguishable.

(4) The third term in Eq. (56) is of O(%) order, as we
check by substituting Eq. (55). Therefore, in the classical
limit, Eq. (56) is reduced to p-A#" = F*'9, with the on-
shell condition p?> =m?. This is the Bargmann-Michel-
Telegdi (BMT) equation, which describes the Larmor-
Thomas precession of the spin [42]; in Minkowski space-
time, the BMT equation for a rest particle under a mag-
netic field B is written as the well-known form of the
usual Larmor precession: mf = B x 6.

(5) From Eq. (55), we extract the following single-
particle equations of motion:

Dx*

- = p_/‘ , (58)
Dt m

Dp*  _apr . T o 1

E =FH E + %ZS (VﬂFa/ﬁ —[J/IR ﬂa/ﬁ) . (59)

Here, D/Dt is the covariant derivative in terms of 7,
which is the proper time along the trajectory of the
particle, and the on-shell condition & hZ‘;ﬁ Fop=0 is im-
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plicitly applied. Equation (59) is known as the first Math-
isson —Papapetrou —Dixon (MPD) equation [43-45]. The
first, second, and third terms in Eq. (59) represent the
Coulomb-Lorentz force, the Zeeman force, and the spin
curvature coupling, respectively.
(6) Multiplying by €pyp", Eq. (56) becomes
p- A =2F 377 + O(h). Combining this with Eq. (58),
the following equation of motion is derived:
bnzy = le(,U‘hzgl‘f + 2pU1DiV] .
Dt m Dt
This is the second MPD equation, which determines the
spin motion in electromagnetic and gravitational back-

(60)

WH(x) =

For later use, we also define the polarization per particle
in the phase space:

WH(x,p)  A(x,p)
dnf(x,p) 4nf(x,p)
These expressions are available in the nonequilibrium
state. The last terms in each case stem from the Zeeman
coupling, which gives an additional O(%) contribution. In
addition to the magnetic field, other sources, such as the
fluid vorticity (or rotation), also induce spin polarization.
In Eq. (61), such contributions are found, only after the
concrete forms of the distribution functions are determ-
ined. For this analysis, the collision terms are needed,
which we will discuss in a subsequent paper. In the glob-
al equilibrium state, however, we can identify the vorti-
city-dependence of the distribution functions without
knowing the collision terms, as shown below.

wH(x,p) = (62)

5.2 Equilibrium state

In this section, we study spin polarization in the equi-
librium state. In kinetic theory, the local equilibrium state
is specified by the distribution functions that eliminate
the collision kernel. This implies that the distribution
functions must depend only on the linear combination of
the collisional conserved quantities: the particle number,
the energy and momentum, and the angular momentum.
Therefore, we consider the following ansatz for the local
equilibrium  distributions,  fLE =np(g.) with g.=
p-B+as 1w, for massive fermions (where we have
absorbed the orbital angular momentum into a redefini-
tion of the B ﬁeld), and I];/Ii = I’lp(gR/L) with 8R/L = p- B+
agyL £h%) w,, for massless fermions. The coefficients
Bu,a's, wy, (called the spin chemical potential) depend

f47r6(p2)[p“f5 +hZEAf - gF“"H{,’f] (massless),
P

f 47r§(§)[m9’“’ fi- gﬁf”a'j f] (massive).
p

grounds [43-45]. Note that the Tulczyjew-Dixon condi-
tion [55, 56] is automatically satisfied: p, =" =0.

5 Application: spin polarization
5.1 General state

As an application of our spin kinetic theory, we calcu-
late the spin polarization of Dirac fermions, which is an
intensively studied topic in heavy-ion collisions. As
already mentioned, an unambiguous definition of the spin
polarization is the PL vector ‘W* = A* in Eq. (22) and
WH(x) = fp WH = fp A in Eq. (23). Combined with Egs.
(42) and (53), this polarization vector is expressed by

(61)

only on x, where g* is assumed to be time-like. Although
the actual functional form of ng is not essential, we as-
sume it to be the Fermi-Dirac function for demonstration.

5.2.1 Massive case

In the massive case, at local equilibrium, the spin po-
larization vectors are readily computed from Egs. (61)
and (62), as follows:

M/'u

(X, p) = —6(E)mb (ap + 6 - Q)i + 1" (E)F*p,,  (63)
WH(x) = 4n f S(E)[2mt* (aa + Q- 0) — KB, |nfp,  (64)
P
with np=np(p-B+a), Arp=1-np, a=(as+a-)/2,
s =(as—a-)/2, and O = "7 p,w,./(2m). Note that
aa 1s assumed to be of O(fi); otherwise, a finite spin po-
larization would be generated, even in the classical limit.
It is more important to discuss the polarization at
global equilibrium. For this purpose, we determine the
necessary constraints imposed by the kinetic equations
(55) and (56). Substituting fLE into Eq. (55), one can
show that the following conditions can fulfil Eq. (55) up
to O(h) for an arbitrary spin vector 6:

Vﬂﬂv + Vvﬂ/.l =0, (65)
Vb — 2wy = 0, (66)
Vs = Fuff’. (67)

Furthermore, we verify that under the conditions (65)-
(67), the following choice of a4 and ¢ fulfills Eq. (56)
(see Appendix E):

1
ap=0, &= __E'uvpo—pvvpﬁm

2mI’ (68)
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where T = (%Vmﬂﬂ/\ﬂﬂAWVmﬁﬂ)”z with AW = ghv—
pip’/m?. We call the state specified by the conditions
(65)-(68) the global equilibrium state and denote fOF as
the corresponding distribution function. At global equilib-
rium, the thermal vorticity V,8,; determines both the
spin chemical potential w,, and the spin vector ¢*. We
emphasize that finite Riemann curvature or an external
electromagnetic field is necessary to derive Eq. (66).
Without the external electromagnetic field and the curved
background geometry, the spin degree of freedom is in-
active in the collisionless kinetic theory and we cannot
link w,,, to V,B,;. Additionally, in Appendix F, we re-de-
rive the conditions (65)-(67) for massive fermions [and
(72)-(74) for massless fermions] based on the density op-
erator.

At global equilibrium, the spin polarization vectors
read

W6 ) = S iy + 1 (EF (©9)
WL (x) = dnh f 8(&)| =@ py— F*'By |}y (70)

p
with @ = le/“’p"wp[,. In addition to ‘W* and w*, at glob-

al equilibrium, it is also practically useful to compute the
space-integrated polarization. Suppose that the fermions
are frozen out on a space-like hypersurface X#(x). The av-
erage s;pln polarization per particle after freeze-out is giv-

en by
f dz'p, f d(p W (x. p)

47dezﬁpszE(x,P)

Wee(p) =

h ~ Y g ’
fdzﬁpxﬁ[—w” pv_FH Bv]np
- P .an

f d='panr

If we set F,, =0, the above equatlon is consistent with
the result derived in Refs. [46, 47] , which has been
widely used for the calculation of the hadron spln polariz-
ation. In the above, u* = TB* is the fluid Ve1001ty and the
momentum in the second line is on-shell; in Minkowski
spacetime and in the local rest frame of the fluid,
P =(E, = \/p>+m?,p) where p is the three momentum.

5.2.2 Massless case
In the same manner, Eq. (44) with f, / ©. yields the fol-
lowing global equilibrium conditions [13]:

V,uﬁv + Vvﬁu = ¢(x)g/1v’ (72)
V[ﬂﬁy] - 2(1)}“, = 0, (73)
Vya'R/L = F#Vﬁv. (74)

Unlike the massive case, the first condition has an arbit-
rary function ¢(x), which arises as a result of the con-
formal invariance in the massless case; thus, g* is a con-
formal Killing vector. At global equilibrium, analogously
to Egs. (69)-(71), we calculate

hé N
Wi (%, p)—M 2p*as/h+@" p,)ip+hd' (p*)F* p,

(75)

Wiiy(x) = 4 f 8(ph)[2pas/h=3#" p, — FB .
p
(76)

h o ’
fdzdpﬂﬁ[zpuas/h—@“vpv—F”V,Bv]np
P

f d='pangp
77

with a5 = (ag —@;)/2, which is of O(h) as well as O/A4). In
the second equation, the on-shell condition is implicitly
applied and we define E, =u-p;in Minkowski space-
time and the rest frame of the fluid, E, =|p|. Note that
spin polarization induced by the thermal vorticity and the
electromagnetic field takes the same form for both mass-
less and massive cases at global equilibrium, up to the
difference in the on-shell conditions. Moreover, the res-
ults are independent of the choice of the frame vector n*,
as they should be.

Wip(p) =

6 Summary and outlook

In this paper, we derive the collisionless covariant
spin kinetic theory at O(f) for Dirac fermions in curved
spacetime and an external electromagnetic field. We start
by deriving the dynamic equation for each Clifford com-
ponent of the Winger function up to O(%%). We discuss
the physical meaning of each such dynamic equation. We
then take V* and A* as independent dynamic variables
and derive two evolution equations for massless fermi-
ons (44) and four evolution equations for massive fermi-
ons (55) and (56), respectively. We introduce a time-like
unit frame-choosing vector »* to solve the Wigner func-

1) Here we pick up the particle-branch contribution. The anti-particle-branch contribution are similarly obtained by replacing fow d(p-u) by LO Ld(p-uw).

2) Note that the spin polarization is defined as (\;V’éE (p)/s with s = 1/2 the spin quantum number therein.

3) Note that 8 is a Killing vector owing to Eq. (65).

4) More precisely, while the kinetic equation (55) requires a4 to be of O(%) in the global equilibrium, there is no such requirement for @s. Nevertheless, one should
assume that a5 is of O(%); otherwise a finite axial charge would be generated even in the classical limit.
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tion. In the massless case, n* is necessary because it rep-
resents the frame in which the spin for the massless
particle is defined. In the massive case, we show that the
vector n# can be removed by redefining the vector distri-
bution function through a boost from the frame »n* to the
rest frame of the particle.

As an application, we analyze spin polarization using
the approach of the kinetic theory. We derive the global
equilibrium conditions from the kinetic equations and
find that the finite Riemann curvature or an external elec-
tromagnetic field is necessary to determine the spin-
thermal vorticity coupling. We derive the expression of
spin polarization induced by the electromagnetic field and
the thermal vorticity at global equilibrium, which is con-
sistent with the results in previous literature. We also de-
rive expressions for spin polarization at local equilibrium
and out of equilibrium. They may be used to study the
local A polarization puzzle found in heavy-ion collisions,
which cannot be understood in the calculations based on
global equilibrium assumption.

We expect the spin kinetic theory to be useful for the
study of both the electromagnetic plasma and quark-
gluon plasma in heavy-ion collisions. Furthermore, for-
mulating the kinetic theory in curved spacetime may find

Appendix A: Derivation of chiral anomaly

In this Appendix, we derive the chiral electromagnetic anom-
aly from the solutions of the Wigner function. We consider the
massless case for demonstration. Plugging A in Eq. (42) into the
kinetic equation (5), and integrating it, we get V,,J% = &/ with

o = f 47rFM(9’j[h6'(p2)Fl,ypV f
P
0 pufs + h22Ew p 0 |
pn
:ZF‘”F,,V f and (pHp'd’f, (A1)
p

where we employ the Schouten identity and x6”(x) = -2¢’(x) and
drop the surface terms without the singularity at p?> =0. We have
chosen the local Lorentz coordinate to perform the computation, as
< is a scalar. The roots of p? =0 are pg = +|p|, with which the delta
function is reduced to

1

8(p) = 5=8(po—1pD) +6(po +1pD] - (A2)
2lp|

Furthermore, when we carry out the py-integration, we need the re-
placement of the momentum derivatives, as follows:

- i Opo 0)-
U ) = U .
9, = (o + G ) oo,

PP
=0, 750 \Di
(- L5 )rwopil,_,,,
=0 po-pi)|, (A3)

fundamental applications in astrophysics and condensed
matter physics. For example, our present theory may be
used to study the deformed crystal or a material with a
temperature gradient, which is described as an electron
system in a fictitious gravity [57, 58]. Potentially, we
could study the mass correction to the chiral magnetic ef-
fect and the generation and transport of spin currents in
such systems. Numerical works to solve the kinetic the-
ory and to simulate the evolution of spin polarization in
heavy-ion collisions are also important tasks. Once the
collision term is included, it would be interesting to de-
rive the covariant spin hydrodynamics [59-61] from the
covariant spin kinetic theory.

We are grateful to Francesco Becattini, Gaoqing
Cao, Ren-Hong Fang, Lan-Lan Gao, Xingyu Guo, Koi-
chi Hattori, Yoshimasa Hidaka, An-Ping Huang, Jin-
Feng Liao, Xin-Li Sheng, Qun Wang, Xiao-Liang Xia, Di-
Lun Yang, and Pengfei Zhuang for useful discussions. We
also thank the Yukawa Institute for Theoretical Physics at
Kyoto University, where this work was developed during
the course 'Quantum kinetic theories in magnetic and
vortical fields'.

Subsequently, the integral in Eq. (A1) is cast into
o2 1 2 1 2 p
j[:4716 (p )pﬂajf:fpzmi[a;a(p )]aﬁf: -5 p47r6(p ) f
__l PN E12 ip ifpp-
= Ar6(p)| 3530 + —ah + —p'alah|f. (A4
2 P Po Po

In the last line, the second and third terms in the integrand cancel
out: performing the integration by parts, we can rewrite the third

term as

[ Zaags= [ oo Lor- L0ty
14 Po p Po pop
= _fa(pz)lagf. (A5)
p Po
Finally, « in Eq. (A1) is calculated as

I L,
o = =g P Fuy f,, — L0 f

lpl
— P f(p=0) (A6)
T 16x2 we] (P =10
where we utilize
65,;’7’; =45’ (p). (A7)

The usual chiral anomaly relation is recovered; hence, we take
f(p=0) =2, where the factor 2 accounts for the spin degeneracy of

Dirac fermions.
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Appendix B: General solutions at O(n)

We parametrize the perturbative solutions as

V=V L p V0P, A=A + A"

2
©) i ©) o tom).  (BL)

According to Egs. (7), (8), and (10), the general solutions in the
classical limit are given by

Vio) = 4np fO5(6). (B2)
ﬂfo) = 4713_{*(‘0)6(5) (B3)
with &= p? —m?. Here, f© = fO(x,p) is the classical vector charge

distribution function and the vector f[fo) satisfies the condition

Pu,6(6) = 0. Substituting Egs. (B2) and (B3) into Eqgs. (6)-(13),

Appendix C: Elimination of »*

Here, we show that, with the redefinition of the distribution
function f'in Eq. (47), we can remove the frame vector n# from the
spin kinetic theory for massive fermions. The discussion is kept at
O(h). Acting on Eq. (9) with A,, we derive

p-AAP + FPA, — PPALAY = %e"/jp"AaS/,(r - ge“/fP”A(,Apfv(,. (C1)
Using Egs. (5) and (12), we obtain
PRaA” = %eﬁ”ﬂ%aspa. (€2)
Combining the above two equations, we find
p-AA, = FpyA + ge#WNAP(V". (C3)

Next, we substitute the redefined distribution function in Eq. (47)
into the solution of V* in Eq. (36) and obtain

Appendix D: Derivation of Eqs. (55) and (56)

Here, we derive the kinetic equations for f.. Substituting Eq.
(52) into Eq. (4), one obtains the following equation:

0= P Auf8E) ~HEY Fopp! Dufad' ()
2 (Vo Fdy + [0 D) (25 1)
s AP Ay — Fo?) 566 (D1

In addition, contracting Eq. (C3) with ¢ and inserting Egs. (52)

we obtain the solutions at O(%):

1 _
o :47r[ (p” D+ T ve"’nvA,,ﬂS”)a(g)

)
+Fuv(ﬁ(yo> _ &nv)é’(g)],
pn

A =an| AL 5@+ F p, fO5 @) -

where D = fD(x,p) is the first-order quantum correction to the
vector distribution function and fl’(‘l) satisfies the same condition as

- —u _ . — 0 1 A — gt A
A+ puA,6(€) = 0. Defining f= f@+nf" and A = A + 1A,
we obtain Egs. (36) and (37).

he®PT pan _
w =4m5(§)[ﬂ’ (f— — 'BApﬂm)
2m?p-n

het""P7 n,,

2p-n

Apﬁ;] +4n5 (ORFP AL . (C4)
To reduce the above equation, we utilize the Schouten identity:
PEPP pangAy ALy =~ (pz FPTHng A, + pnefTH po A,
+ e‘r“"ﬁpanﬁp A+ e””ﬁppanﬁp"Ap)jh(r , (G

where the last two terms cancel, according to Eq. (C3). We then re-
write Eq. (C4) as the »* independent form:
hetvPo Dy

V= 4n5@)| P S+

_ h . -
ApAE - EF‘”?Ij] . (C6)

The frame vector »* is also removed from the solution of A*.
Comparing the above equation with Eq. (36), we find that the re-
definition of f'is equivalent to replacing »* with p#/m in Eq. (36).

and (53), we obtain

0 =p" A fa6(&) ~NEY Fapp Auf 8 (€)

+ gzg” (VpF i + [Dﬂ, DVJ) £58). (D2)

The addition and subtraction of the above two equations result in

Eq. (55). Moreover, the kinetic equation to determine 6* is ob-
tained from Eq. (C3), with the solutions (52) and (53).

Appendix E: Global equilibrium condition from kinetic theory

In the massless case, the discussion of the global equilibrium
conditions (65)-(67) was given in Ref. [13]. Following a similar
strategy, one can show that, for the massive case, the conditions
(65)-(67) can fulfill Eq. (55) for arbitrary ¢ and for as = O(h).
Also, it is easy to see that the condition (68) fulfills Eq. (55) up to

O(n). We verify that condition (68) also fulfills Eq. (56) under the
conditions (65)-(67), as follows. The leading order of f{F can be
written as f1E =2(a4 +h2§/3w"‘ﬁ)n',,(,3~p+(x) +0(h?). Using Egs. (65)-

(68) and inserting fLE and fLE, we obtain
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RHS of Eq. (56)

= Zé(f)n;:[hp A(0°5350%) — (aa + HES 0% F6,

h C
- Meuvpnpa (Vu'va - p/lR/lo'vp),B r]
&) ,

= —hﬂn,;[p -A (ewplrpvvpﬁd) - Fﬂvaﬂpapivpﬁﬂ'

+e"p, (Vchvp - P,{R/lu'vp)ﬁ(r] . (E1)
In the above equation, the second equality follows from a4 =0 and

1 1
G”Zgﬁ(uaﬁ = 59“1" = —me‘“’p”pvvpﬂu—, (E2)

which stems from Eq. (68). The above three terms in Eq. (E1)

totally vanish, as follows:

p-A (E”Vp‘rvapﬁa) =pa (e"p“F“V + ZG”A”VF‘OV) VB
+ P Pypa Rlap(r ﬁ(t
=F €77 AV~ pae” B VFyr
+eP7 pyp R B (E3)

In the above equation, we have used the Schouten identity and

the equilibrium conditions (65) and (67) with V,, V(8 = =B8R

Appendix F: Global equilibrium condition from density operator

We discuss the global equilibrium using the maximum entropy
principle, following Refs. [62-64]. The density operator for the loc-
al equilibrium state can be written as

s = % o SO B4 S 1 0y a) (F1)

where z = Tr|e™ S (848" wr+al)] (here Trv, S8 and J# are
the canonical energy-momentum, spin, and charge current operat-
ors, respectively. Here, %, is a space-like hypersurface, g, «, and
w,y have the same meanings as in the main text. The entropy is
defined as

= —(Inprg) = -Tr(PLeInpre) - (F2)
We denote Inz = f dz,¢*, where ¢* is (the negative of) the thermo-

dynamic potential density current. Then, the entropy is represented
as § = [dx,s*, with
= ¢+ TRy + 54V wy, + . (F3)

The global equilibrium condition is such that the local thermody-
namic potential and entropy are maximized, so that V,¢* =0 and
V,s# = 0. After some straightforward calculations, we arrive at
0 =T£yvvy,3v + Telxlsv (V;qu - zwuv)
+SHVY w0y + T (Vya = Fin ), (F4)
Y

where Ty s
massless case, T#, =0, we obtain Egs. (72)-(74) (with ag = o1 = @);
in the massive case, we obtain Egs. (65)-(67). Note that one fur-
ther constraint from Eq. (F4), Vj,w,, =0, is automatically fulfilled.

is the symmetric/antisymmetric part of 7+”. In the
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