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Generalized uncertainty principle and black hole thermodynamics *
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Abstract: Banerjee-Ghosh's work shows that the singularity problem can be naturally avoided by the fact that black

hole evaporation stops when the remnant mass is greater than the critical mass when including the generalized uncer-

tainty principle (GUP) effects with first- and second-order corrections. In this paper, we first follow their steps to

reexamine Banerjee-Ghosh's work, but we find an interesting result: the remnant mass is always equal to the critical

mass at the final stage of black hole evaporation with the inclusion of the GUP effects. Then, we use Hossenfelder's

GUP, i.e., another GUP model with higher-order corrections, to restudy the final evolution behavior of the black hole

evaporation, and we confirm the intrinsic self-consistency between the black hole remnant and critical masses once

more. In both cases, we also find that the thermodynamic quantities are not singular at the final stage of black hole

evaporation.
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1 Introduction

The generalized uncertainty principle (GUP), which
modifies the uncertainty principle to include a minimal
length, has received increasing amounts of attention in
the past decade [1-4]. On the one hand, one may predict
the GUP effects through various experiments, such as the
hydrogen Lamb shift [5-7], electron tunneling [5, 6],
mechanical oscillators [8, 9], gravitational bar detectors
[10], ultra-cold atom experiments [11, 12], gravitational
wave experiments [13, 14], sub-kilogram acoustic reson-
ators [15], and large molecular wave-packets [16]. On the
other hand, one can also apply the GUP to study the ef-
fects of quantum gravity on small- or large-scale physic-
al systems. For example, the GUP effects have been stud-
ied with respect to the early Universe [17-21], compact
stellar objects [22-24], the Newtonian law of gravity [25],
the equivalence principle [26-28], the entropic nature of
gravitational force [29-33], the Casimir effect [34, 35],
the Dirac §-function potential [36], and post-Newtonian

potential [37].

As far as we are concerned, the GUP affects the well-
known semi-classical laws of black hole thermodynam-
ics [38-68]. For example, the black hole entropy is no
longer proportional to the horizon area [51-59]; the black
hole does not evaporate completely, but leaves a remnant
mass at the final stage of evaporation [57-65]; the rem-
nant with the Planck scale can store information, which
gives a possible solution to the singularity problem [57-
65]; and there is a metastable remnant that asymptotes to
zero mass when considering the negative GUP correction
[66]. In [68], Banerjee and Ghosh intriguingly construc-
ted a GUP that contains the term predicted by string the-
ory and a series of higher-order correction terms, and
they studied the GUP effects on black hole thermody-
namics. Their results show that, when considering the
first- and second-order quantum corrections to black hole
thermodynamics, black hole evaporation always stops
when the remnant mass is greater than the critical mass,
and the singularity problem in the semi-classical ap-
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proach is bypassed at the final stage of black hole evapor-
ation.

However, Banerjee-Ghosh's results in [68] lack cred-
ibility because some necessary terms have been omitted
in their treatment. For example, when dealing with the
first-order correction, all terms regarding @) should be in-
cluded in the corrected temperature-mass relation.
However, the term a/?(kgT/M,c?)* has been omitted in
their treatment, perhaps because they consider this term
to be negligible. When dealing with the second-order cor-
rection, Banerjee and Ghosh have omitted the necessary
terms 2a)a,(kgT/Myc*)* and a?(kpT/M,c®)®. If these
omitted terms are recovered, the final evolution behavior
of black hole evaporation may be different. Anyway,
Banerjee-Ghosh's work cannot truly demonstrate the fi-
nal evolution behavior of a black hole system with the in-
clusion of the GUP effects.

In this paper, we reexamine Banerjee-Ghosh's work in
Sec. 2, and we restudy the final evolution behavior of
black hole evaporation when including the GUP effects
with first- and second-order corrections. In Sec. 3, we re-
view the GUP proposed by Hossenfelder et al. in [69],
i.e., another GUP model with higher-order corrections. In
Sec. 4, we use Hossenfelder's GUP to precisely study
first- and second-order quantum corrections to black hole
thermodynamics, and we aim to discover the intrinsic
self-consistency between the black hole remnant and crit-
ical masses when including the effects of quantum grav-
ity. Finally, Sec. 5 provides some conclusions.

2 Reexamination of Banerjee-Ghosh's work

In [68], Banerjee and Ghosh have assumed that the
function relation between the wave vector £ and the mo-
mentum p satisfies certain properties: 1) the function has
to be an odd function to preserve parity; 2) the function
should be chosen to satisfy p = ik at small energy; and 3)
the wave vector k should have an upper bound of 27/L,.
Thus, Banerjee and Ghosh have assumed an infinite-or-
der polynomial to satisfy these properties of the function,

which is expressed as
L )21
(D(”). (1)

k= fp) ==

p i=0
Here, only odd powers of the momentum p appear in the
polynomial because the function f(p) is an odd function
to preserve parity. The coefficients {a;} are all positive,
and ag =1 to recover p = hk at small energy. The factor
(=1)' ensures property 3), and we have a constraint for

p— 0o, k—>— ie.
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From (1), we can obtain
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where the new coefficients of expansions {a}} are func-
tions of {a;}, and aj = 1. Hence, the form of the GUP pro-
posed by Banerjee and Ghosh is given by

> (LyAp\*
AxAp>2Z ( p)’ (4)

where the coefficients {a} are all positive.

Subsequently, we use the GUP (4) to study the
quantum-corrected thermodynamic entities of a Schwarz-
schild black hole and attempt to find relationships among
them. In [68], by comparison with the standard semi-clas-
sical Hawking temperature, the mass-temperature rela-
tionship of a Schwarzschild black hole is given by

M, & ksT \2!
= - , . 5
8 iz_(;a’(Mpcz) ®)

According to the definition of the heat capacity of a black

dm
hole C = czd—T , we have
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The entropy of a black hole is given by

M2\ ksT \*
My +d,In| 2 5
kBT MpC
S Qi 1) kT PV

+ . .
;a' (-1) (M,,c2

In [68], because the heat capacity and entropy are ex-
pressed in terms of the mass, the expression for 72 in
terms of M is given by

CdT kB
T  l6n

S =

(N

2
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M, ksT M,

T
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In Banerjee-Ghosh’s treatment, when dealing with the
first-order correction, they have obtained the corrected
mass-temperature relation as

2 242
M Myc
—_—| = 24’ .
(Mp) (kBT)+ “ (9)

In fact, all terms concerning a] should be included in the
first-order correction, so the corrected Mass-Temperature
relation should be written as
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8aM\2 ([ M,c2\’ ksT \
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2

72

Therefore, the term af has been omitted in

Cz
Banerjee-Ghosh’s treatment. "Based on Eq. (9), Banerjee
and Ghosh further obtained the result that the remnant
mass is greater than the critical mass when considering
the first-order correction.

Based on Eq. (10), where the omitted term is re-
covered in the first-order correction, we can obtain

ksT \ 2
(M cz) - 2 2 - (D
P 8tM 8tM M
~2d) + ) -4
M, M, M,

Obviously, as a thermodynamic system, the black hole
has a critical mass below (at) which the thermodynamic
entities become complex (ill-defined) [54, 68], and which
is given by

M. = : MP‘ (12)

4r

From (6) and (11), the heat capacity with the first-or-
der correction is given by

8aM \* , [(8nM 8eM\? ,
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(13)
When the heat capacity becomes zero at the final stage of
black hole evaporation [58, 65, 66], the remnant mass is
obtained as follows

aj
M. (14)

Thus, the remnant mass is equal to the critical mass when

Miem =

7 \2
) for the first-or-
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including the necessary term a/? (MB 5
C

. p
der correction term.

Next, let us focus on the effects of the second-order
correction. The mass-temperature relation should be giv-
en here, according to (8), as

2
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However, in Banerjee-Ghosh's treatment, the contribu-

ksT \*
W) and

6
a’zz( ksT ) were both omitted [68]. When the omitted
M,c?

tions of the correction terms 2a’1a’2(

terms are recovered in the second-order correction, we
have

kT
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From Eq. (16), the critical mass below (at) which the
thermodynamic entities become complex (ill-defined) can
be determined by F?> -G > 0, that is

\/7\/36’——+ (a? +12a2)3 Q1)

From (6), the heat capacity with the second-order correc-
tion can now be written as

2 2
kB Mpcz kBT
"+3a, | —= | |. 22
" 8 (kBT TR M,c? @2)

Then, at the final stage of black hole evaporation, the
remnant mass with the second-order correction is given
(SHMrCm) 12

by
—aj + | /(a’l2 +12d)
M, 3V3

3V3 d,

x (2d] + (@ + 12a’2)3)
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. . kgT
It is clear that when the omitted terms 2a}d) (#) and
C
6 14
are recovered in the second-order correction,

( 87rMa

(23)
4

72 B
% M,c?
the remnant mass is also equal to the critical mass.

In this section, it is found that, in Banerjee-Ghosh's

kgT
work, some necessary terms, e.g., the term a’z(MB 2)
C

. T
for the first-order correction and the terms 2a’a) (MB 2)
pC
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and af (kB—T2

Myc
been omitted when considering the GUPeffects on the fi-
nal evolution behavior of black hole evaporation. In fact,
these omitted terms become necessary because without
them, the final evolution behavior of the black hole sys-
tem cannot truly emerge with the inclusion of the GUP
effects, as discussed above. When these omitted terms are
recovered in the first- and second-order quantum correc-
tions, the black hole always stops evaporation when the
remnant mass is equal to the critical mass. In the follow-
ing section, we use another GUP model with higher-or-
der corrections to restudy the final evolution behavior of
black hole evaporation, and we attempt to confirm the in-
trinsic self-consistency between the black hole remnant
and critical mass once again.

6
) for the second-order correction, have

3 New generalized uncertainty principle pro-
posed by Hossenfelder et al.

To implement the notion of a minimal length Ly,
Hossenfelder et al. have assumed that particles cannot
possess  arbitrarily small Compton wavelengths
(A =2n/k); then, the vector k£ has an upper bound [69].
This effect would show up when p approaches a certain
scale My. To incorporate this behavior, they have as-
sumed that the relation k(p) between p and k is an un-
even function (because of parity) and asymptotically ap-
proaches 1/L;. Thus, Hossenfelder et al. have assumed
the function behavior of k(p) is [69]

Y
Lk(p) = tanh7 | L) |, 24

s (2] e

where vy is a positive constant and Ly and M satisfy the
relation Ly Myc = 1. For simplicity, we set y = 1. Expand-
ing the modified relation (24), there are two cases: (a) the
regime of expanding tanh(x) for small arguments (i.e.,

x| < g); and (b) the high-energy limit p > M.
For case (a), its expanding expression is given by

122" 1By, (Lip )
k(p) = L2 e (T) ) (25)

=
where B is the Bernoulli number. The expanding expres-
sion (25) can also be found in Banerjee-Ghosh's relation
(1). That is to say, Hossenfelder's relation (24) between
the wave vector and the momentum exhibits much more
physics because its expanding expression not only con-
tains the regime of Banerjee-Ghosh's relation, but also in-
cludes the high-energy limit p > M.
According to Eq. (25), we have

_ P L p ¢ 2/p

According to the well-known commutation relation
A dp
£, pk)] =i—, 27
[X, p(k)] =i ok (27)

the uncertainty relation is given by
1 ,0p

AxAp > §'<%>" (28)
From (26) and (28), we can obtain

) Ad 6
AxAp)E[l-g- 7 +1(p) 2 P

4 4 6.6
3Mfc 45Mfc

22
2 Mfc

Here, (p*) > (p*) has been used. For a minimal position
uncertainty, we have (p)=0, so Hossenfelder's GUP is
given by

Ap Vo A Ap\t 275 Ap \°
Axaps s (B L L (Ar ) L2 (AR
2 M,c 3 \Myc 45 \M,c

+] (29)

(30)

Here, My =M,/f, and M, is the Planck mass. It is
noteworthy that Hossenfelder's GUP contains not only
the term described in string theory [70, 71], but also high-
er-order quantum corrections. However, the GUP deriva-
tions are phenomenological and normally take only the
first-order or second-order correction as the subdominant
one; there is nothing new about higher orders here. In the
next section, we will use Hossenfelder's GUP to pre-
cisely reexamine the first- and second-order corrections
to black hole thermodynamics.

4 Black hole thermodynamics with correc-

tions

Near the horizon of a Schwarzschild black hole, when
the production of a particle-antiparticle pair occurs as a
result of quantum fluctuation in a vacuum, the particle
with negative energy falls into the horizon, and that with
positive energy escapes to outside the horizon and is de-
tected by an observer at infinity. For simplicity, we con-
sider the emitted particle to be massless and its spectrum
to be thermal. Therefore, we have [58]

kgT = Apc, (31)

where kp is the Boltzmann constant, and the momentum
of the emitted particle p is on the order of its momentum
uncertainty Ap. For thermodynamic equilibrium, the tem-
perature of the emitted particle is identified with the tem-
perature of the black hole itself. Moreover, near the hori-
zon of a Schwarzschild black hole, the position uncer-
tainty of a particle will be on the order of the Schwarz-
schild radius for the black hole [58, 59]. Consequently,

2GM
2’

Ax=ry= (32)
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where r; is the Schwarzschild radius, G is Newton's grav-
itational constant, ¢ is the speed of light, and M is the
mass of a Schwarzschild black hole.

We can now relate the temperature 7 with the mass M
of the black hole by recasting Hossenfelder's GUP (30) in
terms of T and M. Hossenfelder's GUP (30) with first-or-
der and second-order corrections is given by

h f4
1+f ( pc) 3 (Mpc)

AxAp = e— ) (33)

where the parameter e is a scale factor saturating the un-
certainty relation. It should be noted that we take only the
first-order or second-order correction as the subdominant
one because there is nothing new about higher orders
here. Substituting Egs. (31) and (32) into Eq. (33),
Hossenfelder's GUP in terms of 7 and M is recast as

_ My o ksT \  f*( ksT \’
=) 5

where M, = L,c*/G and ch/L, = M,c* have been used. If
Hossenfelder's GUP effects are not considered (i.e., f =0
in (34)), the semi-classical mass-temperature relation is
reproduced by T = Myc*/(8nkpM) [72]. We thus fix the
calibration factor € = 1/2n. Therefore, the corrected mass-
temperature relation with the first- and second-order cor-
rections is given by

M, [(Mpc?\ L kgT f4 kgT
_87[( kT )+f M) 3 \m,e) | (33)
The heat capacity of a black hole is defined as
C =W 50 the heat capacity with the first- and second-

order corrections is obtained as

A oo} o

Obviously, in the semi-classical case (i.e., f =0 in (36)),
a Schwarzschild black hole always possesses a negative
heat capacity, which means that a black hole is an un-
stable system that loses its mass with an increase in its
temperature during the evaporation process. When in-
cluding the effects of quantum gravity, the corrected heat
capacity (36) has some positive corrections that cause the
heat capacity to monotonically increase as the black hole
temperature gradually increases during the evaporation
process.

According to the first law of black hole thermody-
namics S = [ the black hole entropy with the first-
and second- order corrections is given by

kg MI,CZ 2 ) ( kgT )2 ( kT )2
= — 1 — |
S 167r[( ksT ) A Vv +f* el | G

Interestingly, we find that the corrected entropy (37) of
the black hole is no longer proportional to the horizon

. (G4

area when considering the effects of quantum gravity [55-
59], and the leading-order correction has a logarithmic
form similar to that obtained by other methods, such as
field theory [73], quantum geometry [74], string theory
[75], and loop quantum gravity [76, 77].

Using Hossenfelder's GUP, we derive the corrected
black hole thermodynamics with the first- and second-or-
der corrections, which leads to some interesting proper-
ties that may solve certain puzzles in the semi-classical
case. In the following section, we will focus on the first-
and second-order corrections to black hole thermodynam-
ics without loss of generality to precisely reexamine the
final evolution behavior of the black hole system from
different physical perspectives.

4.1 First-order correction

From (35), we can obtain the mass-temperature rela-
tion with the first-order correction, given by

M= % + 2T, (38)

where we introduce the notations M =8rM/M, and
T =kgT/(M,c?) for convenience. Thus, the temperature
7 in terms of the mass M can be written as

2

M M —4f7

Here, only the (+) sign is acceptable, and the (-) sign is
physically problematic because it cannot recover the clas-
sical result if f =0. Obviously, as a thermodynamic sys-
tem, the black hole has a lower limit for the mass to guar-
antee a meaningful range of the thermodynamic temperat-
ure with the first-order correction. During the evapora-
tion process, if the black hole mass exceeds the lower
limit, the thermodynamic temperature becomes complex,
and the thermodynamic system cannot be well described
here. Therefore, the lower limit of the black hole mass is
usually called the critical mass [54, 58, 68], which is giv-
en, from (39), by

(39)

M. = %MP' (40)

Next, we start from the corrected thermodynamic en-
tropy to reexamine the lower limit of the black hole mass.
By substituting (39) into (37), the thermodynamic en-
tropy with the first-order correction is given by

S A 2 A7 f
60|

- ~—|-Z—In[16 41
ka2 16 n[16x], 41)

4121 16

where A = 167G*M?¢™* is the semi-classical area of the
black hole horizon, and

4 4g P

is the reduced area, which is introduced to produce the
area theorem in tractable form, and the semi-classical

2
A_L Lz] , (42)
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area 4 is reproduced for f =0 in (42). Obviously, the en-
tropy is explicitly expressed as a function of the reduced
areca A rather than the actual area 4. From (42), we can
also see that there is a lower limit of the black hole mass
below which the reduced area becomes a complex quant-
ity, which is given by
s
4
The critical mass is correctly reproduced again by ana-
lyzing the black hole thermodynamic entropy and re-
duced area.

By substituting (39) into (36), the heat capacity in
terms of the mass M is then given by

2 2_Af2_9f2
:l;_g _M +M\/A/; 4f>-2f +f2 ' (44)
T

Mcr = Mp~ (43)

Clearly, there is a positive correction to the semi-classic-
al heat capacity when including the first-order quantum
correction. In the semi-classical case, the black hole with
a negative heat capacity could evaporate completely in
late evolution. In the presence of the first-order correc-
tion, the positive correction emerges to prevent further

. . dm
evaporation at zero heat capacity ( C = = = 0) when

the black hole mass no longer changes with the black
hole temperature [58, 65, 66, 68]. This result means that
black hole evaporation stops at a finite mass when includ-
ing the first-order correction, which is called the remnant
mass, given by

Mem = %TMP. (45)

The remnant mass can also be obtained by minimizing
ds .
the entropy (41), i 0, and looking at the second de-
. d2S .
rivative (W > 0). Obviously, the black hole stops evap-

oration when the remnant mass is equal to the critical
mass. This reveals the intrinsic self-consistency between
the black hole remnant and critical masses when includ-
ing the first-order correction. In addition, we can easily
find that the thermodynamic temperature (39) and re-
duced area (42) are always positive, even at the final
stage of black hole evaporation, and there is therefore no
singularity in the thermodynamic temperature (39) and
entropy (41) when including the first-order quantum cor-
rection.

4.2 Second-order correction

Next, we will continue this issue by considering the
effects of the second-order correction. From (35), the
mass-temperature relation with the second-order correc-
tion is given by

M=+ + 2T + ﬁfr? (46)
T 3

Then, through complicated calculation, the temperature in
terms of the mass can be expressed as

2 2
l:M+l &+H+l &_H_Zfz
T 4 2N 4 21 2

LM\ :
+5(5+H) (M3—4f2M)] , 47)
where
_§ 4 -1 l _z 2
H= 3K+ 2K-3 1 (48)
K=2‘§(9f4M2+F—22f6)%, (49)
F= \8LFSM =396 fOM — 16f12, (50)

The semi-classical Hawking temperature can be well re-
produced by the quantum-corrected temperature (47) at
f=0 when F=K=H=0. From (47), there is a lower
limit of the black hole mass below which the quantum-
corrected temperature becomes a complex quantity,
which is determined by 81f3M*-396f19M% —16f2 > 0.
Therefore, the lower limit of the black hole mass (i.e., the
critical mass) is given by

(22+10\/§)%
Mer ==

Substituting (47) into (37), the entropy with the
second-order correction is given by

M, (51)

4L2

In[167] + —2,
167 MO+ s A

ks 412 16n

o len[ig]_f_z

(52)
where A is the reduced area, given by

A HLZ 1[A HL
4  4n

A ) e

which is introduced to produce the area theorem in tract-
able form. A4 is the usual area of the black hole horizon,
and

5 1.2
H=>fK'4+-K-Zf 54
KK -Sf (54)
K =27 (36nf*L,* A+ F-22f°)", (55)

F = 129672 fSL;*A2 ~ 1584n fOL;2A ~ 16/12.  (56)

To guarantee an effective range of the reduced area (53),
the lower limit of the black hole mass is given by
12967 f8 L;*A* - 1584n 1L 2A - 16f'> = 0. In this case,
the critical mass with the second-order correction is giv-
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en by

(22+10 \/5)%
Mo =~ [ M. (57)

The critical mass is consistently obtained by guarantee-
ing the effective ranges of the black hole thermodynamic
temperature (47) and reduced area (53).

From (36), the heat capacity with the second-order
correction can be written as
kg ( 1 2, 4q2
C_87r( 7_2+f +f‘7'). (58)
There are two positive corrections in the corrected heat
capacity (58), enabling the black hole evaporation to stop
at zero heat capacity easier than that with the first-order
correction, where there is only one positive correction. At
the final stage of black hole evaporation, when the black
hole mass no longer changes with the black hole temper-

ature (i.e., C =c>— =0), the remnant mass with the
second-order correction is obtained as

(22+ 10\/5)%
My (59)

Obviously, the black hole always stops evaporation when
the remnant mass is equal to the critical mass. This res-
ult reveals again the intrinsic self-consistency between
the black hole remnant and critical masses when includ-
ing the second-order correction. In addition, the thermo-
dynamic temperature (47) and reduced area (53) are al-
ways positive, even during the final evolution of the
black hole system, so there is no singularity in the ther-
modynamic temperature (47) and entropy (52) when in-
cluding the second-order correction.

The critical mass is the lower limit of the black hole
mass below which the thermodynamic temperature, en-

Miem =

tropy, and the reduced area go beyond its effective range
[54, 58, 69], and the remnant mass is determined by the
zero heat capacity C =0 or by minimizing the entropy
[58, 66, 67, 69]. Although the remnant and critical
masses are respectively determined from different physic-
al perspectives with respect to the final evolution behavi-
or of the black hole system, they are equal to each other
when including the first- and second-order corrections. In
addition, we can easily find that the thermodynamic
quantities, e.g., the thermodynamic temperature and en-
tropy, are not singular at the final stage of black hole
evaporation with the inclusion of the first- and second-or-
der corrections.

5 Conclusions

In this paper, we reveal the intrinsic self-consistency
between the remnant and critical masses during the final
stage of black hole evaporation when including the ef-
fects of quantum gravity. When including all the neces-
sary terms in the first- and second-order corrections, we
first reexamine Banerjee-Ghosh's work and find that the
black hole stops evaporation when the remnant mass is
equal to the critical mass with the inclusion of the GUP
effects. Then, we use another GUP model with higher-or-
der corrections proposed by Hossenfelder et al.to re-
study the final evolution behavior of the black hole evap-
oration, and we again reveal the intrinsic self-consistency
between the black hole remnant and critical masses. In
addition, we can easily find that the thermodynamic
quantities, e.g., the thermodynamic temperature and en-
tropy, are not singular at the final stage of black hole
evaporation with the inclusion of the first- and second-or-
der corrections; therefore, the singularity problem in the
semi-classical approach can be naturally bypassed here.
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