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1 Introduction

Owing to the special relativity, inertial frames are
well tested and understood. The principle of relativity in-
dicates that physical equations remain the same in all in-
ertial frames. For non-inertial frames, there is a general
principle of relativity; namely, the physical equations re-
main the same in arbitrary reference frames. This prin-
ciple should involve all non-inertial reference frames.
However, even uniformly accelerated reference frames
are not yet understood well [1]. Moreover, different uni-
formly accelerated reference frames are set up from dif-
ferent points of views [2—6].

Propagation of light in non-inertial frames provides a
way for testing relativity in non-inertial reference frames.
The Sagnac effect states that in a rotating reference
frame, counter-propagating rays that propagate around a
closed path would take different time intervals [7, §].
This can be described by the Born metric, known as a re-
lativistic effect [9—11]. Likewise, does a similar effect ex-
ist in uniformly accelerated frames? As we know in the
view of inertial observers, accelerated detectors would
observe a time-dependent redshift of light from a co-
moving source. Could the redshift drift be observed in
uniformly accelerated reference frames as a relativistic
effect?

In order to answer these questions, a metric of uni-
formly accelerated reference frames should be given ex-
plicitly. Rindler coordinates [3], also named as Mgller co-
ordinates or Lass coordinates [2], are generally used in
uniformly accelerated reference frames. As rigid coordin-

ates, they do not present a redshift drift. This seems not
consistent with the observations from inertial observers.
Huang [12] suggested that the redshifts without a drift in
Rindler coordinates should be attributed to the norms of
four-accelerations, which are not the same for all co-mov-
ing observers. Besides, Minser, Thorne, and Wheeler
(MTW) [13] derived Mgller coordinates with the hypo-
thesis of locality. This indicates that Rindler coordinates
are in fact local frames. The redshift drift might be a
higher order effect. All these considerations motivated us
to construct an alternative uniformly accelerated refer-
ence frame that is different from Rindler coordinates and
the local frame [1, 5, 13-16].

In this study, we investigate an adapted coordinate in
which all co-moving observers have the same norms of
four-accelerations. Explicit metric and coordinate trans-
formations are obtained. Moreover, the redshifts for co-
moving observers in the new uniformly accelerated refer-
ence frames are calculated. Using the new proposed uni-
formly accelerated frames, we investigate a possible Un-
ruh effect and show a non-thermal distribution perceived
by the uniformly accelerated observers in Minkowski va-
cuum.

This paper is organized as follows. In section 2, we
review the redshift between co-moving objects in a non-
relativistic approximation and in Rindler coordinates. We
find that there is a redshift drift in the non-relativistic ap-
proximation, whereas this is not in the Rindler coordin-
ates. In section 3, we present the construction of a uni-
formly accelerated reference frame as well as its features.
In section 4, we provide explicit metrics of the acceler-
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ated frames. The redshift drift and the possible Unruh ef-
fect in the accelerated frames are studied. Finally, conclu-
sions and discussions are summarized in section 5.
Throughout, we use the convention that ¢ = 1.

2 Redshift drift and uniformly accelerated
reference frames

We suppose that two light sources A and B and a de-
tector are fixed on a carrier. Light source A is located at a
distance L on the right of the detector, whereas light
source B is located on the left of the detector. The schem-
atic is shown in Figure 1(a). We know that no redshift is
observed by the detector when the carrier undergoes an
inertial motion. This would be different when the carrier
undergoes a non-inertial motion (see Figures 1(b) and
(c)).

In this section, we firstly review the redshift in a non-
relativistic approximation and in Rindler coordinates.

2.1 Non-relativistic redshift for accelerated observers

As time is absolute in non-relativistic kinematics, the
frequency of light is universal in different reference
frames. This indicates that a redshift calculated in a labor-
atory reference frame is equal to that calculated in the ref-
erence frame for a moving detector.

We consider that light source B is assigned to the left
of the detector at a distance of L. The carrier undergoes a
uniformly accelerated motion to the right. This is shown
in Figure 1(b). The source emits a photon at ¢/, and the
detector observes the photon at 7. In the non-relativistic
approximation that ar < 1 and L < 1/a, the processes can
be formulated as

(t—1)— %a(z‘Z - =1L, (1)

where «a is the acceleration of the carrier. There is a dif-
ference in the time intervals of the emitted and received
photons. Using Eq. (1), we have the ratio of the time in-

tervals,

At 1-at (1 -at)*-2aL
— = . 2
AY 1—at 1—at @)

From Eq. (2), the redshift, z_, is given by

At alL

7. = —1= ———+0((al)?. 3
A7 (1 —ar? ((al)?) (3)

It shows that the redshift is time dependent and will
increase with time. Likewise, we consider light source A
located on the right of the detector. It will observe a blue-
shift from the source, which is given by

aL

(A +an?

This shows that the blueshift is also time dependent.
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Fig. 1.  (color online) Schematic of redshift drift in uni-

formly accelerated reference frames. Light sources A and B
and detector are fixed on carrier. Panel (a): No redshift is
observed by detector when carrier undergoes inertial mo-
tion. Panel (b): When carrier moves to right with constant
acceleration a, detector will observe redshift from source B
and blueshift from source A. Panel (c): Observed redshift
and blueshift will drift with time, if carrier remains in uni-
formly accelerated motion.

With time, the blueshift would become lower. The red-
shift and blueshift drifts are illustrated in Figure 1 from
process (b) to (c). In non-relativistic kinematics, this
should be understood as a Doppler effect, because there is
a difference in the velocities when the ray is emitted and
received. However, in the reference frames for the carrier,
the difference in the velocities might not be perceived.
The redshift drift in the accelerated frames should be un-
derstood as a relativistic effect. We will show this in sec-
tion 4. The situation is similar to the understanding of the
expansion of the universe.

In most cases where ar < ¢ =1, the redshift and the

blueshift would reduce to the most common version,

alL

namely, z. = ¢C—2.

2.2 Redshift in Rindler coordinate

In relativity, a uniformly accelerated motion is de-
scribed by a constant norm of a four-acceleration for a
worldline. In the #—x diagram, a uniformly accelerated
motion is a hyperbolic motion, as the trajectory of the
uniformly accelerated motion is a hyperbola, which can
be of the form,

1
- =-. (5)

The hyperbolic motion can be described by the fol-
lowing equations:

du® 1
P
1 ()
du 0
rrl

where «° = dt/dr, u' =dx/dr, and 7 is the proper time.
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Using the normalization condition of «, one can find that

the norm of a four-acceleration du*/dr is a constant a. A
solution of Eq. (6) can be obtained,

{uo = cosh(ar), ™

u' = sinh(ar).

Under a specific initial condition, the parametrized

trajectory of a uniformly accelerated motion can be of the

form,

t= l sinh(ar),
“ ()

1
x = — cosh(ar).
a

Another point of view for a uniformly accelerated
motion in relativity is from electrodynamics [16]. The
equations of motion for a charged particle are of the form,

O = gy, ©)

dr m
where F! is the electromagnetic tensor and m and ¢ are
the static mass and charge of a particle, respectively. We
consider a uniform electric field in the direction of x-axis.
For simplicity, we ignore other spatial coordinates. The
potential is given by A, =(Eox,0), where Ey is the
strength of the electric field. From the potential, the elec-
tromagnetic tensor is of the form,

R P (10)
Ey
Eq. (9) can be rewritten as
d_uo _ quul
dr m (11)
du'  Eoq
— =—Uu.
dr m

For charged particles, the equations of motion are
shown to be the same as those for a hyperbolic motion

. . E
with acceleration a = ﬂ.

m
A Rindler coordinate might be the most commonly
used uniformly accelerated frame. The metric is given by
ds? = —X?dT? + dX* +dY? + dZ%. (12)
The coordinate transformation between
frames and Rindler coordinates is of the form,
t = Xsinh(aT),
x = Xcosh(aT),
y=1
z=27.

inertial

(13)

From Eq. (8), the coordinate transformation suggests
T ~ 7. Namely, the coordinate time of a uniformly accel-
erated frame has a similar status of proper time for co-
moving observers. Form this point of view, there are oth-
er coordinates that may be regarded as uniformly acceler-
ated frames. The general transformation between Rindler

coordinates and inertial frames is given by
t = f(X)sinh(aT),
x = f(X)cosh(aT),
y=Y,
z=72.

(14)

where f(X) could be understood as different rulers of

1
space. If f(X) = - + X, they are the so-called Moller co-

. . 1
ordinates. Moreover, if f(X)= —e%, they are the so-

called Lass coordinates [2]. In general, the metrics are of
the form,

ds? = —a* f2AT? + (f)*dX? +dY? + dZ2. (15)
However, it should be noted that the norms of four-

accelerations are not the same for different co-moving
observers. They depend on coordinate X of the observers.

. 1
For example, if f = — + X, the norm of the four-accelera-
a
tion is given by

1 a
\VEwa'a’ = m =Trax’ (16)

If we wish to construct a uniformly accelerated frame
based on a picture of a charged particle in a uniform elec-
tric field, the norms of four-accelerations should be con-
stant for all the observers located at arbitrary positions.
This led Huang and Guo [4] to construct new types of
uniformly accelerated frames; in these new frames, the
norms of accelerations for co-moving observers are the
same constant, a. Another understanding of Eq. (16) was
given by MTW [13], who derived Mgller coordinates
with the hypothesis of locality. At the location where
X < a”!, the norms of four-accelerations for different co-
moving observers are nearly the same constants. This in-
dicates that Rindler coordinates are in fact local frames.

Observables in Rindler coordinates are redshifts
between co-moving observers [17], which can be given by

X 1 X
o=y 8O IraX x-xy, )
gTT(X') 1+aX’

where X and X" are the fixed positions of the detector and
the source, respectively. The redshift is time-independent
and is different from that calculated in the non-relativist-
ic approximation, Eq. (3).

Huang [12] suggested that this difference is origin-
ated from Eq. (16) that norms of 4-accelerations are not
the same constant for all co-moving observers. For their
new kind of uniformly accelerated reference frames with
the same accelerations for co-moving observers [4], the
redshift was shown to be time-dependent.

3 Uniformly accelerated reference frame

The construction of the alternative uniformly acceler-
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ated references was based on a 3+1 formalism in adapted
coordinates, which is also different from the uniformly
accelerated reference frames suggested by Huang [4].

For simplicity, the accelerations of the frames are set
along the x direction. A coordinate transformation
between the uniformly accelerated frames and the iner-
tial frames is expected in the form,

T=T(,x),
X =X(t,x),
Y=y,
Z=z,

where T, X, Y, and Z are the coordinates of the uniformly
accelerated frames, and ¢, x, y, and z are the coordinates
of the inertial frames. For an accelerated frame, we ex-
pect that a type of principle of relativity should be satis-
fied.

Axiom 1 The co-moving observers in the uniformly
accelerated frames undergo uniformly accelerated mo-
tions with respect to the inertial frames.

Axiom 2 The co-moving observers in the inertial
frames undergo uniformly accelerated motions with re-
spect to the uniformly accelerated frames.

A uniformly accelerated motion in the axioms is for-
mulated as Eq. (6). We would use axiom 1 for construct-
ing the uniformly accelerated reference frames. This sug-
gests that the uniformly accelerated observers defined in
the inertial frames should move attached to the acceler-
ated reference frames. In the following, we verify axiom
2 by the fact that the geodesics in uniformly accelerated
frames can be formulated as uniformly accelerated mo-
tions.

(18)

3.1 Construction of uniformly accelerated reference

frame

In the 3+1 formalism, four-velocities u of accelerated
observers are normal vectors of a space-like hypersur-
face X7, which is formulated as

u,dx* = —NdT, (19)

where N is the so-called lapse function and N > 0. A uni-
formly accelerated frame is adapted to u. Moreover, we
set that the u is along the direction of the x-axis, namely,
u? = u’ =0 for simplicity. T is the coordinate time of the
uniformly accelerated frames. The transformation for dT'
can be written as
0 1
dT = “dr— “dx. (20)
N N

0 1
This suggests that 97 = MN and 0,T = MN N as an in-

tegrating factor ensuring that differential form d7 is in-
tegrable. Because d? = 0, Eq. (20) leads to

0 1
P} (%)wo(“ﬁ) = 0. Q1)

The transformation for X at present is arbitrary, which
can be written as

dX = doXdt + 9 Xdx. (22)

For coordinates Y and Z, the transformations are re-
spectively given by dY =dy and dZ = dz. From Egs. (20)
and (22), we obtain the inverse transformations for d¢ and
dx,

N 1
dt = —— |01 XdT + u—dX s
w00 X +uldpX N (23)
dx = N _ooxdT + " ax
T W09 X +uldpX 0 N '

With the transformations, one can obtain the metric of
the uniformly accelerated reference frames,
ds? =—dr? +d +dy? +d2?
N2
(W08, X + 1 8X)°
1 2
+—dX* - = (u9pX +u'd, X)dTdX
N2 N
+dY? +dZ2. (24)
From axiom 1, accelerated observer u should be a co-
moving observer of the uniformly accelerated frames,
namely,

(=01 X7 +(@x)")dT?

dx
WX +u'o1 X = — =0. (25)
dr

1
——— b ki
Cub9 X +uld X’ Y making
use of Eq. (25), we can rewrite dpX and 81%( as
1

Moreover, if we set y=

00X = —u—,
) (26)
u
hX=—.
Y

Using Egs. (23), (24), and (26), we know that the

metric is reduced to
ds? = —=N2dT? +y*dXx> +dY? + dZ°. (27)

In the adapted coordinates, condition axiom 1 guaran-
tees that the metric is always diagonal. This is different
from the uniformly accelerated frames suggested by
Huang [4].

One may wonder how much this is related to the 3+1
formalism. In general, a metric in the 3+1 formalism can
be written as

ds? = —N2dT? +y,;(8'dT +dX')(B/dT +dX/), (28)
where y;; is the reduced metric and ' is the so-called shift
function. Owing to axiom 1, 3 is shown to vanish. As we

dx .
know 8% = NuX = Nd_ =0 and u' = u? =0, this leads to
. T
B' = 0. We can rewrite the metric in Eq. (28) as
ds? = —-N2dT? +y;;dX'dX/. (29)
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Comparing it with Eq. (27), one can find that the re-
duced metric, y;; , in the accelerated frames is of the

form,
72
1

As vy also functions as an integrating factor, we prefer
¥ to ¥;; in our derivation.

In the metric in Eq. (27), there are two unknown
fields, goo and g1, which depend on the choice of the
four-velocity, u. Here, we consider uniformly accelerated
reference frames. Namely, u is described by Eq. (6),
which can be rewritten as

du! 1

1 0
[ — . 1
N(?Tu au (3 )

By making use of Eq. (26), we rewrite Eq. (21) in
terms of the coordinates, (7, X, Y,Z),
u® u' 1.1 a
01 (ﬁ)+80(ﬁ)— ;6XN+N =0. (32)

As d’X =0, it leads to an equation as follows:

1 0\ 1 1 1
al(“—)mo(”—): —aT(—)+—zaxu‘ —0. ()
U

4 y) N \y) wuoy
We rearrange Eqgs. (31), (32), and (33) as
OxN = aNv,
6TG = aN, (34)
axG = %0T’y,

1 .

where we set G = —au'. As u'u,=-1, it leads to
u

G = arcsinh(u'). Associaoting it with Eq. (7), we find

G =ar. (35)
Then, Eq. (34) can be rewritten in a natural manner,
OxN = aNy,
ore=n (36)
OxT = Eaﬂ/'

The solutions of Eq. (36) provide an explicit metric of
the uniformly accelerated reference frames. The expres-
sion of the coordinate transformation depends on N, vy,
and proper time 7. From Egs. (20), (26), and (35), the co-
ordinate transformation, which takes the form of Eq. (18),
can be derived from

dT = cosh(ar) o sinh(ar) dx.
N N
inh sh
dX = — sinh(art) i+ cosh(ar) dr. 37)
Y Y
dY =dy,
dZ =dz.

Besides the diagonal, there are other features of the
metric from Eq. (36). Firstly, the metric must depend on

coordinate time 7. This indicates that the Rindler metric
cannot be included in our uniformly accelerated frames.
Secondly, N =1 isnot permitted. This means that co-
ordinate time 7 of the uniformly accelerated frames is not
the proper time for co-moving observers. This could be
understood by analogy. In the Schwarzschild space-time,
one might not require that the coordinate time for a co-
moving observer be a proper time, because there is grav-
ity. In the uniformly accelerated frames also this is the
case, because there is a fiction force.

From Eq. (36), we may prove that the metric (Eq.
(27)) is a solution of vacuum Einstein equations. We can
start to check this by calculations of the connection,

orN
Tfp ="
T N
OxN
| A
TX N ay
r _ Yory
Iyx = N2
x _ NoxN _aN? (38)
T = 5 = ,
Y Y
ory
X, = -~
TX y
Oxy
iy =—,
XX y
others = 0.

Non-trivial components of the Ricci tensor are given

by
1 OxN 0
Rrr=— (Nyzax(x—)—NyzaT(ﬂ)),
Y Y N

1 OxN 0 (39)
Ryx = — [—yN?0x | Z= |+ yN2a, [ Z2X)).
XX N3(7 X( Y )‘H’ T(N
From Eq. (36), one has
0
or (%) = a’Ny, o
N
Ox (ax—) = a’Ny.
Y
This causes the Ricci tensor to be zero,
Ry =0. (41)

Namely, the metric of the uniformly accelerated
frames is a solution of vacuum Einstein equations. The
checking process seems trivial, as the Einstein equation
always allows coordinate transformation as a gauge sym-
metry.

3.2 Inertial motion in uniformly accelerated frame

In subsection A, we have constructed the metric of
the uniformly accelerated frames with axiom 1. The ax-
iom presents an equivalent description for uniformly ac-
celerated motions in different reference frames. On the
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other side, an inertial motion also requires an equivalent
description. This suggests that the inertial motion should
be formulated as a uniformly accelerated motion in the
view of a uniformly accelerated frame.

We consider the inertial motion in the uniformly ac-
celerated frame at the 7—X plane,

dr cosh(ar) 3 sinh(ar) dr
dr 0 _ N N dr 0
ax |7 sinh(at)  cosh(ar) dx | (42)
dr 0 Y Y dr 0
dr dx) . . .
where | —, —— is a constant velocity vector, 7 is the
dr 0 dr 0

proper time of co-moving observers in the inertial frame,
which is distinguished from 7 proper time for the uni-
formly accelerated observers. From Egs. (36) and (42),

one can obtain
d N T\ _ u dx
dr\ dry) yd‘ro ’

d( dx dr
—|y—|=-aN—.
dr \" drg dto

(43)

dr dx
If we set v7 = N— and v* = y——, then Eq. (43) reduces
¢ dTo dTo
0

T
(44)
dv¥ ——aT
dr

From Eq. (44), the inertial motion in the view of the
uniformly accelerated frames can be formulated as a hy-
perbolic motion with a reverse acceleration. Using Eq.
(42), one can verify that ar and a satisfy geodesic

dr 0 dr, 0

equations in the accelerated frames. All these indicate
that axiom 2 is verified. In addition, the redefinitions of
the covariant velocities(v”, %) are insightful. In curvilin-
ear coordinates, this is exactly the standard definition of a
vector, where N,y are the so-called Lamé coefficients.
Moreover, in the tetrad formalism, one may find
v = ezu“.

3.3 Features of uniformly accelerated reference frames

3.3.1 Frenet-Serret frames

The Frenet—Serret frames describe the evolution of
the frames along the worldline of the observers. It can be
generally written as

€y K €0

D] e K T €

dr| e |~ -7 b er | (45
e3 -b €3

D . . .
where 3 s the covariant derivative, e, represents the
T

vector bases of the frames, and «, 7, and b are the so-
called curvature and torsions of the worldline of the ob-
servers in the Lorentz manifold, respectively.

Our uniformly accelerated frames can be expressed in
terms of the Frenet—Serret frames, in the tetrad formal-
ism. Firstly, we rewrite coordinate bases d, as tetrads e,
which are formulated as e, = ¢,0,. In the uniformly accel-
erated frames, the tetrads can be given by

1

= —0r,
€0 N T
) (46)
€1 =—- >
y X
ez = Oy,
e3 = 62.

One can find that « = a, T = b = 0 for our uniformly ac-
celerated frames, namely,

2 0 a 2
D] ¢ a O e
- = . 47
dr| e 0 e “7)
e3 0 ]

The curvature of the moving frames is exactly the
constant acceleration, a, in our uniformly accelerated
frames, whereas Rindler coordinates cannot be described
in terms of the Frenet-Serret frames with tetrads.

3.3.2 Kinematical quantities
The congruence of co-moving observers u indicates a
deformation of the space—time. The difference between
the worldlines of co-moving observers can be described
in terms of deviation vector y*, which satisfies
[ux V' =w’Voxt ="V =0. (48)
For the spatial distance of y*, namely, ¥* = ¥, x", the
evolution of ¥# indicates the spatial deformation of the
reference frames,
BC e (gorotent), 49)

D . . . . .
where i v*V, is the spatial covariant derivation with

respect tTo u. 0,0, and w), are the so-called kinematical
quantities and named after the expansion scalar, shear
tensor, and rotation tensor, respectively.
In the accelerated frames, co-moving observers u are
given by
u, dX* = (-N,0,0,0) . (50)

The covariant derivative of observers u can be de-
composed into acceleration, expansion scalar, shear, and
rotation tensor,

1
Vyu, = —uya, + g@)fw + Oy + Woys (51)

where,
aﬂ = VMI,{H, (52)
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0=V,u, (53)

1 1
O = E(V#uv +Vouy, +uw, Vo, +u,Vyu,) - 597},,,, (54)

1
Wi = 5 VeV (Vrtty = V). (55)
From Egs. (29) and (52), the accelerations of co-mov-

. . a

ing observers are given by ¢ = &, —. The norms of the ac-
. Y

celerations are

lal = \gna'a’ =a. (56)

This shows that the accelerations of any co-moving
observers in our uniformly accelerated frames are the
same constant acceleration, a, which is different from that
in Rindler coordinates (Eq. (16)).

We present the expansion scalar, shear tensor, and ro-
tation tensor in the following:

Wy =0,
0
0= NL”
Y
0 (57)

The vanished rotation tensor indicates that co-mov-
ing observers u are Eulerian observers. There is a simul-
taneous hypersurface Xr orthogonal to all the co-moving
observers.

From Egs. (48), (49), and (57), the evolution of the
spatial deviation vector is given by

(0

Dy 0

X _ v. 58

dr o ¥ 58)
0

It shows that there is a spatial deformation between
the co-moving worldlines in the direction of the X-axis.
In the uniformly accelerated frames, it can be understood
as a non-inertial effect. The fiction force can affect the
deformation of the space.

Evolutions of these kinematical quantities are de-
scribed by the Raychaudhuri equations. In our uniformly
accelerated frames, the equations can be deduced from
Eq. (36). It did not lead to any constraints for construct-
ing the uniformly accelerated frames.

4 Explicit solutions

Now, we try to obtain the solutions of Eq. (36).
Moreover, using these solutions, we calculate the red-
shift drift between co-moving objects and the possible
Unruh effect in the accelerated frames. As there is noth-

ing special in the directions of the Y- and Z-axes, we con-
sider two-dimensional metrics for simplicity.

4.1 Hyperbolic metric and redshift drift

The components of the metric turn to be hyperbolic
triangle functions, when the uniformly accelerated ob-
server, u, is just a function of coordinate time ¢, namely,
u = u(?). Associating it with Eq. (36), we get the metric as

d7? dx?
-—— + 5 . (59)
sinh“(—a(T + X)) tanh“(—a(T + X))

As N >0, it leads to —a(T +X) > 0. Transformation
from the inertial frames to the accelerated frames is of the
form,

ds* =

1
I= dsinh(—a(X + 7))’

1
T dtanh(—a(X+ 1))’

From Eq. (36), we can obtain proper time 7 for the
co-moving observers in the accelerated frames,

1
sinh(—a(T + X))

Egs. (59) and (61) lead to sinh(ar)=at=N >0.
If a > 0, the accessible region of space—time is that with
7,t > 0. Namely, the reference frames undergo uniformly
accelerated motions from r=0. The coordinate lines of
the uniformly accelerated frames in the /—x plane are
presented in Figure 2.

The metric in Eq. (59) can describe the reference
frames of the carrier in Figure 1, so that we can recon-
sider the redshift drift in the uniformly accelerated refer-
ence frames. The reference frames move with constant
acceleration a to the right, and light source B on the left
of the detector co-moves with the carrier. The source
emits light that is along a null curve. By utilizing the met-
ric in Eq. (59), we obtain the equation of trajectories of
the light,

(60)

x=X

1 1
T= —arcsinh( ) = —arcsinh(ar). (61)
a a

Fig. 2. Coordinate lines of uniformly accelerated frames in
t—x diagram. In case of a > 0, accessible region for acceler-
ated frames is that with 7 > 0.
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1 N 1 dx

sinh(—a(T + X)) ~ tanh(—a(T + X)) dT

In this case, only forward-propagating light reaches

the detector. Namely, the ~_» in Eq. (62) is required to be
chosen. Then, the trajectories are obtained

0. (62)

tanh(—g(T +X)) = —a(X—-X)+ tanh(—g(T’ + x')) . (63)

where the detector and the source are fixed at spatial co-
ordinates X and X', respectively, where X > X’. From Eq.
(63), it takes different time intervals, when two light sig-
nals are emitted and received. The ratio can be given by
AT cosh? (—g(T+X))
AT’

B cosh? (—g(T’ + X’)) ’ (9

where AT’ and AT are the emitted and received time in-
tervals, respectively. Using Egs. (59), (61), (63), and (64),
we can derive the redshift [18] observed by the detector
in the uniformly accelerated reference frames,

Ar 217 (T, X)AT

:ATI_ T VAT,

 err (T X)HAT

-

tanh(—f(T' +X’))
_ 2 1

- a
tanh (_E(T + X))
=a(X - X")cosh(ar) . (65)

It shows that the redshift drifts with the proper time of
the detector. There is an additional factor cosh(ar) com-
pared to the result in Rindler coordinates, Eq. (17). With
time, the redshift would become higher and finally tend
to infinity.

Similarly, we can consider light source A on the right
of the detector in Figure 1. The result shows that a blue-
shift, namely, z < 0, is observed by the detector,

a(X-X")
“= cosh(ar) (66)

In this case, X < X’, and the blueshift would become
lower with time until it vanishes.

These results, Eqs. (65) and (66), are consistent with
Huang's [12] and those in the non-relativistic case, qualit-
atively. Namely, there is a redshift drift in the uniformly
accelerated reference frames. Further, we compare all
these results in detail, which are summarized in Table 1.
We recover the speed of light, ¢, in the formulations, and
set | X’ — X| = L for consistency.

In Figure 3, the redshift and blueshift are presented as
functions of the proper time. In the non-relativistic case,
time ¢ is absolute. Therefore, we did not distinguish it
with the proper time. The results of Mpoller coordinates
and the non-relativistic approximation case are contrast-
ing, which are independent of and sensitive to time, re-
spectively. The redshift calculated with the hyperbolic

! -0.70 .
1.5 ]z
L -0.75
1.4 cosh(2) ’
: ~0.80
NERR ] —0.85
1.2 0,90
11 -0.95) /.
0| P ~1.001£

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

at at

c [
Fig. 3.  Redshift (left panel) and blueshift (right panel)
between co-moving objects in uniformly accelerated refer-

ence frames as functions of proper time.

Table 1.

uniformly accelerated reference frames calculated with different ap-

Redshift z_ and blueshift z, between co-moving objects in

proaches.
z- Z+
Maoller coordinate [17] ak —aL
C C
s -2 -2
. L t L t
Non-relativity %(1_%) _%(1+u?)
L -
Huang's [12] %e“% _dL -
C &
Hyperbolic metric ‘Z—é cosh ( “« ) - %L 7005111( y

metric is close to that calculated in Rindler coordinates.
In the non-relativity case, it turns to be meaningless when
at 2 c¢. In the relativistic case, there is no limitation, as ar
is not a three-velocity.

4.2 Conformally flat metric and Unruh effect

By making use of Eq. (36) and constraint N =y, we
get a conformally flat metric,
2 1
P
a*(T +X)?
As N >0, it also leads to —a(T + X) > 0. Transforma-

tion between the inertial frames and the accelerated
frames is given by

(-dT? +dx?). (67)

1 1
=5 T
= l (—; -T+ X)
AWED
Proper time 7 for co-moving observers can be ex-
pressed in terms of the space—time coordinate,

1 1 1
7=-In (—m) = ; 1n(a(t+ x)) (69)

a

(68)

The coordinate lines of the uniformly accelerated
frames in the #—x plane are presented in Figure 4.

The Unruh effect states that in uniformly accelerated
frames (Rindler coordinates), the co-moving observers

075103-8
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Fig. 4.
t—x diagram. In case of « > 0, accessible region for acceler-

Coordinate lines of uniformly accelerated frames in

ated frames is that with 7+ x> 0.

would perceive a thermal distribution of the Minkowski
vacuum [19-21]. The temperature of the distribution is
proportional to the constant acceleration, g, in Rindler co-
ordinates. In this subsection, we use the metric in Eq. (67)
to calculate the possible Unruh effect. For simplicity, we
consider a massless Boson.

The Klein—Golden equation for a massless Boson is
given by

V,Vi¢ =0, (70)

where V,, is the covariant derivative. With our metric, the
equation of motion can be written as

WYV ,p = ——— (02 1
g u a2(T+X)2(a¢ HK$=0, (1)

namely,
Rp—-0%4=0. (72)

It is the same as the Klein—Golden equation in a flat
space—time. The solution of the equation can be given by

¢= \/% f Q{52 — K2)d(ko, ke (kT R0Y (73
T

It can be expanded as

dk (B IHT R0 | o=iCIKIT kX))

= V2r f 2Ikl
(e o IT-X) | B lk(T+X)
= =

+¢—ke ik(T+X) +$_keik(T—X)} — ¢_ +¢+ , (74)

where

¢+ \/z_f ¢ e—]k(T+X)+¢ elk(T+X)} (75)
T

We focus on left-moving sectors ¢, of the field. Dif-
ferent sectors ¢_ and ¢, would not interact with each oth-
er [22]. We quantize ¢, in the form of

A 1 < dk . T
¢ \/2_ m{bke—lk(T+X) + bzelk(T+X)}’ (76)
T

where b is a ladder operator satisfying canonical com-
munication relations,

[b,b},1=6(k—K), others=0, (77)
and
bil0A) =0, (78)

where |04) is a vacuum state in the uniformly accelerated
reference frames. The mode function is read from the
field operator in Eq. (76),

e—ik(T—*—X). (79)

(T, X) =
Ark

On the other side, we know the field operator of a
left-moving sector in a flat space—time,

1 < dp
Vo Y

where a, is a ladder operator. The canonical communica-
tion relations are given by

& {fl e—lp(t+x)+AT 1p(t+x)} (80)

[ap.a},1=6(p-p').
others =0 . 81
Moreover, one has
aploOm) =0, (82)

where |0y) is the Minkowski vacuum state. The mode
function is of the form,

fpt,x) = Tﬂp

The ladder operators in the accelerated and inertial
frames are related to the so-called Bogolubov transforma-
tion, which is given by

a, = f dk{a,br + 57,5} .

b= [ dptai,a,-5,3)).

where @y, and By, are the so-called Bogolubov coeffi-
cients satisfying the relations,

f dkarpay, = PP} = 6(p=p),
f dplag,aip =B Byt = k=K',
[ ka8, 81,01 =0,

fdp{azpﬁ,’;,p —Bip@ipt =0.

For the mode functions, orthogonal relations can be

e P, (83)

(84)

(85)
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derived from the so-called Klein—Gordon inner product,
@0 =i [ a6V -xT,0) (86)
b

One can find that
{(fp’fp) =8(p=p"), (fp.f;) =0,
(8k:8k) =0(k—K'), (8k.8;)=0.
In different coordinates, field operator ¢, remains the
same under the Bogolubov transformation. Thus, one can

derive the Bogolubov transformation for the mode func-
tions,

87

o= f Aplainfy +Bip ). (88)

From Eq. (88), the Klein—Gordon inner product can
be used to calculate the Bogolubov coeftficients,
{akp = (fp»80)
Bip = =15 8k)-
What the accelerated observers perceive in the
Minkowski vacuum is formulated as the expectation

value of occupation number operators N, of the acceler-
ated observers for the Minkowski vacuum state,

(OnINKlO) = (Ol BelOn) = f dpBuByy - (90)

(89)

It shows that the expectation value only involves the
Bogolubov coefficients, 8.

As in Refs. [22, 23], we use light-cone coordinates to
calculate the Bogolubov coefficients from Eq. (89) for a
given null hypersurface. The null coordinates are usually
closely related to radiation [24, 25]. Light-cone coordin-
ates of the inertial frames and the uniformly accelerated
frames are given by (u,v) = (t—x,t+x) and (U,V) = (T - X,
T +X), respectively. From Eq. (68) and the light-cone co-
ordinates, the transformation between the uniformly ac-
celerated frames and the inertial frames is obtained,

1
-—=. 91
2y On

In the light-cone coordinates, the metric of the accel-

erated frames can be rewritten as
1

ds? = —dudv = WdUdV. (92)

u=U, v=

We choose the null hypersurface as
®(U,V) = U = cosntant. (93)

One can find that it is the only non-trivial null hyper-
surface for calculating the possible Unruh effect, other-
wise it would lead to 8, = 0. The normal vectors of the
null hypersurface are null vectors, &, = —9,® = —5". We
use A to parametrize the integral curve (U(A),V(1)) of
&(2). As the null vector, &, is also tangent to the null hy-
persurface, A also can be used to parametrize the null hy-
persurface in the two-dimensional case. Thus, we can
solve the integral curve, (U, V), as

R (94)
V=20
Using Eq. (94), we obtain the volume elements of the
null hypersurface [26],

{ U = constant,

1
dZ = ¢, & = de, %95
where ¢,, is the Levi—Civita tensor and ¢* is an auxiliary
null vector satisfying ¢¢, =—1 and ¢#{, =0. From Eq.

(95), the directed surface element is obtained,
dst = —¢4ds = V. (96)

Here, we choose that a > 0. For the metric with N > 0,
it leads to V < 0.
Form Egs. (79), (83), (89), and (96), we can calculate
the Bogolubov coefficients,
0

(¢79% :(fp’gk) = lf dv

—00

—ikV 1 —-ikV

X ! e'P'dy, ! e e v ! e'PV
JipNamk aak
1 00 ) o, p 00 1 ) L
= kf dVe‘(""Wv)——f d(_)el(k‘/ﬂzv))
4 \/pk ( 0 a* Jo %

1

Y a1V
—— [ afp-1feVEnl
a Ji

CH)
and

Bup = (80 = —i f av

1 ; 1 . 1 ; 1 .
x e—lpuav e—lkV e_lkvav e v
{ 4rtp Vark Vark Varp

1 p foo (1) i(kv-+£) foo i(kV—”))
=- — d{= e @) +k dve 2
4ﬂ\/ﬂ (“2 0 4 0
:_L d n2+1{ez\/:¥i7]}.

2ra J_

(98)

With the tricks of 7 — e'“co and € > 0 [22], the Bogol-
ubov coefficients can be obtained explicitly,

I
@y = —Ki [—21',/’;—’2‘), (99)

1 pk
=——|1+iK{|2+]/ =
By 2na ( T ( a? )
Vs pk pk

113
+ 5031 (kzpz’

and

(100)
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where K| and I, are the modified Bessel functions of the
second and first kind, respectively, L; is the modified
Struve function, and Géf is the generalized Meijer G
function. The above shows that the Bogolubov coeffi-
cients, ay, and By, are completely different from those in
Rindler coordinates [19, 22, 23]. This suggests that the
expectation value might not be the form of that calcu-
lated in Rindler coordinates. We finally obtain the expect-
ation value in our uniformly accelerated frames as fol-
lows:

(OmINlOn) = f dpBiB;,

00 1 00 —
=f dp{(——f d 772+1{ez\/«_2"7})
0 2na J_qo
1 0 [T *
x(__f d nm{ezvmn})}
2na J_
—o [ o[ an [ ar
_Sﬂ'zk 0 X o 77 e T’

w4 X - | é’
V2 + 142 +1 k

[k
where y =2 —12? ,and
a
1 fo() fDO foo , X?]n’ ) .
A=— | dy | dp | dy{—=—=E——=er)
872 0 —00 —0c0 \H]z-l-l\ﬂ]/z‘i‘l

[
<— dydndn’ { 22— _jny| |
872 Jo Jowe oo KT iy a2 X,
(102)

Constant A is divergent. We use the trick of  — el€co
to obtain the last equal sign.

Firstly, this shows that the distribution of Eq. (101) is
independent of the acceleration for our accelerated frame.
Secondly, the expectation value of the number operator
for the Minkowski vacuum state is a non-thermal distri-
bution of k. The uniformly accelerated observers cannot
perceive temperature in the Minkowski vacuum.

(101)

00

5 Conclusions and discussions

In this study, we constructed new uniformly acceler-
ated reference frames based on a 3+1 formalism in adap-

ted coordinates for uniformly accelerated observers u.
The norms of four-accelerations of co-moving observers
are the same in the uniformly accelerated reference
frames. The inertial motion in the view of a uniformly ac-
celerated observer can be formulated as a uniformly ac-
celerated motion. Moreover, the space—time would be de-
formed by a non-inertial effect. We also presented expli-
cit metrics and coordinate transformations. In contrast
with Rindler coordinates, the redshift for co-moving ob-
servers would drift with time, in our accelerated frames.
This is consistent with earlier results [12]. Besides, we
calculated the possible Unruh effect and showed a non-
thermal distribution for the Minkowski vacuum state per-
ceived by the uniformly accelerated observers.

From our approaches, the constraint equations in Eq.
(36) for uniformly accelerated frames are under-determ-
ined. It results in that the metric of the reference frames is
non-unique. The degrees of freedom for different meas-
urements and synchronisation conventions are allowed.
Firstly, Eq. (36) is invariant under transformations
T — f(T) and X — g(X). This is owing to integrating
factor N and y being not unique. It indicates that the time
and distance can be measured with different clocks and
rulers. Secondly, there are different simultaneous hyper-
surfaces for the explicit solutions in Section 4. It sug-
gests different synchronisation conventions. Moreover, it
is rather interesting to explore what kinds of conventions
are physically operational.

After Huang [12] first suggested that a redshift drift
can be observed in uniformly accelerated reference
frames, we also provided a similar prediction with differ-
ent approaches. The redshift of a co-moving object is dif-
ferent from that in Rindler frames, because the co-mov-
ing objects of these reference frames are defined differ-
ently. As mentioned in Ref. [27], the concept of relative
velocities between non-inertial observers is usually am-
biguous. Thus, it is non-trival to obtain a convention for
co-moving objects via introducing physical reference
frames. Moreover, if a set-up of co-moving objects can be
realized in experiments, as shown in Figure 1, we might
expect that these results derived from different frames
can be tested in the future.

The authors wish to thank Prof. Chao-Guang Huang
for useful discussions.
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