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Strong gravitational lensing for photon coupled to Weyl tensor in
Kiselev black hole
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Abstract: The objective of the present work is to highlight the phenomena of strong gravitational lensing and deflec-
tion angle for the photon coupling with the Weyl tensor in a Kiselev black hole. Here, we have extended the prior
work of Chen and Jing (S. Chen and J. Jing, JCAP, 10: 002 (2015)) for a Schwarzschild black hole to a Kiselev black
hole. For this purpose, the equation of motion for the photons coupled to the Weyl tensor, null geodesic, and equa-
tion of photon sphere in a Kiselev black hole spacetime have been formulated. It is found that the equation of motion
of the photons depends not only on the coupling between the photons and the Weyl tensor, but also on the polariza-
tion direction of the photons. There is a critical value of the coupling parameter, « , for the existence of the margin-
ally circular photon orbit outside the event horizon, which depends on the parameters of the black hole and the polar-
ization direction of the photons. Further, the polarization directions of the coupled photons and the coupling paramet-
er, o; both modify the features of the photon sphere, angle of deflection, and functions (a and b) owing to the strong
gravitational lensing in the Kiselev black hole spacetime. In addition to this, the observable gravitational lensing

quantities and the shadows of the Kiselev black hole spacetime are presented in detail.
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1 Introduction

The interaction between gravitational and electromag-
netic forces are of vital importance in material science
owing to the fact that in nature both gravity and the elec-
tromagnetic force are two major types of basic forces. In
the Lagrangian of the Einstein—Maxwell field theory, the
second-order term in the Maxwell tensor is associated
directly to the gravitational and electromagnetic forces.
Moreover, the interaction between the Riemann curvature
tensor of the spacetime and the Maxwell field are not
coupled in the electromagnetic theory. However, such
type of coupling in quantum electrodynamics (QED) dis-
covered by Drummond ez al. [1] can be observed clearly
by the effective action of the photons created through
one-loop vacuum polarization over a background curved
spacetime. The coupling between the Riemann curvature
tensor and the electromagnetic field is only a quantum
phenomenon. In the effective field theory, all of the coup-
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ling constant terms are very small. Therefore, their val-
ues should be of the order of the square of the Compton
wavelength of an electron 1,. Some authors [2-10] have
explored certain interesting effects of the electromagnet-
ic variances by reconsidering the structure of Drummond
[1] along temporary coupled constant functions. Ni [11]
built a standard electromagnetic model by considering
that the coupling between the electromagnetic field and a
curvature tensor should emerge reasonably in the region
near the classical supermassive compact objects at the
centers of galaxies owing to their strong gravity and high
mass density. Ni's model has been investigated widely in
astrophysics [12, 13] and black hole physics [14-16]. It
was shown by Ritz and Ward [17] that in electrodynam-
ics with the Weyl correction, the universal relation with
the U(1) central charge is changed owing to the holo-
graphic conductivity in the background of the anti-de Sit-
ter spacetime. Similarly, the critical temperature and the
order of the phase transition are modified in the forma-
tion of a holographic superconductor because of the pres-
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ence of such coupling terms [18-24]. Moreover, with
these couplings it has been shown in [25-27] that the dy-
namical evolution and the Hawking radiation of the elec-
tromagnetic field in the black hole spacetime depend on
the coupling parameter and the parity of the field. A good
way to give an explanation for the power-law expansion
within the earliest universe and the electromagnetic
forces discovered at the wide scale inside galaxy clusters.
Such types of observations suggest that the coupled terms
for both the gravitational and electromagnetic fields
change the equation of motion. The time delay in the ar-
riving of both the electromagnetic and gravitational
waves can be obtained using the power-law expansion.
The coupling between the electromagnetic force and the
Riemann tensor ought to be moderate within the region
close to the super-massive dense bodies in the middle of
the galaxies because of their excessive mass density and
very strong gravity. Generally, the Weyl tensor is con-
sidered as the foremost tensor in Einstein's theory of re-
lativity. This tensor within the spacetime explains a type
of gravitational warp. The coupling between the Weyl
tensor and the Maxwell field may be dealt simply as a
unique form of the interplays between the curvature
tensor and the electromagnetic force. Consider the fact
that the Weyl tensor is a combination of a curvature
tensor R;j., Ricci tensor R;;, and Ricci scalar R. In the
view of the well-known principle of Einstein's theory of
general relativity, photons would be deviated from their
original simple path whenever they pass very near to
dense and heavy objects, and the alternative results are
called as gravitational lensing [28-30]. The snap shots of
the stars within gravitational lensing provide the statist-
ics around these stars and of the gravitational lens itself.
Moreover, this statistics can assist us in discovering more
number of dense astrophysical bodies inside the universe
and observe more ideas within the strong field. Several
investigations have calculated the propagation of an un-
fastened photon inside the spacetime and also studied the
outcomes of the spacetime factors in gravitational lens-
ing [28-61]. In the Born—Infeld electrodynamics, Eiroa
[62] also investigated the behavior of a photon and dis-
covered that during this situation, the photon did not pur-
sue the geodesics of the line element. However, the
photon pursued the geodesics of a powerful line element
relying on the Born—Infeld coupling, whereas this coup-
ling varies the characteristics of the gravitational lensing.
Generally, the gravitational lensing relies on the photon
and the features of the past spacetime.

Consequently, it is interesting to investigate how the
interplay among the spacetime, the Weyl tensor, and a
photon has an effect on gravitational lensing. From the
preceding discussion, we can understand that the coup-
ling between the Weyl tensor and the Maxwell tensor will
vary the attitude of the electromagnetic area inside the

past spacetime. It is widely recognized that light is really
a form of electromagnetic waves; this shows that the
coupling will vary the photon propagation inside the
background spacetime and carry to a few precise aspects
of gravitational lensing. The deflecting angle had also
been investigated for the photon coupling to the curvature
tensor within a weak-field approximate limit in Ref. [1].
This was because the weak-field approximate limit be-
comes simply a 1% array variation by the Minkowski
spacetime and is only accurate inside an area away from
black holes. Also, it is important to search further the
gravitational lensing inside the strong field area close to a
black hole, owing to the fact that it begins from the whole
capture of the coupling photon and prevails the special ar-
ray within the diversity of the deflecting angle. Further-
more, as a good way to investigate the general functions
of the deflecting angle of the photon coupling to the Weyl
tensor, presently we examine the strong gravitational
lensing inside a Kiselev black hole. After this, we determ-
ine the consequences of that coupling at the deflecting
angle and other observables inside a strong-field approx-
imate limit. The plan of the paper is organized as follows:
The next section is devoted to derive the equation of mo-
tion for the photons coupled to the Weyl tensor. Sec. 3,
deals with the null geodesic and the equation of a photon
sphere. We study the strong gravitational lensing observ-
ables for the Kiselev black hole spacetime in Section 4.
Finally, we summarize our results and compare them with
those of Ref. [63] in the last section.

2 Equation of motion for photons coupled to
Weyl tensor

This section is devoted to formulate the equation of
motion for the photons coupled to the Weyl tensor in a
four-dimensional (4D) black hole solution by the geomet-
ric optics approximation [1, 64-69]. The action of the
electromagnetic field coupled to the Weyl tensor can be
expressed as [17, 63]

R 1

e 4(F,,VF“V—4cwa,p(,F’”F“"T) ,

M
where Cy,,- represents the Weyl tensor. For an n dimen-
sional spacetime, it is defined by

S =fd4x\/—_g[

2
C/vao' :R,uvp(f - m(gy [pRo']v —8v [pRo']y)

2
+— R olv- 2
- D=2 8ulogol 2)
Also, F,, is the typical electromagnetic tensor given
by

Fuy =Apy —Avy. 3)
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The coupling parameter, @, has dimensions of length-
squared. Varying the action in (1) with respect to A, one
can obtain the following Maxwell equation with the Weyl
correction:

Vu(Fuy —4aCype FP7) = 0. @)

With the intention to obtain the generalized equation
for moving photons from the abovementioned equation,
we apply the geometric optics approximation [1, 64-69];
according to this approximation, the wavelength of a
photon 2, is much smaller than a regular curvature scale
L but is larger than the electron Compton wavelength, A,,
i.e., 4, <A< L. This guarantees that the variation in the
gravitational and electromagnetic fields with the standard
curvature scale are negligible during the process of
photon propagation. In the light of this approximation [1,
64-69], the electromagnetic field tensor can be defined as
follows [63]:

Fyv = fuvelg, Q)
where f,, is a slowly varying amplitude and 6 is a rap-
idly varying parameter. In this approximation, the f,,.,
may be omitted. The wave vector is k, = 0,6, which may
be handled in the quantum particle theory as a standard
photon momentum. The amplitude, f,, is restricted by
means of the Bianchi identity, [63]

DyF,,+DyFy)+D,F,, =0, (6)
which leads to [63]
kafuy +kyfya+ky fau = 0. @)
The amplitude, f,,,, can be written as [63]
S = kua, —kyay, (®)

where g, is the polarization vector satisfying the condi-
tion,
k'a,=0. )
The amplitude, f,,, has only 3 independent compon-
ents. Using Egs. (5) and (8) in Eq. (4), we obtain the
equation of motion of the photon coupled to the Weyl
tensor as

kk'a” +8aC*"*7 k k,a, = 0. (10)

The spherically symmetric and static Kiselev black
hole spacetime is defined by [70]

ds” = —f(rde* + f1(r)dr + 767 +sin” 6dg”), (1)
with
f(r)= 1—2TM—0'r, (12)

where o is the Kiselev parameter and M and r are the
black hole mass and radius, respectively. A lot of work
related to Kiselev black holes and gravitational lensing is
available in the literature [71-80]. According to Kiselev

[70], the spactime in (11) is the static spherically sym-
metric solution of Einstein's field equations, which rep-
resents a black hole surrounded by the quintessence field,
but recently, Visser [81] have proved that the Kiselev
solution is neither a perfect solution nor quintessence. Al-
though, it was mentioned in more than 200 articles that
the Kiselev spacetime is the quintessence solution, Viss-
er proved that it is wrong to associate the ferm quint-
essence field with the Kiselev spacetime. After Visser's
correction about the description of a Kiselev black hole,
Boonserm et al. [82] investigated that the anisotropic
stress-energy leading to the Kiselev black hole solution
can be represented by being split into a perfect fluid com-
ponent plus either an electromagnetic component or a
scalar field component, thereby quantifying the precise
extent to which a Kiselev black hole fails to represent a
perfect fluid spacetime.

The event horizons of the Kiselev black hole space-
time can be obtained by taking goo = 0. Thus, we have

1+ V1-8Mo
e = ———22, (13)
a
1-V1-8Mo
e = s (14)
g

where region rj,, represents the outer horizon, whereas
rp— represents the inner horizon of the black hole, re-
spectively.

For o=0 in Eq. (12), we obtain only a single black
hole event horizon, known as the Schwarzschild black
hole event horizon, i.e., r, = 2M. Now, we introduce the
black hole spacetime as a set of orthonormal frames; for
this, we have the field of vierbeins defined by [63]

8uv = Uabeﬁe}v’. (15)

For instance, equation (11) for the vierbeins should read
as follows:

1
&4 :diag[\/?,—,r,rsinﬁ], (16)
! VF

and its inverse is
. 1
e = dlag[—,

Vf

where 7,, defines the Minkowski metric and e¢,e’ are

w v
called as vierbeins (or tetrads). In terms of an antisym-

metric bi-tensor, the vierbeins can be written as [1, 63-66]

ab _ ,a b a b
Uy =e.e,—eye,. (18)

"7’ rsinf

VFn L] (17)

Here, the Weyl tensor may be rewritten as follows [63]:

C/vaa' =ﬂ(2U01 U01 - UOZU02 — U03U03 + U12U12

w '~ po nv '~ po nv = po u = po
137713 237723
+U U0 -2U0,U57), (19)

where
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l /! 4
ﬂz—m[ﬂf —2f" r+2f-2]. (20)

In order to drive the equation of motion [1, 63-66], we
can introduce three combinations of momentum compon-
ents [63] as follows:

n, = kU

— 01
L, =k'U e

uv» mvzkﬂUZ,S,. 2D

With the dependent combinations [63],
1
Py =KU = 5 iny = ICL),

I
ry =K U = 25 (Kmy+ kL),

k! k'3 &

— 13 _
qy =kH U/iv = k—Om,, + mny - k—olv (22)

The polarization vectors, /,, n,, and m,, are independent
and orthogonal to the wave vector k,. Making use of the
relation in (22) and contracting equation (9) with respect
to ,, n,, and m,, respectively, one can obtain

0 =k*a.l+16aW(Pa.l - L.ma.m)
—8aW(l.nan+lrar—Ilpa.p-Ilqa.q). (23)

Similarly, other two equations are

0 =k*a.n + 16aW(n.la.l - n.ma.m)
—-8aW(n*a.n+n.ra.r—n.pa.p—n.qa.q), (24)
and
0 =k*>a.m + 16aW(m.la.l - m*a.m)
—8aW(m.na.n+m.ra.r—m.pa.p —m.qa.q). (25)
Matrix form,
K1 O 0
{ Ky Ky Ko ]

0 0 K33 a.m

a.l
a.n ] =0. (26)

K11 =(1 + 16 A)(— (€22 kK + (e} 2k k")
+(1-8a AN () KK + (KK, (27)

Ky =24aA[(e))X(e3)*k' k2,
Ky3 =—-24aA ,/ —(69)2(635)2k0k3, (28)
K2 =(1 - 8aA)(—(e?)*k k" + (e} 2k k!

+(eg) kP + (e, KK), (29)

K33 =(1 — 8aA)(—(e))*k° k" + (e k' k1)
+(1+ 16aA) () KK + (€, ’k°K).  (30)

These coefficients can be reduced to the following forms

K11 =(1 + 16aA)(gook k" + g11k'k")
+(1 = 8aA) g2k’ k> + g3 k°K), 31)

K2 = (1-8aA)(g0ok k" + g1ik'k' + gook?k? + g33k° k%),
(32)

K21 = 24aAgngnk 'k, Koy = —24aA 50083k k>, (33)

K33 =(1 - 8aA)(gook "k’ + g k'k")
+(1 + 16a0A) g0k’ k> + g3k’k>). (34)
The possibility of Eq. (26) is given as K| K2 K33 =0
with a nonzero solution. The first root, K, = 0, results in
a modified light cone,

(1+16aA)(gook°k° + g1 k' k")
+(1-8aA) (gnk’k* + g3k°k) = 0, 35)

in which both polarization vector @, and momentum
component [, are proportional to each other and the
strength as follows:

S < (ke =k 1y). (36)

The second root, Ky, =0, signifies a.l =0 = a.m in Eq.

(26). This root suggests that a, = Ak, and f,, vanishes

[1]. However, the second root will correspond to the un-

physical polarization, whereas the second root must be

unnoticed for the standard propagating directions of the
coupling photon. The third root, K33 =0, i.e.,

(1 —8aA)(gookk® + g1 1 k'K

+(1+ 160A)(g0nk*k* + g33k°K>) = 0, (37)
which means that the vector,
a, = Am,, (38)
and the strength,
Juv = Alkymy, — kymy). (39)

The light cone conditions depend on the photons
coupled to the Weyl tensor as well as the polarization dir-
ections. Further, for the coupling photon, the con-
sequences of the Weyl tensor eventually become differ-
ent with the several polarizations on the propagation of
the photons, and in the spacetime of [64-69], these con-
sequences lead to a development of birefringence.
Brcause the parameter of coupling « is equal to zero, the
light-cone conditions in (35) and (37) yield again the
standard shape without the Weyl corrections. Now, we
assist Eq. (20) for the Kiselev black hole spacetime, and
the light cone conditions in (35) and (37) can be rewrit-
ten as follows:
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( 16aM
1+

73

)(gookoko +gnk'kh
S8aM
+ (1 - T) (g0k*k* + g33k°k) = 0, (40)

8aM
(1 - r—3)(800k0k0 +guk'kh)

16aM
3

+(1 + )(g22k2k2 +g313k°K%) = 0. (41)

The relation in (40) represents the light cone condi-
tion along the polarization vector, /,, for the coupled
photon (PPL), whereas the relation in (41) is the light
cone condition along the polarization vector, m,,, for the
coupled photon (PPM), respectively.

3 Null geodesic and equation of photon
sphere

The light cone conditions in (40) and (41) show that
the photons coupled to the Weyl tensor follow the null
geodesics of the effective metric, v, [63], i.e.

Ykk, = 0. (42)

The effective metric can be defined as follows:

ds? = —A(r)dF* + B(r)dr? + C(nW(r)~1(d6” +sin’0d¢?), (43)

where the metric functions of A(r), B(r), C(r), and W(r)
are given by

An=1-M_,, (44)
r
B(r)= (45)
r)=
A(r)’

cry=r (46)
r—8aM

W)= —— 47

)= 5 l6am” @7

for the PPL case and

P+ 16aM

- 48

W(r) 8ol (48)

for the PPM case,. The metric functions are dependable
functions of the photon polarization directions. Under the
possibility (6 = 7), the effective metric in (43) can be re-
duced to the following form:

ds? = —A()d? + B(dr? + CHOW(r) 'dg?.  (49)

For the equatorial plane (6 = 7,ks = 0), the wave vector
becomes k, = (ko,k1,0,k3) with k, =0 , and the simplifica-
tion of the polarisation vectors, m, and I,, can be more
formed as

my, = (0,0,—k%,0),1, = (—=k',k°,0,0). (50)

Eq. (50) shows that the polarization vector, /,, is situated
on the equatorial plane, whereas the polarization vector,
m,,, indicates that the polarization is perpendicular to the
equatorial plane of motion. When o — 0, we obtain the
effective metric given in [63]. The coupled photon tra-
jectory has become limited on the equatorial plane.
Therefore, using the condition (g, u*u” = 0) for the four
velocity, u*, we attain the null geodesic's equation for the
coupling photon in theKiselev spacetime.

2 2 2
dr 1 E L
= = —(—-wi—]|. 51
(dﬂ) B(r) (A(r) (r)cm) b
where A acts like an affine parameter along the null
geodesic. The parameters, £ and L, represent the energy
and the angular momentum per unit mass, respectively.
They are expressed as follows:

E=A(Wi, L=CHWr) . (52)

By working with the photon sphere equation [31-32], one
can obtain the impact parameter, u(r), and the equation of

photon sphere as
_ )
u(r) = \fA—(r)W(r), (53)

WA (NC(r)—ANC (N]1+ANCEHW (1) =0.  (54)

In a 4D spacetime, the largest real roots of Equation
(54) can be characterized as the photon sphere radius, r;,
outside the event horizon. However, it is not easy to ob-
tain the analytical form of the photon sphere radius, r,,
owing to the complexity of the coupled term associated to
the Weyl tensor in Eq. (54). To avoid such complex prob-
lems and to obtain the radius, r,, for the coupled
photons, we apply numerical methods. Our outcomes
demonstrate that the radius, r,,, of the photon sphere only
occurs in the system when @, >a >a., both for the
PPM and PPL cases. In comparison, for the coupled
photons, the critical values can be resolved by the over-
lapping situation of the radius, r,,, with the event hori-
zon. Moreover, there are critical values, @, for the PPM
and a., for the PPL, which depend on the Kiselev para-
meter, o, and are defined as follows:

el =—2an

_1[143(1=80M)? +3(1=80M)+ (1 -8 M)

8 803 M
(35)

By setting E =1, because the coupling parameter,
a — 0, we find that the function, W — 1, which results in
that the impact parameter and the equation of circular
photon orbits for the PPL are the same as those for the
PPM. This suggests that gravitational lensing is inde-
pendent of the polarization directions of the photon in the
case without the coupling. From Fig. 1, it is clear that the
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(color online) Variation in the critical values with Kiselev parameter o- at M = 0.5. The photon sphere radius occurs only in the
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where M =0.5.

critical value, .|, decreases, and the critical value, a.,
increases when o increases for both the PPM and PPL,
respectively. Applying a numerical method, we present
the dependence of the photon sphere radius, r,s, on the
coupling parameter, «, and the Kiselev parameter, o, for
the PPM and PPL, as shown in Figs. 2 and 3. We find
that with the increase in «, the radius, rp,, increases for
the PPL, whereas it decreases for the PPM. Meanwhile,
when o increases, the radius, r),, decreases for the PPL
and increases for the PPM.

From Figs. 2 and 3, we see that the features of gravit-
ational lensing are completely different for the PPL and
PPM cases, respectively. In a different scenario, the grav-

| 0=0.00
W o=0.01
M 0=0.02 )
W 0=0.03

W o=0.04

16
14F

m o=0.00
12F
10F W o=-0.01
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(color online) Variation in the photon sphere radius for the PPM with coupling parameter « for different Kiselev parameters
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4 20F
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a

(color online) Variation in photon sphere radius for the PPL with coupling parameter o for different Kiselev parameters o,

itational lensing depends on the photon polarization drec-
tions with the coupling parameter and the Kiselev para-
meter.

4 Strong gravitational lensing observables in
Kiselev black hole spacetime

Now, we discuss the following gravitational lensing
observables in the Kieslev black Hole spacetime.
4.1 Angle of deflection

For a photon coupled to the Weyl tensor coming from
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infinity, the relation in (51) is limited on the equatorial
plane; one can find that the deflection angle in the
Kiselev black hole spacetime is similar to that in the case
without the coupling [33]

a(rg) = I(rp) —m, (56)
with
00 dr
I(ro) = zf s 57
" o \/A(r)C(r) C(NA(r)W(ro) | 7
W(r) A(W(r)C(ro)

where the variable, ry, is the closest approach distance,
whereas I(rg) depends on the polarization directions of
the photons coupled to the Weyl tensor in a background
spacetime. This suggests that the physical properties of
the deflection angle for the PPM are different from those
for the PPL. Moreover, we can use the method of approx-
imation proposed by Bozza [42], which helps us to study
the analytic features of the angle of deflection. For this,
we have a new variable [83]

=1-2 (58)
r
Therefore, Eq. (57) yields
1
I(rg) = f R(z,10)F (z,10)dz, (59
0
where
2
R(z,rg) = ZM =2Wl(z,ro), (60)
roC(r)
F(z,r0) = ! (61)
e AW 10)C(r)
A(ro)W(ro) — Ceern)

For all the values of ry and z, functions R(z,rq) are
regular. Similarly, when z— 0, the other functions
F(z,rp) are divergent. Owing to this reason, the integral in
(59) may be separated into two different types: one is di-
vergent Ip(rp) and the other part is regular Iz(rp) with dif-
ferent polarizations, i.e.,

1
In(ro) = fo RO, ) Fo(z. ro)dz, 62)

1
Ir(ro) = j(; [R(z,75)F(2,10) = R(0,rp5)Fo(z,r0)dz,  (63)

whereas the new function, Fy(z,r), in (63) can be ob-
tained by expanding the argument of the square root in
Fo(z,rp) to the second order in z as follows:

1

Vpro)z+q(r)

Fo(z,rp) = (64)

with

P(ro) == —2—(W(ro)[A’ (r0)C(r0) — Aro)C’ (ro)]

C(ro)
+A(ro)C(ro)W' (ro)}, (65)
4(ro) =%{2[C(m) —roC’ (ro)I[A(ro)W(ro)C' (ro)

— C(ro)(A(ro)W(r)) 1+ roC(ro)
X [A(ro)W(ro)C” (r9) = C(ro)(A(ro)W(r9))"1}.  (66)

When the coefficient, p(ry), is nonzero (rp # rpy), the di-
vergence order in Fy(z,r9) is 1/+/z, and it may be integ-
rated to obtain the possible result. When p(ry) is zero
(ro =7ps), the divergence becomes 1/z, which originates
the integral as divergent. Hence, this shows that each
photon that is captured by the central object, must have
ro < ps. SO, in this way, the photon cannot emerge back
[42]. This suggests that in the strong gravitational limit
field, because the photon is near to the photon sphere, the
deflection angle diverges logarithmically for the coupled
photons [42]. Hence,

D _
a(0) = —Ellog[ 9D _ 11 b+opu- u(rps)l, (67)
u(rps)
with
_ RO, rpy)
a=—,
2 \q(rps)
br =IR(rps)a
_ 2% u(rys)”
b:—n+bR+alog[M], (68)
u(rps)

where D; indicates the distance between the gravitation-
al lens and the observer. The angle, 6 = u/D; is defined as
the angular separation between the image and the lens
[63]. Using the relations in (47) and (48) in (68), one can
find the coefficients (@ and b) in the strong gravitational
lensing formula in (67). The variation in the functions (a
and b) for the coupled photon with the coupling paramet-
er, a, for the different Kiselev parameters, o are shown
in Figs. 4-5. Moreover, from the relations in (67)-(68), we
can study the physical properties of a strong gravitational
lensing for a coupled photon in the Kiselev black hole
spacetime. It is shown that both the coefficients (a and b)
depend not only on the polarization directions of the
photon coupling with the Weyl tensor, but also on the
Kiselev parameter. In Figs. 4-5, we plot the variation in
the functions (@ and b)by a numerical approach with the
coupling parameter for different Kiselev parameters. The
function, a, constantly increases with the increase in the
coupling parameter and the Kiselev parameter for the
case of the PPM, whereas the function, a, decreases for
the PPL with the increase in the coupling parameter, and
increases when the Kiselev parameter increases, as shown
in Fig. 4. The variation in b is more complex with the
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Fig. 4.
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(color online) Variation in the strong deflection limit function, a, with the coupling parameter, «, for different Kiselev para-
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Fig. 5. (color online) Variation in the strong deflection limit function, b, with the coupling parameter, «, for different Kiselev para-

meters, o, for the PPM and PPL cases, where M =0.5.

coupling parameter « for different Kiselev parameters o.
For the PPM, the function, b, first decreases up to its
minimum with the coupling parameter, @, for different
values of o, and then increases up to its maximum with
the further increase in the coupling parameter, «; sub-
sequently, it decreases again with the coupling parameter,
a. Moreover, the variation in b with the coupling para-
meter, «, for the different values of the Kiselev paramet-

er, o, for the PPL case is totally converse to that for the
PPM, as shown in Fig. 5. Further, we see that as the
coupling parameter, «, approaches to the critical values
(i.e.,a. Or @), the deflection angle can not remain valid
in the system, @ > @, for the case of PPM and a < ap
for the PPL, in the strong deflection limit (67). Hence,
with the existence of the coupling terms, the variation in
the functions (a and ) become more difficult. The reas-
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Fig. 6. (color online) Variation in the deflection angle, «(6), with the coupling parameter, «, for different Kiselev parameters, o, for

the PPM and PPL cases, where M =0.5.

on is that the coupling effects depend not only on the «
values but also on the coupled photon polarization direc-
tions. Moreover, the variation in the deflection angles for
the PPM and PPL cases is also explored at u = up, +2, re-
spectively (see Fig. 6). We investigate that the behaviors
of the deflection angles are the same as those for the
function, a, which shows that it can be evaluated by the
experience that the deflection angles of the photons in the
strong field limit are dominated by the logarithmic term.

4.2 Shadow of black hole

We compute the essential relations to achieve the
shape of the Kiselev black hole shadow, which suggests
the study of motion of a test particle. Furthermore, to ob-
tain the equation of motion, we use the Lagrangian and
Hamiltonian Jacobi equation, which demands the study of
the geodesic equation of a particle near the Kiselev space-
time. Hence, for describing the motion of the particle, the
Lagrangian, £, is given as

(69)

Here, the canonically conjugate momenta for the met-
ric in (11) have the following forms:

P = f(ni=E, (70)
P.=f(n7', (71)
Py =10, (72)

Py =rsin*0p =L, (73)

where E is known as the energy and L defines the angu-

lar momentum per unit mass of the photon. To obtain cir-
cular photon orbits around a particular black hole, the
Hamiltonian Jacobi technique is helpful, and also, we use
the Hamiltonian Jacobi technique to formulate the
geodesic equation by applying the Carter approach [84]
for a Kiselev black hole. In this way, the Hamiltonian
Jacobi equation can be written for a particular black hole
in the following form:

os . 1,05 38

o1 == g 79
where S denotes the action of the Jacobi, and using Eq.
(11) in Eq. (74), we have

as 1 (as,Y s, \’
257l 05
1 {054\’ 1 (0S54)
ﬁ(%) rzsinz@(%) - W

Now, we suppose two Killing fields &4 = 04 for simpli-
city; then the action of the Jacobi S takes the form,

1
S = SmpAd=Et+8(r)+8y(0) + Lo, (76)

where m,, is the test particle mass; for the photon, it is as-
sumed to be zero. S,(r)and S4(0) both are functions of r
and 6, respectively. Inserting Eq. (76) into Eq. (74), we
obtain the complete equation of the null geodesic for the
Kiselev black hole spacetime as

. E
t= m, (77)
i =+ VR, (78)
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r0=+V0, (79)
L

- 80

r2sin’6 (80)

where signs + are used for the radial direction of the out-
going and ingoing particle motions, respectively [85].
Here, R and © are defined by

oM
R=r4E2—r2(l———0'r)(L2+7(), (81)
r

0 =%K-L*cot’0, (82)

where K is called the Carter constant. The effective po-
tential, Veg(r), for an asymptotically non-flat spacetime in
(11) is defined as follows:

Ve (r) = % (1 - ZTM —o-r) (L>+%) - E. (83)

The unstable circular orbits constitute the photon sphere
and define the boundary of the shadow cast by the com-
pact body. These unstable circular orbits can be obtained
by maximizing the effective potential, Veg(r), which leads
to

OVesi(r) _
or
For the general orbits, we consider two impact para-

Verr(r) = 0 or R(r)= =0. (84)

L K . .
meters & = z and n= ok which are functions of the con-

stants of motion E, L, and K. These impact parameters
define the properties of the photons near a black hole. To
visualize the black hole shadow more clearly, it is useful
to adopt the celestial coordinates. Recently, Haroon et al.
[86] introduced the technique for defining the celestial
coordinates of an asymptotically non-flat spacetime; we
follow this approach and find the following form of the
modified celestial coordinates:

x=—-V1—-oécsch, (85)

y= 4 NT=0 - £ oo, (86)

For the equatorial plane, 6 = g, and Egs. (85) and (86) are
simplified as

x=-V1-0¢, (87)
y=xVl-0o4/n. (88)

Egs. (87) and (88) yield the following relation:

P+yr=(1-oM)
(=2=50M +2 V1 +60M)(-1 + V1 +60M)?

02(=1=20M + T+ 60M)(=3 - 80M +3 V1 +60M)
(89)

The contour based on Eq. (89) can describe the appar-
ent shape of a Kiselev black hole. From Eq. (89), the size

of a Kiselev black hole depends on the mass and the
Kiselev parameter of the space-time. Eq. (89) governs the
complete orbit of a photon around the black hole, which
casts a shadow and appears as a circle. Now, we take the
contour plot of Eq. (89), which shows the shadow of the
Kiselev black hole, as clearly shown in Fig. 7. The size of
the shadow cast by the Kiselev black hole increases with
the increase in the Kiselev parameter and mass.

4.3 Magnification factors

The lens equation for the observer and the source can
be written in the following form [43-45]
_ Di+D,

1224 a@mod2r, (90)
D,

where y defines the angle between the optical axis and
the source direction, D represents the distance of the ob-
server and the lens, D, represents the distance of the
source and the lens. Here, we take only the simplest case
in which the observer, lens, and source are extremely ar-
ranged, so that the angular separation for the n* relativ-
istic image and the lens may be defined as [43-45]

upsen(Dl +D2) (91)

6, =6 1- aD, D,

and
u E+|y|—27rn
B ="L(+e), e =e a (92)
D,

where the position of the image alternate to a = 2nx is 6°
and n is any integer. If n — co, we obtain the relation,
e, — 0. This relation provides a result for the impact
parameter, u,, distance D;, and a set of images, 6,
which can be defined as

ps = D) 0. (93)

We investigate that the strong-deflection limit func-
tions, a and b, which can be obtained if there exist extra
two observations. Thus, as in [42-45], we suppose a per-
fect situation where the outermost image, 6, is separated
as a single image and all the remaining ones are packed
together in the relativistic images, 6.,. In this way, the an-
gular separation, s, and the relative magnitudes, r,,
among the first image and other ones may be further
defined as

b-2n
§=01—0o=0e @ , 94

5
rm=2.510gR0=2.510g( al ):T’Tloge, (95)
a

Z;ozzlln

where Ry is a flux ratio between the first image and all
the other images. By adopting all these observations ,such
as s, ry, and 6., it is easy to evaluate a, b, and u,, in the
limit of a strong deflection. For the existence of that
coupling in our universe, we compare the values of these
observations to those of the observations that are pre-
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Fig. 7. (color online) Shadow cast by the Kiselev black hole spacetime at 6 = n/2 at different values of the Kiselev parameter, o, and
the mass, M.
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dicted by the theoretical models of coupling. Using this
technique it is easy to store the characteristics informa-
tion in a strong gravitational lensing. However, the dis-
tance of our galaxy is approximately 8.5 kpc [63] taken
from the earth. So, the ratio becomes GM/D, = 2.4734x
10 "', and the galactic central object mass is approximately
evaluated to be 4.4 x 10°M,,. The situation of the photon
coupling with the Weyl tensor in the Kiselev spacetime
shows that the values of the strong-deflection limit func-
tions (@,b) and other possible observables can easily be
estimated numerically in a strong gravitational lensing by

20

parcsec

6.

6., parcsec
®

L L L L
0.2 0.4 0.6 0.8 1.0
a

Fig. 8.
cases of the PPL and PPM, where M =0.5.

OTZ 0?4 Ofﬁ OTB 1?0
Fig. 9.
PPM and PPL, where M =0.5.
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6.

6. parcsec

»

@

solving Egs. (68), (93), (94), and (95). In Figs. 8-10, we
plot the dependence of observables 6., s, and r,, for dif-
ferent values of the Kiselev parameter, o, on the coup-
ling constant, . We observe that for the case of the PPL,
the angular positions of observables 6. and r, are in-
creasing functions of the coupling constant,a, but de-
creasing functions of different values of o. On the other
hand, in the case of the PPM, the angular positions of 6,
and r,, the directly decreasing functions of both paramet-
ers @ and o, as shown in Figs. 8 and 10, respectively.
The variation in the angular separation, s, is given in Fig. 9,

25F
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(color online) Variation of the innermost relativistic image, 6., with the coupling parameter, «, for different Kiselev o for the

14F
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(color online) Variation in the angular separation, s, with the coupling parameter, «, for different Kiselev o for the cases of the
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Fig. 10.
the cases of the PPL and PPM, where M =0.5.

where we see that for the PPM case, observable s in-
creases directly with @ and o, whereas in the PPL, this
angular separation decreases with « and increases with o,
respectively.

5 Conclusions

This paper deals with the dynamical equation of
photons coupled to the Weyl tensor and the strong gravit-
ational lensing in the Kiselev black hole spacetime. We
find that the coupling parameter, «, Kiselev parameter o,
and the polarization directions are important for the ad-
vancement of the coupled photons. These parameters also
contribute significantly to explaining the photon sphere
radius, r,s, angle of deflection, and coefficients @ and b
appearing in the lensing formula. The modified light cone
conditions suggest that in this spacetime, the photons
travel along null geodesics. Here, we conclude that when
o tends to zero in Eq. (11), critical 2Vallue @, = M? for the

.. -M .
PPM and critical value o, = —— for PPL, which are

consistent with those in the Schwarzschild black hole
spacetime [63]. From the equation of circular photon or-
bits, the radius, r,,, for the PPM decreases monoton-
ously with the coupling parameter, «, whereas in the case
of the PPL, we find that r,, increases monotonously with
«. For the PPM, the monotonicity of r,, gradually in-
creases with o, and for the PPL, the monotonicity of 7,
gradually decreases with o, which is different from that
in the Schwarzschild case [63]. The gravitational lensing
formula functions, @ and b, are given in Figs. 4 and 5,
and we see that with the increase in «, the function, a, in-

&
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H 0=0.03

W o0=0.04
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(color online) Variation in the relative magnitude, r,,, with the coupling parameter, «, for different Kiselev parameter o for

creases for the PPM, whereas a decreases with « for the
PPL. The function, b, for the case of the PPM, first de-
creases to its minimum with « and then increases to its
maximum with further increase in «; after that, it de-
creases with a again. Meanwhile, for the PPL, the func-
tion, b, first increases to its maximum with « and then
decreases to its minimum with further increase in «; after
that, it increases with « again. For the PPM, the mono-
tonicity of a directly increases respectively with o for the
PPM and PPL, which is different from that in the Schwar-
zschild case [63]. Moreover, the variation in b with the
coupling parameter, @, for the different values of the
Kiselev parameter,o, for the case of the PPL is totally
converse to that for the PPM. The strong gravitational
lensing, «(6), has similar behaviors of the function, a. We
obtain the shadow cast in the Kiselev black hole space-
time, where the size of the shadow is an increasing func-
tion of both the mass, M, and the Kiselev parameter, o .
The variation in the angular separation, s, with the coup-
ling parameter,a, is converse to the variations in the re-
lativistic images, 6., and the relative magnitude, r,,, with
the coupling parameter, «. The changes in these observ-
ables with « also depend on the value of the Kiselev
parameter, o. In the typical Kiselev black hole spacetime,
the observables, 0., and the relative magnitude, r,,, de-
creases with o, but s increases, which is different from
that in the Schwarzschild case [63].

We are grateful to the scholarly anonymous referees
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this manuscript.
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