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Investigation of neutron density distribution of **Ph nucleus when the
proton density is constrained to its experimental distribution
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Abstract: In this study, two novel improvements for the theoretical calculation of neutron distributions are presented.

First, the available experimental proton distributions are used as a constraint rather than inferred from the calculation.

Second, the recently proposed distribution formula, d3pF, is used for the neutron density, which is more detailed than

the usual shapes, for the first time in a nuclear structure calculation. A semi-microscopic approach for binding energy

calculation is considered in this study. However, the proposed improvements can be introduced to any other ap-

proach. The ground state binding energy and neutron density distribution of **Pb nucleus are calculated by optimiz-

ing the binding energy considering three different distribution formulae. The implementation of the proposed im-

provements leads to qualitative and quantitative improvements in the calculation of the binding energy and neutron

density distribution. The calculated binding energy agrees with the experimental value, and the calculated neutron

density exhibits fluctuations within the nuclear interior, which corresponds with the predictions of self-consistent ap-

proaches.
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1 Introduction

Since Rutherford discovered the atomic nucleus [1],
there has been an interest in studying the proton and the
neutron density distributions in finite nuclei. An accurate
knowledge of density distributions is crucial for under-
standing the fundamental properties of nuclear matter and
nature of nuclear force. The proton differs from the neut-
ron in its nature and interactions, and the difference is re-
flected in the distributions of protons and neutrons within
the nucleus. In general, the distribution of protons differs
from the distribution of neutrons, qualitatively and quant-
itatively, particularly in the range of very heavy and su-
perheavy nuclei, where increasing the neutrons/protons
ratio is necessary to maintain the stability of the nucleus.
The difference between the neutron and proton distribu-
tions is abstracted as the difference between the neutron
and proton distributions root-mean-square (rms) radii,
called the "neutron skin thickness". The neutron skin
thickness is fundamental for investigating certain crucial
problems in modern nuclear physics and astrophysics. It
was found that including the neutron skin thickness in the
a-decay calculation improves the calculation of a-daugh-

ter potential as well as the prediction of a-decay half-
lives and «a-preformation probability [2, 3]. Similar ef-
fects have been reported in the calculation of the a-de-
cay of neutron-deficient nuclei that have "proton skin" in-
stead of "neutron skin" [4]. The value of neutron skin
thickness is important for studying decay. Further, the
changes in the neutron skin thickness from parent to
daughter nuclei consistently correlate with the observed
half-lives [5]. An accurate estimation of neutron and pro-
ton distributions is crucial in the study of asymmetric
nuclear matter, which bridges nuclear physics and astro-
physics [6-8].

In the 1950s, Hofstadter pioneered electron scattering
experiments [9], which provided, subsequent refinements
and an accurate description of electric charge distribu-
tions of stable isotopes [10-13] and short-lived isotopes
[14, 15]. The most accurate form of charge densities is
provided as a model independent distribution in terms of
Fourier—Bessel coefficients [10-12]. Several diffused ana-
lytical formulae may be used to represent the charge
densities involving fewer parameters than numerous
Fourier —Bessel coefficients. Such forms are commonly
used in nuclear reaction and nuclear structure studies. For
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most applications, two-parameter Fermi (2pF) distribu-
tions and three-parameter Fermi (3pF) distributions are
acceptable approximations for nuclear charge and matter
distributions [16-18]. The 2pF and 3pF distributions are
obtained from equations 1 and 2, respectively; where a is
the diffuseness parameter; R is the radius of the nucleus;
and w is the central depression parameter. The central
density, po, is determined via normalization of the num-
ber of protons (Z) or neutrons (N).

Po
p(r) = oo Ra’ (1)
po[1+w(? /R?)]
p(r) = it Ria ()

Although 2pF distribution is the most widely used in
studying the nuclear structure, reactions, and decay, us-
ing 3pF distribution improves the calculation of binding
energy [19] and alpha decay half-life time and pre-forma-
tion probability [20]. Recent studies show that the fitting
of the experimental charge distributions to 3pF distribu-
tion does not provide a significant improvement over the
fitting to 2pF [17, 21]. This is because the functions could
not describe the density fluctuation within the nuclear in-
terior that appears in the experimental distributions. The
recently proposed double 3pF distribution (d3pF), which
allows for density fluctuation, fits the experimental
charge densities with significant improvement in accur-
acy over other commonly used formulae [21]. The d3pF
distribution, which is given by equation 3, is composed of
two 3pF terms, one has a larger radius parameter to de-
scribe the tail of the density and the second has a smaller
radius to describe the density fluctuation at the nucleus
interior.

Si[ 1w [RD)|
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where ¢; is the weight of the two 3pF terms. This func-
tion has seven independent parameters as the density dis-
tribution should verify the normalization condition.
Although the charge distributions were measured ac-
curately, the data for neutron distributions are not suffi-
cient. The study of neutron distributions has attracted in-
terest because of its fundamental importance as it determ-
ines the nuclear drip lines and stability regions [22], leads
to special structures and phenomena in certain isotopes
[23-25], and germane to the structure of neutron stars [8,
26, 27]. There have been extensive studies to develop ex-
periments to characterize the neutron distributions in nuc-
lei using different techniques. The neutron distributions
have been probed mostly by hadron scattering [28], a-
scattering [29], nuclear pion photoproduction [30], or
electroweak electron scattering [31]. Because of the com-
plexity of the strong force, the hadronic probes require
model assumptions, and the results are model-dependent.

An electro-weak probe was introduced as a model-inde-
pendent probe of neutron distributions [32, 33]. The
probe primarily characterizes the distribution of weak
charge in nuclei, which is caused by the neutrons as the
weak charge of the proton is approximately 7% its value
for the neutron [34]. The experimental efforts in the study
of the neutron distribution extensively measure the distri-
bution rms radii [32, 35, 36] and neutron skin thickness
£(§82, 37]. The measured neutron distribution rms radius of

Pb ranges from 5.6 fm to 5.94 fm [28, 38], and the
neutron skin thickness ranges from 0.09 fm to 0.49 fm
[28, 30, 38]. This uncertainty may originate from the lim-
itations of the measurements and statistical and systemat-
ic errors. In an attempt to explore the density distribution,
a recent coherent pion-photoproduction experiment

provided the neutron density of *®pp, by fitting pion-nuc-

leus scattering data to the 2pF distribution with
R=6.7+0.03 fm and a = 0.55+0.03 fm [30].

As the experimental studies were successful in the
characterization of proton density in nuclei, many theor-
etical approaches were developed to understand the nuc-
lear structure, such as binding energy, deformations, pro-
ton and neutron density distributions, and exotic nuclear
structures. There are different levels of theoretical calcu-
lations, from the pure fundamental ab-initio methods to
the pure phenomenological methods, such as the liquid
drop model. However, certain approaches with simpli-
fied potentials are proposed to address the many-particle
problem, e.g., self-consistent mean-field models [39] or
shell model. The most notable alternative to the self-con-
sistent method is the semi-microscopic method [40, 41]
with strutinsky shell-correction [42, 43], where the en-
ergy of a nucleus is considered to be the sum of its mac-
roscopic and microscopic components. In addition to its
simplicity, the semi-microscopic technique is successful
in studying the nuclear structure [19, 20, 44-47] and a-
decay [48]. The semi-microscopic approach used in this
study can successfully reproduce data of the recently dis-
covered superheavy element ° Og and other Og isotopes,
whose accuracy corresponded well with the experimental
data [45]. Further, it accurately predicts the masses and
deformations for heavy and superheavy nuclei similar to
the prevalent microscopic and semi-microscopic models
[19, 46, 47].

2 Theoretical framework

In this study, the total energy is evaluated in the
framework of the semi-microscopic approach reported in
[19, 46]. In this method, the macroscopic component of
the total energy is considered by the energy density func-
tional, with the Skyrme force, SkM*, as a function of the
nucleon densities, p;, and kinetic energy densities, 7,
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[49] in the form,
h2
H(r) = m [1p(r) + Ta(N)] + Hsk(r) + Heou(r),  (4)

where Hsi(r) is the nuclear energy density and Heou(r)
is the coulomb energy density. The macroscopic compon-
ent of the total energy, E, is given by the volume integral
of the total energy density.

E= f Har. )

The microscopic contribution is considered using
Strutinsky's shell and the pairing correction method. The
shell-correction energy is calculated as the difference
between the sum of occupied energy levels obtained from
the Woods —Saxon single particle Hamiltonian and the
corresponding sum obtained using the Strutinsky's
smoothing procedure [42, 50]. The Barden-Cooper-
Scheffer (BCS) approach is used to calculate the residual
pairing correction energy, as reported in [51].

To consider the finer details of the experimental pro-

ton density, we use the model independent
Fourier—Bessel expansion [10-12] given by,
or) = { Zv a,jo(vnr/R), r<R ’ ©)
0, r>R

where jj is the zero-order spherical Bessel function, and
a,and R are Fourier—Bessel coefficients deduced from the
experiments and obtained from data compilation [11].
The 2pF, 3pF, and d3pF distributions, as obtained from
equations 1, 2 and 3, respectively, are used to parameter-
ize the neutron density distribution for calculating the
total energy.

3 Results and discussion

In this study, the binding energy of *®*pb is calculated
assuming that the proton density distribution is con-
strained to its experimental distribution. The neutron
density distribution is considered in the form of paramet-
erized analytical distributions. A semi-microscopic mod-
el based on energy density functional with the Skyrme
force, Strutinsky's shell, and pairing correction is used to
calculate the total energy surface of the *®Pb nucleus in a
multidimensional space, E(R;,a;,w;,Rz,a2,w3,62). The
seven variables of the total energy surface in the proced-
ure, used in this study, are based on the d3pF formula.
The differential evolution method, proposed by Storn and
Price [52], is used to minimize the total energy in the
multidimensional space, and then, obtain the ground state
binding energy and neutron density distribution paramet-
ers. The differential evolution method provides an effi-
cient adaptive scheme for global optimization over con-

tinuous spaces, and it was used with the semi-microscop-
ic approach to study the nuclear structure of *'Th [53]
and 288'3080g isotopes [45]. All the degrees of freedom of
the total energy are set to vary, but certain variables must
be switched-off to obtain the different density distribu-
tions. In case of the 2pF density distribution, the first two
parameters are free and the remaining are set to zero, i.e.,
the minimization procedure considers E(R,a,0,0,0,0,0)
total energy surface. In case of the 3pF density distribu-
tion, the first three parameters are free and the remaining
are set to zero, i.e., the minimization procedure considers
E(R,a,w,0,0,0,0) total energy surface. In case of the
d3pF density distribution, all the seven variables are free.

Currently, there are numerous parameterizations of
the Skyrme force, which may affect the inferred binding
energy and/or neutron density distribution. The effect of
the Skyrme force has been evaluated in previous nuclear
structure studies, and the results indicated that the force
used has a slight influence on the value of the calculated
binding energy, while the inferred nuclear deformation is
not affected [47, 53]. To select one Skyrme force for this
study, previous studies were reviewed, and SKM* was
selected because its results correspond well with the ex-
perimental values. For example, Terasaki and Engel [54]
found that the SKM* works better than SLY4 in the pre-
diction of single-particle vibrational states calculated us-
ing the self-consistent method with a quasiparticle ran-
dom-phase approximation. Ismail et al. [47] determined
that the binding energies calculated by the semi-micro-
scopic approach with the SKM* force show a small rms
deviation from the experimental values when compared
with the results of SLy4 and SkP. Further, two previous
studies reported the nuclear density of *®pp using the
semi-microscopic approach with the SKM* force, but
without restricting the proton density distribution [19,
47]. Hence, the efficiency of the proposed improvements
can be compared and evaluated without considering the
effect of the Skyrme force in the calculation.

In case of the 2pF distribution, the parameters con-
sidered in the minimization are the radius parameter, R,
and diffuseness parameter, a. The minimum total energy
of -1623.28 MeV is obtained at R = 6.85 fm and a = 0.85
fm.In case of the 3pF distribution, the minimization is
performed with respect to R, a, and w. The minimum total
energy of -1635.53 MeV is obtained at R=7.1 fm,
a=048 fm. and w=-0.27.As a result of increasing the
degrees of freedom of minimization from 2 to 3, the nuc-
leus gains extra binding energy of 3.25 MeV. The neut-

ron density distribution of *®Pb is not constant near the
nucleus center, but it is raised. Hence, considering the

central depression parameter, w, adds to the binding en-

ergy of *®Pb. For other nuclei whose distributions are
constant near the center, the effect of w would be less sig-
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nificant. For light nuclei and ultra-heavy nuclei, the signi-
ficance of the central depression parameter would be high
as their ground states are centrally raised and centrally
depressed, respectively [19]. In case of the d3pF, the min-
imum total energy is —1636.66 MeV and obtained at
R, =677 fm, a; =0.56 fm, w;=-0.02, R, =2.12 fm,
a; =047 fm, wy = -2.49, and §, = —0.047. Increasing the
degrees of freedom of the minimization from 3 to 7 adds
1.09 MeV to the binding energy of *®pp, i.e., approxim-
ately 1/3 the gain in the binding energy was due to the in-
crease in the degrees of freedom from 2 to 3. Although
the improvement in binding energy owing to the seven
parameters is relatively small, the shape of the density is
improved strongly. The d3pF distribution allows for cent-
ral depression and fluctuations in the nuclear interior.
Moreover, a comparison between the results of the three
distribution formulae indicates that considering more
parameters would not significantly increase the calcu-
lated binding energy.

The values of the parameters corresponding to the
minimum binding energy of **pb are presented in Table 1
in addition to the values of the rms radius of neutrons dis-
tribution, neutron skin thickness, and total energy. Com-
paring the calculated total energy values corresponding to
2pF, 3pF and d3pF distributions with the experimental
total energy, we observed that the difference between the
calculated energy and experimental value decreases with
an increase in the number of parameters. A smallest dif-
ference of 0.19 MeV is obtained in the case of d3pF. For
2pF and 3pF distributions, the calculated binding energy
is smaller than the experimental binding energy by 4.15
MeV and 0.9 MeV, respectively. For d3pF, the calcu-
lated binding energy is greater than the experimental

Table 1.

binding energy by 0.19 MeV. The experimental results of
neutron distribution probing experiments include the val-
ues of rms radius, neutron skin thickness, or an interpol-
ated fit to an analytical formula. The 2pF distribution
parameters extracted from the coherent pion-photopro-
duction experiment, shown in Table 1, may provide a
good description for the tail of the density, but not for the
detailed distribution near the center. Comparing the val-
ues of the radius parameters of the three distributions
considered in this study with the experimental value, it
can be observed that the d3pF distribution corresponds
well the experimental value, followed by 2pF and 3pF.
Similarly, the values of the diffuseness parameters for the
d3pF and 2pF distributions correspond well with the ex-
perimental value, while the 2pF distribution shows less
diffuseness. For this comparison, we consider the R; and
a; parameters for the d3pF formula, which describe the
tail of the distribution.

The experimental data of the rms radius and neutron
skin thickness show relatively large uncertainty. The ex-
perimental data demonstrate that the rms radius of *®pp is
between 5.6 fm and 5.94 fm [28, 38] and neutron skin
thickness is between 0.09 fm and 0.49 fm [28, 30, 38].
The calculated values of the rms radius and neutron skin
thickness from the three resulting distributions are within
these ranges, but generally exhibit lower values than the
mean values of the experimental results. Particularly, the
resulting rms radius and neutron skin thickness consider-
ing the 2pF neutron distribution are greater than the cor-
responding values in case of d3pF and followed by 3pF.
The experimental values, shown in Table 1, are obtained
from the pion-photoproduction [30], parity violation ex-
periment conducted at the Jefferson lab (PREX) [38], and

Values of the minimum total energy and corresponding density distribution parameters, neutron distribution rms radii, and neutron skin thick-

ness for the 2pF, 3pF, and d3pF formulae. The experimental values are presented for comparison.

d3pF
2pF 3pF Experimental values
1 2
R (fm) 6.85 7.10 6.77 2.12 6.70+0.03 [30]
a (fm) 0.52 0.48 0.56 0.47 0.55+0.03 [30]
w -0.27 —-0.02 -2.49
1.047 —0.047
5.78+018 [38]
rms R (fm) 5.647 5.616 5.623 0‘026
+0.
5.6537 039 [28]
0.04
0.15* 706 [30]
Neutron skin thickness (fim) 0.144 0.113 0.120 0.33+5:16 [38]
0.045
02117563 [28]
Total energy (MeV) —1632.28 —1635.53 —1636.62 —1636.43 [55]
Difference between the experimental values (MeV) —4.15 -0.9 +0.19
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proton elastic scattering [28]. The experiments conduc-
ted with electromagnetic probes have clearer theoretical
basis than the strongly interacting probes, and have the
advantages of probing the full nuclear volume and dis-
turbing the ground state of the target nucleus less . The
experimental results are listed in Table 1 in ascending or-
der according to the mass of the probing particle. In the
pion-photoproduction experiment, the incident particles
are photons, while in the PREX parity violation experi-
ment, electrons are employed. The values of the neutron
skin thickness calculated in this study correspond well
with the data extracted from the pion-photoproduction ex-
periment. Although the calculated values are less than the
mean value, all the values are within the error range of
the experimental results. The neutron skin thickness ex-
tracted from parity-violation and proton elastic scattering
experiments are considerably high relative to those de-
duced by the pion-photoproduction and values calculated
in this study. The values of the rms radius calculated in
this study correspond with the values derived from the
parity violation and proton elastic scattering experiments.

Figure 1 shows a comparison between the calculated
neutron densities obtained from the total energy minimiz-
ation and the neutron density obtained from the self-con-
sistent Hartree—Fock (HF) calculation [56] for the **pp
nucleus. HF density is considered for this comparison as
HF calculation can reproduce the experimental proton
density, as shown in Fig. 1. Moreover, there is no avail-
able model independent experimental data for the neut-
ron density distribution of the **Pb nucleus. The 2pF
density is flat and almost constant around the center,
while the 3pF density is raised at the center, and de-

creases continuously and smoothly for the whole profile.
The maximum density for the 2pF and 3pF density distri-
butions is obtained at the center of the nucleus. The d3pF
shows fluctuations around the center with a maximum
density at r=~2.3 fm. The three density distributions
demonstrate smooth tails with similar values for radii
greater than 6 fm. The HF density demonstrate fluctu-
ations around the center and maximum density at r ~ 1.4
fm.

For a precise comparison, the differences between the
calculated neutron densities and corresponding HF dens-
ity were calculated. Fig. 2 shows the distribution of the
differences for the 2pF, 3pF, and d3pF formulae against
the distance from the nuclear center. At the center, the
2pF distribution shows the smallest absolute difference,
while the 3pF distribution shows the highest absolute dif-
ference. The range of difference, in fim °, between the
2pF and HF densities is —0.0063:0.0028, and that
between the 3pF and HF densities is —0.0036 : 0.0092. In
the case of d3pF, the difference range is almost symmet-
ric near zero and has the smallest length. The distribution
of differences can be better understood through statistical
analysis because it reflects abstract information from all
the data points, and not solely from the characteristic points.
Table 2 lists certain statistical parameters for the differ-
ences between the calculated and HF densities based on
the data generated for r values up to 12.0 fm in regular in-
tervals of 0.1 fm. The maximum and minimum differ-
ences show the extreme values of difference for each
dataset, which can be observed from Fig. 1.

However, the extreme values cannot indicate the av-
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Fig. 1. (color online) Experimental proton density [11] and calculated neutron density distributions of **Pb. The proton and neutron

density distributions based on the self-consistent HF calculation [56] and 2pF distribution based on the pion-photoproduction experi-

ment [30] are shown for comparison.
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Table 2.
d3pF formulae and corresponding HF density.

Minimum, maximum, mean, sum, and sum of squares of the differences between the neutron densities calculated using the 2pF, 3pF, and

Minimum Maximum Mean Sum Sum of squares
2pF —6.27E-3 2.81E-3 —1.20E-3 —0.14518 8.09E-4
3pF —3.63E-3 9.20E-3 7.82E-4 0.09457 9.77E-4
d3pF —3.54E-3 2.67E-3 —2.25E-4 —0.02726 1.90E-4
T T —-I—ZI;F ferences sum of squares. The differences sum of squares
0008 —e—3pF reflects the total absolute difference regardless of the dir-
—&— d3pF| ection. The values of the differences sum of squares for

%
g
/
/
/
/
/
/
/
/
/
/
/
¢
%

AT

N

12
7
7
7
7

7
7
7
’
7

|

r [fm]

Fig. 2.
HF neutron density distributions. The three bars on the right

(color online) Differences between the calculated and

represent the difference between the highest and lowest val-
ues corresponding to the 2pF, 3pF, and d3pF distributions,
respectively, from left to right.

erage or total difference between the HF distribution and
other distributions. The mean difference for the 2pF dens-
ity is —1.20x 1073 fm >, indicating that it predicts lower
density rather than the HF density for most of the data
points. For 3pF, the mean difference is 7.82x 1073 fm
which indicates that it predicts higher density rather than
the HF density for most of the data points. The mag-
nitude of mean difference for the 3pF distribution is 6
times greater than that of 2pF, which indicates that the
density predicted by the 3pF formula is, on an average,
farther from the HF density when compared with the
density predicted by the 2pF formula. The mean differ-
ence for the d3pF density is —2.25x 107* fm >, which is
closer to zero than the other two densities. Thus, the d3pF
formula predicts a neutron density close to the HF dens-
ity, in terms of value and shape, better than 2pF and 3pF.
The sum of the differences for each dataset demonstrates
the distribution of the data points on either sides of the
zero difference. The closer the sum of the differences is
to zero, the more symmetric the distribution about zero.
The values of the sum of the differences indicate that the
differences in the d3pF distribution are more symmetric
about zero than the other two distributions.

The sum of the differences cannot indicate whether
the difference values are, in total, large or small. To es-
timate the total difference, the amount of dispersion about
the zero difference can be assessed by calculating the dif-

2pF, 3pF, and d3pF are 8.09x107*, 9.77x107*, and
1.90 x 1074, respectively. Hence, the d3pF density shows
the lowest dispersion about the HF density, followed by
2pF and 3pF, respectively. Although the 3pF formula en-
hances the calculation of the total energy compared with
that of the 2pF, the 2pF formula demonstrates a better
distribution for the **Pb nucleus compared with that of
the HF density. The d3pF formula outperformed the oth-
er two formulae in estimating the total energy and infer-
ring a better density distribution.

4 Summary and conclusion

In this study, the neutron density distribution of the
**Pb nucleus is investigated assuming that the proton
density distribution is constrained to its experimental dis-
tribution. The total energy surface in a seven dimension-
al space is calculated in the framework of a semi-micro-
scopic approach based on the Skyrme interaction and
Strutinsky's shell and pairing corrections. The neutron
density distribution is considered in the form of 2pF, 3pF,
and d3pF parameterized distributions. The ground state
binding energy and neutron density distribution paramet-
ers are obtained from the energy surface for the three dis-
tributions considered in the study. As the number of de-
grees of freedom in the density formula increases, the cal-
culated total energy decreases. The difference between
the total energies calculated considering the 2pF and 3pF
formulae is 3.25 MeV, while the difference between the
total energies calculated considering the 3pF and d3pF
formulae is 1.09 MeV. Although the added energy owing
to the d3pF formula in relatively small, it is significant
because it allows for a central fluctuation.

Comparing the three results with the experimental
total energy, we determined that the difference between
the calculated energy and experimental value decreases
with an increase in the number of parameters. The smal-
lest difference of 0.19 MeV is obtained in the case of
d3pF.The calculated values of the rms radius correspond
with the experimental values of the parity-violation and
proton scattering experiments, while the neutron skin
thickness values were smaller than the experimental val-
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ues. The inferred d3pF neutron density distribution agrees
with the pion-photoproduction experiment in the neutron
skin thickness and diffused component of the distribution.
A comprehensive comparison of the calculated neutron
densities with the HF density showed that replacing 2pF
with 3pF does not improve the overall density distribu-
tion predicted for the *®pb nucleus. However, it im-
proves the calculated total energy. Considering the d3pF
density improves the calculated total energy and neutron
density distribution.

The main objective of this study was to propose the

use of reliable experimental findings to guide the results
of theoretical calculations. The same principle can be ap-
plied to other theoretical models from the simplest to the
most complex. Applying this principle on the semi-mi-
croscopic approach in this study fairly improved the neut-
ron density of the **Pb nucleus and ground state total en-
ergy. The approach of constricting to experimental val-
ues may yield more promising results with other models,
but the proposed approach needs to be extensively stud-
ied to investigate its significance.
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