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Abstract: Quasinormal modes (QNMs) for massless and massive Dirac perturbations of Born-Infeld black holes

(BHs) in higher dimensions are investigated. Solving the corresponding master equation in accordance with hyper-

geometric functions and the QNM:s are evaluated. We discuss the relationships between QNM frequencies and space-

time dimensions. Meanwhile, we also discuss the stability of the Born-Infeld BH by calculating the temporal evolu-

tion of the perturbation field. Both the perturbation frequencies and the decay rate increase with increasing dimen-

sion of spacetime 7. This shows that the Born-Infeld BHs become more and more unstable at higher dimensions. Fur-

thermore, the traditional finite difference method is improved, so that it can be used to calculate the massive Dirac

field. We also elucidate the dynamic evolution of Born-Infeld BHs in a massive Dirac field. Because the number of

extra dimensions is related to the string scale, there is a relationship between the spacetime dimension # and the prop-

erties of Born-Infeld BHs that might be advantageous for the development of extra-dimensional brane worlds and

string theory.
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1 Introduction

The first gravitational waves (GWs) were directly de-
tected from the coalescence of binary black holes (BBHs)
[1-8] by Advanced LIGO [9] and Virgo [10]. The recent
experimental precision satisfies the requirement of gener-
al relativity theory, but the observational precision of
GWs also leaves the window for alternative theories of
gravity open [11]. In addition, the Event Horizon Tele-
scope (EHT) collaboration recently released the first
shadow image of a supermassive BH M87 [12, 13] in the
galaxy. These results prove the existence of BHs in the
universe, thus giving birth to a new era in the astronomy
of astrophysical compact objects [14]. The interaction
between two BHs can be conditionally divided into three
phases: the inspiral phase [15], the merger phase [16],
and the ringdown stage [17]. The portion of the GW sig-
nal associated with single BH oscillations is referred to as
the ringdown phase, as the perturbed BH rings down,
akin to a struck bell. The ringdown phase is the brief os-
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cillation stage before the newly formed BH reaches its fi-
nal stable state. The damping times and frequencies asso-
ciated with a given BH are known as quasinormal modes
(QNMs) [18]. Therefore, QNMs play a central role in the
final stage, the ringdown phase, in the coalescence of
BBHs [19-23].

In addition, BHs are nonlinear solutions to a highly
nonlinear theory. It is always a difficult task to study their
dynamics. The perturbation method is an effective tool to
study the interaction between a BH and a basic test field.
The study of BH perturbation started with Regge and
Wheeler's [24] analysis of the perturbation of an axisym-
metric gravitational field. Subsequently, Zerilli [25-27]
studied polar symmetric perturbation. The BH perturba-
tions were then systematically summarized in
Chandrasekhar’s monograph [28]. A disturbed BH can be
considered a dissipative system, and the perturbation has
a discrete spectrum. As a consequence, QNM frequen-
cies are complex numbers that also give the damping of
the oscillations. The imaginary part of the frequencies
represents the decay of the amplitude, and the real part
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corresponds to the oscillations of the perturbations. The
decay time scale and oscillation frequency only depend
on the spacetime background of the BH, independent of
the initial disturbance. Because specific black holes have
specific QNMs, they can accurately reflect the spacetime
properties of BHs. This is graphically known as the char-
acteristic sound of a BH, which has become a powerful
tool to reveal the intrinsic properties of BHs. A good re-
view of QNM theory can be found in [17, 18, 29, 30].

The mass, angular momentum, and charge of a BH
can be determined by detecting the quasinormal frequen-
cies and damping rates. QNMs can also be used to test
the no-hair theorem and quantization of black holes [31,
32]. In addition, in gauge/gravity duality theory, there is a
connection between QNMs and the poles of propagators
in dual field theory, which is why physicists use it as a
tool to study strongly coupled gauge theory (or holo-
graphy) [33, 34]. Therefore, much attention has been giv-
en to modified theories of gravity.

In this paper, charged BHs in the Born-Infeld gravity
are investigated. In 1930, born and Infeld proposed the
nonlinear theory of electrodynamics and obtained the
self-energy of a finite point charge in a nonlinear system
[35]. The main motivation is to observe it occurring in D-
branes and open superstrings. The low energy efficiency
of open superstrings leads to Born-Infeld-type action
[36]. Along with the development of superstring theory,
the dynamics of some super-gravity soliton solution D-
branes [37] are controlled by the interaction of Born-field
action. Later, Garcia ef al. obtained the Born-Infeld black
hole solution [38], which has been extended to a nonlin-
ear charged BH in general relativity, characterized by
spacetime dimension #, mass M, charge Q, and nonlinear
parameter 8. The major goal of our research in this art-
icle is to explore the physical characteristics of Born-In-
feld BHs, where the spacetimes are perturbed and the
QNMs generated are probed by the perturbation. Most re-
search on the QNMs of Born-Infeld BHs has focused on
scalar fields, electromagnetic fields, and gravitational
field perturbations (that is, fields with integer spin).
Fernando [39] calculated the gravitational perturbation of
a charged BH under the Born-Infeld gravity. Liu et al.
[40] studied the QNMs of the scalar field interacting with
the electromagnetic field of the Born-Infeld AdS BH. To
make the study more complete, based on the frame in
high-dimensional spherically symmetric BHs [41, 42], we
study the spacetime structure and the QNMs for massive
and massless Dirac fields of Born-Infeld BHs. Using the
WKB method, the effect of the dimension of spacetime 7,
charge O, and multipole numbers [k| on the QNMs of
Born-Infeld BHs is studied. Specially, the dynamic evolu-
tion of the Dirac perturbation fields in Born-Infeld space-
time is investigated using the finite difference method.
The results show that the quasinormal behavior of Born-

Infeld BHs depends on the dimension of spacetime #.

The structure of this article is as follows: Section 2
explains the research background of the paper, which is
mostly based on the QNMs under Dirac field perturba-
tion. We study the stability of the Born-Infeld BH with
the finite difference method in Section 3. In addition, we
utilize the WKB method to calculate the QNMs numeric-
ally in Section 4, including two parts: Part A, where
QNMs for massless fields are calculated; and Part B, in
which the QNMs of Born-Infeld BHs are analyzed for the
massive case. In the last section, the important con-
sequences and expectations are revealed.

2 Spherically symmetric static Born-infeld
BH solutions

The general action describing Born-Infeld interaction
in a (n+ 1)-dimensional (n > 3) background without the
cosmological constant A has the form [41-44]

R
S zfdmx\/__g(mnG“(F))’ M

where R is the scalar curvature, and the Born-Infeld L(F)
part of the action is decomposed to

FiE,, ] | o

282

Here, L(F) is a function of the electrodynamic field
strength F,,. B is a Born-Infeld parameter with dimen-
sions of length™™*1/2_ For simplicity, let us assume
167G = 1. In the limit 8 — oo, the Born-Infeld L(F) tends
to be Maxwell's electrodynamics with —F?, and L(F) is

L(F) = —F" F,, + O(F*. (3)

By changing the action of gauge field A, and metric field
8uv» the equations of motion and Einstein equations of an
electromagnetic field can be derived

L(F)=4B2[l— 1+

i

3, — |=0. 4)
FYF,,
1+ =
232
1 1 2F o F ¢
Ruy = 5 Ry = 5 gy LIF) + ———. (5)
2 2 R
1+ i
22
Assuming metric ansatz is in the form
1 S
ds? = —f(r)de* + %drz +R2(r)hijdxdx/, (6)

hi; is a function of coordinates x'. It spans a hypersurface
whose curvature in (n—1)-dimensions is the scalar
curvature (n—1)(n—2)k. f(r) and R(r) are two functions
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of . For the metric (6), the non-vanishing components of

the Ricci tensor are obtained as [45],

f/l f/ Rl

R;=—7—(n—1)2R, (7
44 /RI 44
R=-L -a-vlr ~w-nt ®)
] -2 1 .
R = ”R2 k_(n—l)R"‘l [f(R”l)’]’)(S’j. ©)

This is the derivative of a prime with respect to the
coordinate r.

Regarding F", setting F* equal to O satisfies the
class of solutions to Eq. (4), which yields

__ Nu=D-2pg
VR4 (= D=2

F" (10)

where ¢ is an integral constant associated with the elec-

trodynamic charge. With the electric charge defined by
1
0= Ef *FdQ, we have

0= \/(n—l)(n—Z)wn-lq (11)
47r\/§ '

where w,_; is the volume of the hypersurface with

curvature defined as h;;dx'dx/. There is F"' in the 3 limit,

as F'' ~ % The electric field is finite at » = 0. The cos-
pr

mological constant is redefined as A =0, and solving

equation (6) yields
_ m 4%
firy=k= 2 " (n(n - 1))
228

f \/Zﬁzrz"*z +(n—-1(n-2)q*dr. (12)

T (n-1)m2

For k =1, the integral in (12) can be represented in terms

of hypergeometric functions,

_ m 4ﬂzr2
fin=t- 2 +(n(n— 1))

22
n(n—1)rm-3

2(n— l)q2
nr2n—4

\/252r2"‘2 +(n-1)n-2)q?

n-2 1 3n-4
2n-1)"2"2(n-1)"
(n-1)(n-2)¢*
-S|
Here, m is an integral constant that is dependent on the
configured ADM mass M. This is given by

M= (- 1Dwp_im. (14)
The analytic function within |z| < 1 can be parsed to the
full z plane. Therefore, ,F;(a,b,c,z) is a single-valued
analytic function that expands along the real number line
in the z plane [45]. For |z] < 1, 2F1(a,b,c,z) has a conver-
gent series expansion. This gives

F=1- ¢ (-1)(n-27q¢"
=2 p2n—4 8B2(3n _ 4)r4n—6 ’

rl

and when 8 — oo and n =3, the function f(r) describes
Maxwell's electrodynamics for a Reissner-Norstrom (RN)
BH [46, 47]. These are described in Table 1. Meanwhile,
the spacetime structures of Born-Infeld BHs are exhib-
ited in Fig. 1(a) and Fig. 1(b) (|z| < 1). For asymptotically
flat spacetime, the spacetime of Born-Infeld goes flat at
infinity faster with increasing spacetime dimension 7.

2171

(13)

(15)

3 Dirac perturbation in Einstein-Born-Infeld
spacetime

The general equation for a massive Dirac spinor field
in high-dimensional spacetime can be expressed as [50,
51]

[y”DH + %]\11 —0,  p=0,n0,6,4" X (16)
where x**! are extra-dimensional coordinates,

Dy =0,+ %rf’fnaﬁ, (17
where Il,p = ;l[y“,yb] and T, = %[y“,yb]eZebv;ﬂ is a spin
connection; the gamma matrices satisfy the condition

Table 1. Summary of Born-Infeld BHs. More details can be found in Refs. [41, 44-49].
m 48272 228 2 o2 )
EBI BH frH=1- = + n=D) - 1y f \/2[1’ re"=2 +(n-1)(n-2)g*dr
2 2 4
_ m q (n—1)(n-2)"q
<1l fn=1- 2 * e 862(3n — 4)rin=6
2
m
<1, e f<r>=1—,nfz+,§74

z<1,B—> 00, n=3

2
m

f(V)RN=1—*+q2
r_r
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(a) Born-Infeld metric spacetimes. (b) Born-Infeld metric spacetimes with |Z| < 1.

Fig. 1. (color online) Structures of the Born-Infeld metric function f(r) with different spacetime dimensions #: (from top to bottom:
n=3,4,5,6,7,8,9,10) (a) Born-Infeld metric spacetimes with M =1, Q=0.1, b=0.1, and r, = 1. (b) Born-Infeld metric spacetimes
with |z <1, M=1,Q=0.1,b=0.1,and r, = 1.

that, and the solution form of a statically spherically sym-
) . metric BH is given by Eq. (6)
Yy =2¢"1, (18)
so the spinor wave function P in Eq. (16) can be written e = diag(f(r)'2, f()~V2, rrsing, ¥, K. (20)
as where f(r) represents the Born-Infeld spacetime function

listed in Table 1. The Dirac spinor can be written as,
Anjx1 (1,1,0,$,x7, -+ X" 1) p

P = B(m/2)><] (t, v 9, ¢’ X”, . xn+1) e(—iwt)S(l,r,9,¢,xf’...xt+1)’ . f(}")_l/4q), (21)

for higher-dimensional spacetime, the Dirac equation
(19)  simplifies to

1(6s IS\ ao(0S\ . 4s(3S\ . (0 i [0S ~
[f(at)+f(t9r)+g (ae)+g ag) T8 \awr )Tt (e ) TP =0 @2)
E’;/;V;functlons must be defined separately as follows (22) is rewritten as
O(t,r,0,p,x7,-- X" = i F*\ ky/r m F*=\
iG=(r) dr,\ G* /(") m  —kifr ]\ GF |
@5 (O, QHW, - X" _ +
r Jm —lwt 0 -w F
F(r) . € 23) ( w 0 )( G* )’ (26)
@50, P HKT, - LX)
and where d/dr. = f(r)d/dr. Let us proceed with some trans-

I+ 1/2+mYm_1/2 formation of F* and G* [50],
o | N e 1 P

: (%
Pim = (for]:l+_)’ ft in— - +
j T 1/2=m ) P _ sins cos > P o
TR G* 0 _an? NG/
+ cos— —sin—
(24) 2 2
[1+1/2-m . 11 where @ =tan~'(mr/lk]). Introducing 7, =r,+tan™!
7 " y™
o = 20+1 l (for i=i- 1) (mr/lk|)/2w into Eq. (26), then
Jm 2/
[+1/24+m m+1/2 d frt P At
NTuer o (9 )+Wi( (; )=w( _(jﬁi ) (28)
(25) "
Radial functions (G* and F*) are considered. Eq. where
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k2
f(r)(—§ +m2)
;

+ = 5 2
e k] @)
2w(k2 +m?r?)
and
d 1) d (30)

d#, mlk.|f(r) dr
l+—=7
2w(k? + m?r?)

The following derivation radial functions can be written as

d? .
(—7+v+)F = W F*, (31)
2\ .
(— R +)Gi = w?G*, (32)
where
- dW+
Ve== w2, (33)
and
s dw.
= — d?* + W2, (34)

Here, k. is the number associated with the angular mo-
mentum quantum number /: k- =-[ for j=1-1/2 and
ky =1+1 for j=1+1/2. In the following context, we only
consider j=1[-1/2. Moreover, in spherically symmetric
EBI spacetime, Dirac particles and antiparticles have the
same QNMs. Therefore, the radial function £~ can rep-
resent all the physics of Dirac field evolution.

4 QNMs of massless Dirac perturbations in
Born-Infeld spacetime

4.1 QNM frequency calculated by WKB

In this section, the QNM frequency is calculated, so

6 T T T T T
5. -
——- =7
4r n=8 ]
= -=- n=9
g3 n=10 ]
2. -
1. -
0 n —
0 8 10

(a) Born-Infeld BHs with M =1, Q@ =0.1,b=0.1, |k| =1
and r4 = 1.

Fig. 2.

the properties of the effective potential need to be determ-
ined. In the massless case, #~ was chosen as an example,
thus

d? A Al
(—d—?‘%'FV)F =wF N (35)
where
V= Vomoo = - = 2, (36)
dz,
and
k_
W= T 67

By simplifying the symbols, the '-' subscripts and super-
scripts of the rest are removed. r, = 1 is used.

To calculate the QNM frequency of a BH, the proper-
ties of the potential function V(r) are first considered.
The Dirac effective potential of a Born-Infeld BH is in
the form of a barrier, where V(r) depends on ||, the
spacetime dimension n, the Born-Infeld parameter b, and
the charge Q. Fig. 2(a) shows the variation of the poten-
tial function V(r) with spacetime dimension n for Born-
Infeld BHs under massless Dirac field perturbation. As
seen in Fig. 2(a), the peak value of the barrier increases as
the spacetime dimension n increases. Meanwhile, as
shown in Fig. 2(b), as |k| increases, the peak value of the
barrier also increases. From Fig. 2(b), we can find the po-
sition of the respective peaks. Similarly, the potential
function of a Born-Infeld BH ( |z| < 1) has the same prop-
erty, where slight differences are primarily caused by the
hyperfunction

Tmax ([k] — 00) — 1.34, (38)
and for a Born-Infeld BH |z] < 1
P (k] —> 00) —> 1.26. (39)

To numerically calculate the quasinormal mode fre-
quencies of Born-Infeld BHs, we adopt the WKB approx-

12 T T T T T
n
] \\
L I i
10 A e
1\ _
\ -ees k=2
st ]
in o\ -=- k=3
_ 1
i 6 1 \ —_ |k|=4 ]

(b) Born-Infeld BHs with M =1, Q@ =0.1, b=0.1, n =7 and

T’+:1.

(color online) Behavior of Born-Infeld BH potential under massless condition: (a) different values of n (from top to bottom:

n=3,4,5,6,7,8,9,10). (b) different values of |k (from top to bottom: || = 1,2,3,4,5).
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imation developed by Schutz, Will, and Iyer [54-56]. The
values for different spacetime dimensions z are listed in
Table 2, Table 3, and Table 4, where M is the mass of a
Born-Infeld BH, Q is the electric charge, N is the over-
tone number, |k| is related to angular quantum number
values, and b is the Born-Infeld parameter. Here, we fo-
cus on the spacetime dimension n in the fundamental
mode (N =0) is focused. When 8 — co and n=3, the
Born-Infeld BH returns to a RN BH, and we compare the
results in Born-Infeld BHs with those in RN BHs. The

results indicate that Re(w) and |Im(w)| both increase as
the spacetime dimension #n increases. This result shows
that for QNMs with higher spacetime dimensions, the rate
of decay is accelerating compared with that of the low-di-
mensional ones. In addition, Re(w) of the frequencies in-
creases as the angular momentum number |k| increases
with the same spacetime dimension n. However, the mag-
nitude of the imaginary part |[Im(w)| is the opposite. Fur-
thermore, Re(w) and |[Im(w)| both increase significantly
with increasing charge Q while |k| is constant. The res-

Table 2. Fundamental modes (N =0, r,. =1, b=0.1, 0 =0.1) of Dirac perturbations calculated by WKB method.

Ikl =3

k=4

Ikl =5

RN

O 0 N N AW

1.1557700139 - 0.1930619944i
1.1557037495 - 0.1931330986i
1.4824206993 —0.353900201 1i
1.6729838527 — 0.4947724401i
1.7963573716 - 0.6211054727i
1.8786688941 —0.7359672425i
1.9324691882 —-0.8412210141i
1.9645121204 - 0.9380346977i
1.9786190819 — 1.0271463776i

1.5450184302-0.1929736171i
1.5449228497 —0.1930424512i
1.9890849201 —0.3535923516i
2.2548474671 —0.4941886172i
2.4337539125 -0.6203121349i
2.5607045617-0.7351652681i
2.6527294372 — 0.8407288004i
2.7192730919 - 0.9382670792i
2.7659881744 —1.0285930212i

1.9335494699 — 0.1929352414i
19334264288 — 0.1930029746i
24935519194 - 0.3534612524i
2.8325512794 - 0.4939338712i
3.0645571714 -0.6199625719i
3.2331497017 - 0.7348392792i
3.3597024024 - 0.8406414492i
3.4561830939 —0.9387290357i
3.5298731019 - 1.0300078509i

Table 3. Fundamental modes (N =

0,ry=1,b

0.1, O =0.2) of Dirac perturbations calculated by WKB method.

|kl =3

Ikl = 4

|kl =5

RN

O X N N bW

1.1807745781 — 0.1942520945i
1.1794987143 — 0.1951524435i
1.4936465475 —0.3542072399i
1.6802097464 — 0.4945933092i
1.8021141106 - 0.6211467539i
1.8841584999 —0.7368298925i
1.9384906269 — 0.8434959842i
1.9717294392 - 0.9423033713i
1.9786190819 — 1.0271463776i

1.5783039151 —0.1941684492i
1.5765856643 —0.1950532893i
2.0037367019 —0.3538282015i
2.2638019281 —0.4937606109i
2.4402161621 - 0.6197529004i
2.5660317057 —0.7348615376i
2.6576702111 -0.8410511909i
2.7243442984 —0.9396110763i
2.7659881744 —1.0285930212i

1.9751230049 — 0.1941320692i
1.9729713815 - 0.1950103782i
2.5117056128 - 0.3536702111i
2.8434200769 —0.4934126781i
3.0720960321 - 0.6191715201i
3.2389749155 - 0.7340604371i
3.3646369485 — 0.8401125704i
3.4607270372 -0.9386947312i
3.5298731019 - 1.0300078509i

Table 4. Fundamental modes (N =0, r. =1, b=0.1, Q =0.3) of Dirac perturbations calculated by WKB method.

Ikl =3

k| = 4

Ikl =5

RN

O 0 N N B~ W

1.2284548139 —0.1958292714i
12209047995 — 0.1995406409i
1.5110577791 - 0.3554398962i
1.6900627387 — 0.4942823704i
1.8085145254 —-0.6197325828i
1.8886219035 — 0.7344391294i
19417248012 -0.8402141691i
1.9741818898 —0.9383165293i
1.9897433647 - 1.0296336759i

1.6417685092 —-0.1957578811i
1.6318195877 —0.1994576319i
2.0268844985 —0.3551501808i
2.2768365497 — 0.4936848267i
2.4486792201 - 0.6187835582i
2.5719915869 —0.7331381699i
2.6620585696 —0.8385721119i
2.7276327314 - 0.9363307495i
2.7740734939 — 1.0272752331i

2.0543857019 - 0.1957267574i
2.0420288092 - 0.1994219029i
2.5405977577-0.3550318873i
2.8596374603 — 0.4934462438i
3.0825990887 — 0.6184289584i
3.2463865219 - 0.7327316406i
3.3701583101 - 0.8382343667i
3.4649741076 — 0.9362292839i
3.5376946367 — 1.0276151146i
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ults show that the damping of QNMs is affected by the
amount of charge Q. In addition, gravitational perturba-
tions of Born-Infeld BHs are studied in Ref. [39]. The
QNM for the gravitational perturbations are computed
also using the WKB method. It is interesting to note that
although we chose a different range of parameters to cal-
culate, we came to a consistent conclusion: for a Born-In-
feld BH, when the charge increases, the imaginary part of
the QNM continues to increase.

4.2 QNM frequency calculated by the finite difference
method

Here, we use the finite difference method [57, 58] to
illustrate the dynamic evolution of Born-Infeld BHs. We
study the ringing of BH spacetimes, which can directly
reflect the (in)stability of Born-Infeld BHs in the tempor-
al evolution images containing all frequencies. Hence, us-
ing a numerical integration scheme [59], Eq. (28) can be
expressed in light-cone coordinates:

wGi:—ﬂ%‘jFi WéFi+mmGi, (40)
wF* = 10467 (r)dG + VI Gi—m\/f(r F*. (41)

Multiplying both sides by w, Eq. (40) and Eq. (41) are re-
written as

d(wF* k
sziz—%+ VIO @F)+mF@G),
(42)

d(wG* k
=IO, T @G -m TR, @3)
Putting Egs. (40) and (41) into Egs. (42) and (43),

(a) Born-Infeld BHs with M =1, Q@ =0.1, b=0.1, |k| =3
and ry = 1.

Fig. 3.

n=3,4,56,7.8,9,10): (a) Born-Infeld BHs with M=1, Q=0.1, b=0.1, |k =

0=01,b=0.1,kl=1and r, = 1.

f’Ft =f2Gnt +ff/G/i
kf’

mf
2

~Nf- rzf SF e f]G*

flGi :fZFl/i +ff/F/i
kf’

myf
2

\/_— f+r£2f3/2+w2—m2f}Fi.
(44)

Here, ’ denotes 8/dr, w?=-8%/8%t. (t,r) = (u,v) is
applied, where y=t—r.,v =t+r,, yielding
o 1(o 0 o 9 0
5_?(87_%)’ oo on
F*(u,v) and G*(u,v) are deduced from Eq. (44), which
can be integrated using the finite difference method [60,
61]. In Fig. 3 and Fig. 4, the plus ' +' and minus '-' signs
of F*(u,v) are unified to be F.

Figure 3 demonstrates the evolution of the Dirac field
in Born-Infeld BHs with [k|=3, Q=0.1, and
n=23,4,5,6,7,8,9,10. We focus on the effects of different
spacetime dimensions n on Born-Infeld BHs. The abso-
lute value of the imaginary parts of quasinormal frequen-
cies increase as the spacetime dimension of BH increases
to 10. This result shows that it takes less time for QNMs
to completely decay outside the Born-Infeld BHs. In oth-
er words, it takes less time to restore equilibrium under
perturbation, which indicates that it will affect the QNMs
of Born-Infeld BHs with an increase in the spacetime di-
mension zn. Furthermore, Fig. 4 shows that, for a given n,
Re(w) of the frequency increases, but |[Im(w)| of the fre-
quency decreases with increasing |k|. Note that the oscil-
lation frequency of QNMs is faster, but the decay is
slower.

(45)

0 5 10 15 20 25 30 35 40
t

(b) Born-Infeld BHs with |2| <1, M =1, Q =0.1, b= 0.1,
k| =1and ry = 1.

(color online) Dynamic evolution of Born-Infeld BHs with varying spacetime dimensions n (from top to bottom:

3 and r, = 1. (b) Born-Infeld BHs with |7 <1, M =1,
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Log(F)
Log(F)

12 . . . . . .
0 5 10 15 20 25 30 35 40

t
(a) Born-Infeld BHs with M =1, Q@ =0.1, b=0.1, u =7 and (b) Born-Infeld BHs with |Z| <1, M =1, Q =0.1, b=0.1,
ry =1. u="7and ry =1.

Fig. 4. (color online) Dynamic evolution of Born-Infeld BHs with various [«|.

1.0 . . . . . , , , ,
—=- m=0.1 [ 3
0.8---- m=03 1 1.2 m=03 1
=== m=0.5 =TT a== m=05
e 10F ]
0.6 F—— m=0.7 ’,—*’ B — m=0.7
z —-=- m=0.9 - =
N m ’/ >
0.4 b
0.2 b
0.0
0
r r
(a) Born-Infeld BHs with M =1, Q =0.1, b=10.1, |k| =1, (b) Born-Infeld BHs with M =1, Q = 0.1, b=10.1, |k| =1,
ry =1and n=3. ry =1and n=>5.
2.0 T T T T 2.0 T T T T

r r
(c) Born-Infeld BHs with M =1, Q = 0.1, b=0.1, |k| =1, (d) Born-Infeld BHs with M =1, Q = 0.1, b=0.1, |k| =1,
ry=1landn="7. ry =1landn=9.

Fig. 5. (color online) Behavior of Born-Infeld BH potential under massive condition.

5 QNMs of massive Dirac perturbations in the Dirac field, but also on w. This fact makes it more

Born-infeld spacetime

complicated to utilize the WKB method to calculate the
QNM frequencies. Figure 5 shows the dependence of

V(r) on m for w = 1. The effective potential functions are
Next, we exactly calculate the QNMs of Born-Infeld  still in the form of a barrier. Figure 5 shows that the peak
BHs in a massive Dirac field. In the massive case, the po- of the potential function V(r) increases with increasing m,

tential function V(r) depends not only on the mass m of where V(r) exhibits the following
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V(r - c0) = m?. (46)

As m increases, the peak potential slowly increases.

Eventually, when r — oo, the summit of the peak value is

less than the asymptotic value m?. It is important to note

that w is unknown at the beginning of the calculation (it

is considered a typical value of w =1) and must be self-

consistently determined. Consequently, Fig. 5 can only
represent the general behavior of the potential V(r).

The QNM frequency of a massive Dirac field is calcula-

ted using the WKB method. Table 5, Table 6, and Table 7

list the values of the QNM frequencies of Born-Infeld
BHs for the parameter range »=0.1, 0 =0.1. As shown
in the tables, when the spacetime dimension 7 increases,
the real and imaginary parts of the quasinormal fre-
quency increase. In addition, the rate of oscillation Re(w)
increases, but the rate of decay |Im(w)| decreases as |k| in-
creases. As mass m increases, Re(w) decreases and
[Im(w)| increases. The results show that the frequency os-
cillation of QNMs are slower and the decay is faster. One
possible explanation is that when a disturbance occurs,

Table 5. w in Born-Infeld BH (ry =1, 0 =0.1, m=0.1).

n

Ikl =3

k=4

Ikl =5

RN

O 0 N N AW

1.1515968021 —0.1943567809i
1.1515299453 — 0.1944290635i
1.4755292119 -0.3566031472i
1.6643329773 — 0.4986323948i
1.7864791766 — 0.6259645966i
1.8678760678 —0.7417338491i
1.9209447481 — 0.8478465144i
1.9523543509 — 0.9455039034i
19658661367 — 1.0354755466i

1.5419114849 —0.1936812139i
1.5418153731 —0.1937506829i
1.9839878478 — 0.3550679945i
2.2484728448 —0.4962875707i
2.4264859682 —0.6229378917i
2.5527693886 —0.7382567926i
2.6442654611 —0.8442465146i
2.7103645384 —0.9421851886i
2.7659881744 —1.0328956917i

1.9310725009 - 1.9310725009i
1.9309490124 - 0.1934480016i
2.4895032612 —0.3543882938i
2.8275017646 — 0.4952509473i
3.0588107791 - 0.6216062186i
3.2268852313 - 0.7367680599i
3.3530315052 - 0.8428272448i
3.4491774444 -0.9411518977i
3.5225784444 - 1.0326531373i

Table 6.

w in Born-Infeld BH (ry =1, 0 =0.1, m=0.2).

|kl =3

Ikl = 4

|kl =5

RN

O X N N bW

1.1501095992 — 0.1948497541i
1.1512527143 - 0.1959224385i
1.4716635239 —0.3581239203i
1.6588120618 —0.5010814268i
1.7797682963 —0.6292545361i
1.8602668839 — 0.7458103989i
19126157415 - 0.8526820449i
1.9434064183 —0.9510951098i
1.9563439528 — 1.0418450546i

1.5408771069 —0.1939407203i
1.5417809717 —0.1940103869i
1.9812604589 —0.3558811885i
2.2445702706 — 0.4975913882i
2.4217307861 —0.6246730881i
2.5473634088 — 0.7403826574i
2.6383369987 — 0.8467358085i
2.7039941198 —0.9450201528i
2.7499171683 — 1.0360659718i

1.9302738954 — 0.1935386298i
1.9301503937 —0.1936068759i
2.4873855581 —0.3548924013i
2.8244741359 — 0.4960595044i
3.0551245677 - 0.6226789402i
3.2331497017 - 0.7348392792i
3.3484440776 - 0.8443502049i
3.4442573887 - 0.9428749815i
3.5173696678 — 1.0345653663i

Table 7.

w in Born-Infeld BH (1 =1, 0=0.1, m=0.3).

Ikl =3

k| = 4

Ikl =5

RN

O 0 N N B~ W

1.1513234725 - 0.1944854686i
1.1500471235 - 0.1945577233i
1.4708385944 —0.3583636618i
1.6564368177—-0.5019917935i
1.7762398844 —0.6308278393i
1.8558543032 - 0.7480347342i
1.9074914561 —0.8555553184i
1.9376726156 — 0.9546224811i
1.9500505317 — 1.0460573872i

1.5419258726 —0.1937346437i
1.5408302274 — 0.1938040522i
1.9809166931 —0.3560005393i
2.2431563863 —0.4980590023i
2.4195067261 —0.6254697514i
2.5445058474 — 0.7414896237i
2.6349635078 — 0.8481391213i
2.7001810904 —0.9467106038i
2.7457110128 — 1.0380389132i

1.9311600612 - 0.1934044131i
1.9300369849 — 0.1934724886i
2.4872077078 — 0.3549608303i
2.8234791729 — 0.4963428007i
3.0535106013 - 0.6231610884i
3.2205995072 - 0.7387415151i
3.3459534959 - 0.8451866092i
3.4414365679 — 0.9438729825i
3.5142605301 — 1.0357177954i
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the massive particles are absorbed by the BH, so the dis-
turbance in the form of a BH carries away the energy of
the gravitational wave.

6 Conclusions

In this work, we have calculated the QNMs of the
perturbation of massless and massive Dirac fields in the
background of a Born-Infeld BH. Here, the QNM fre-
quencies are determined and tabulated using the WKB
method, and the dynamic evolution of the Born-Infeld
BHs is described using the finite difference method,
which varies the multipole number [k| and spacetime di-
mension 7.

The findings of this article are as follows: for mass-
less Dirac perturbations, with a given Q, the oscillation
frequency Re(w) increases but the decay rate |Im(w)| de-
creases slowly with increasing |k|. Meanwhile, the real
part of the QNM frequencies Re(w) and the imaginary
part [Im(w)| become larger with higher dimensions.

For massive Dirac perturbations of a Born-Infeld BH,
the potential function V(r) depends on the mass m and
spacetime dimension n. The peak value of the potential
function increases with increasing mass m. This implies
that for a massive particle, the slower it oscillates, the
faster it decays. The faster Born-Infeld BH oscillates in

higher-dimensional spacetime, the faster it decays. The
massive field particles themselves have energy, so they
are absorbed by the BH when disturbed. Although the
disturbance will cause the BH to take away the energy,
the energy will be replenished, so with more massive
field particles, the oscillation will be slower, but the de-
cay will be faster. In higher dimensions, more of the en-
ergy of the perturbation of the BH will propagate out-
ward, which will oscillate faster and decay faster. This is
a description of the excited states of fermions (such as
neutrinos) near a Born-Infeld BH.

In summary, the following conclusions can be ob-
tained: the asymptotically late time oscillation does not
depend too much on the field spin and the Born-Infeld
parameter. The decay is according to the oscillation,
which depends more on the number of extra dimensions
and the multipole number.

A natural extension of this work is to research BHs in
Anti-de Sitter spacetime. The development of string the-
ory on AdS/CFT duality, and the relationship between
Born-Infeld theory and string theory, is the driving force
behind this phenomenon. We therefore think it is worth
understanding the various properties of BH solutions in
this theory. In addition, we need to broaden our study of
the high-frequency part to fully understand its physical
nature. These interesting ideas will be used as follow-up
research in the near future.
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