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particle and two-hole configuration mixing is derived based on the Bethe ansatz approach. The Bethe ansatz equa-

tions are provided to determine the model's eigenstates and corresponding eigen-energies. N =2 and N = 4 cases are
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1 Introduction

The interacting boson model (IBM) has proven to be
extremely successful in the description of both the col-
lective valence shell [1] and multi-particle-hole [2—4] ex-
citations in nuclei. Most noticeably, the IBM Hamiltoni-
an without configuration mixing can be solved analytic-
ally in U(5) (vibrational), O(6) (y-unstable), and SU(3)
(rotational) limits [1], as well as in the U(5)—O(6) trans-
itional case [5]. In contrast, configuration mixing due to
multi-particle-hole excitations was considered to gain an
understanding of the shape coexistence phenomena by as-
suming different symmetry limits of the IBM for differ-
ent configurations [6—12], which has proven to be suc-
cessful in describing intruder states and shape coexist-
ence phenomena in near closed shell nuclei, typically
those around proton numbers Z~50 and Z~82 [2—4]. Re-
cently, the intruder configuration mixing schemes with
2n-particle and 2n-hole configurations from n=0 up to
n — oo in the U(5) (vibrational) and the O(6) (y-unstable)
limits of the IBM-I were proposed [13, 14], whose simple
Hamiltonians, suitable to describe the intruder and nor-
mal configuration mixing, prove to be exactly solvable
based on the SU(1,1) coherent states.

The configuration mixing schemes in the IBM [2—4]
can be considered in both IBM-II and IBM-I with no dis-
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tinction between neutron-type and proton-type bosons, as
shown in [7-10, 13—16]. In this study, we demonstrate
that the U(5)«>0(6) transitional Hamiltonian of the IBM-
I with two-particle and two-hole configuration mixing is
also exactly solvable based on the Bethe ansatz approach.
The results of N =2 and N = 4 cases are considered as ex-
amples to demonstrate the feature of the solution. To ap-
ply this theory, the model is employed to fit some low-ly-
ing level energies and B(E2) ratios of '%Cd.

2 Model and its exact solution

The Hamiltonian of the U(5)— O(6) transitional de-
scription in the IBM-I with two-particle and two-hole
configuration mixing is expressed as [2—4]

A= PNI:](()I)PN+PN+2FI(()2)PN+2+PﬁmixP, (1)

where Py and P are the projection operators, where Py
projects to the N-boson subspace, whereas P projects to
the subspace with N and N +2 bosons,

A =al’s0+d)s+g"s7s". 2)
For i=1 and 2, these are the U(5)— O(6) transitional
Hamiltonians [5], and

Huix = 85(ST+S5)+8a(S ] +57) 3)
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is the two-configuration mixing term. Here, S* =857 -S7
with 57 = Isand §%=1av-dar =1y, (- 1)#01T d,, where
s (s) and d (d,) are the creation (annlhllatlon) operators
of s- and d- bosons respectively, S = ( )T forp=sord,
S9=1(;+3) and S%=1(hg+ 2), respectively, with
ig=s'sand g =Y, d, de ,and oY, g7, g, , and g4 are real
parameters. The U(S)HO(6) Hamlltoman (2), which is
equivalent to the consistent-Q formulism of IBM but dif-
ferent from that used in Ref. [5], is in the U(5) (vibration-
al) phase when « ;t 0 and g” =0 or in the O(6) (y-un-
stable) phase when @) =0and g < 0. Because 2(a) - o)
is the energy gap of d- and s-bosons, ' is considered to
be zero. In a previous configuration mixing study,
A= 20/;2) - Zafjl) = 2a§2) - 2a§1) is considered according to
the energy of the lowest intruder state to reduce the num-
ber of parameters. The shape phase within the N-boson
and N +2-boson configuration controlled by the two sets
of parameters {a\, g} (i = 1,2) can be different in terms
of their descrlptlon of the shape (phase) coexistence.

The Hamiltonian (1) can be diagonalized in the
N& (N +2)-boson subspace, where the complete basis
vectors in each configuration can be considered as those
of U(6)oU(5)>0(5)>0(3) with |NnyvynL M), where N is
the total number of bosons, n, is the number of d-bosons,

v4 18 the d-boson seniority number labeling the irrep of
0(5), L is the angular momentum quantum number, M is
the quantum number of the third component of the angu-
lar momentum, and # is an additional quantum number
required to distinguish different states with the same L.
Moreover, the two sets of operators {S7, SO (p=s,d)
that are two copies of the SU(1,1) algebra, satisfy the
commutation relations

[Sp. S21=%08,085, [S,. S51=26,,5). (4)

Equivalently, for a given N, ny, v4, 3, L, and M, the
orthonormalized basis vectors [NngvysnL M) can also be
expressed as those of SU,4(1,1)®S U(1,1) with

IN, Evsvan LMy = (~DEN(S D TS 5 st van LM),
(5)
where ny=2&+v, and €=0,1,2,---,3(N—v4—v,) with
vy =0 or 1, where the normalization constant

V(27 +3)!! :
EIN—vy —2§)!(2vd+2§+3)!!)

The conventional phase factor (—1)¢ shown in Eq. (5)
for SU,(1,1) is adopted, which is consistent with the gen-
eralized pairing operator S* =57 -S57 used in Eq. (2).
The matrix representations of S U4(1,1)® SU(1,1) under
the basis vectors (5) are given by

2N—vd
N =

(6)

1
SaIN,EvsvanL M) =~ 3 VQE+2)2v+26+5)IN+2, £+ LvgvanL M),

S7IN.EvvanL M) =

SOIN, évsvanLM)

and

1
-3 2EQv +26+3)IN=2,6— Lvyvan L M),

1 5
=50a+28+ )N, Evevan LM), (7

1
S;r|N, EvsvanL M) =§ \/(N—vd—2§+2)(N—vd—2§+ DIN+2,évsvygnL M),

1
S¢IN,&vsvanLM) =3 VN =vq =26 (N = vy =26 = 1)IN =2, Evyvan L M),

1 1
SSIN, £V, vanLM) =3 (N =va =26+ )N, £vsvanL M). @®)

The eigenstate of Eq. (1) can be written as

I vgivan LMy = [W)vn LHS (")

k+1
5/()1/ nLl_[S (y(g))]lvs;VdULM% (9)

(9] (9] :
where @, oL and By s general, are complex num-

bers to be determinéd‘ ( labels the (-th set of solution

(9] . D (9] (9] ( :
{xf’ : xk( ,)’f, ’yki_l} V(VI,ILJ BVZV L |VSannLM> 1S
the boson pairing vacuum state satistying S, vs;vanL M)

for p = s and d, in which v,(=0 or 1), and

ST(x)=xST+S?, (10)

which is equivalent to the form used in Ref. [5] with a
linear transformation for x, where x is the spectral para-
meter to be determined. Using the commutation relations
(4), one can directly verify that

[gsS; +8aS7, ST(X)] =2g,xS0 +2g,85,  (11)

S*(x)

2x(gsy—
N x(8sy—8a)
y—x

2y(gsx—
[lgsSy +84S7, ST ST (] =y(g+y&])

ST,
(12)
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0 0 arr g @g—apx ,  agx+ag ., k1 Hk L= x,) K
[asSY+agSY, ST (x)] = T St + oo ST (x), l_[ST(x“) - Zkﬂ— STy, (18)
(13) =1 iy 0 =20 oy
[S7.8*(x)] = 2x8°-25°, (14) which can be proven using a mathematical induction on

k, as S*(x) and S*(y) are binomials of S and S. Using

(57, S 001, S )] = 2y(1+x) S + 2x(1 +y)S+(y). Eq. (17) with x,1 = —1, we also have
-y y—x (15) k+1 l—[,ﬁ (.,+_j)( y,u) .}.
[[son=—2—— [0
There are also useful identities: p&)) nt (T +2x0) p=1
k
g:ST+gaSy= 1+"g"s+ 1+g"s+(x>, (16) _Z M5 =30 s*T s .
. i=1 [(¢1)(xl x)(x;i+1) p(#i)
k . k+1 Hﬁ:](xj_)ﬂu) k+1 . (19)
HS Ou) = Z TTEEL (x;— x0) 1—[ $10p), A7) Similar to the U(5)—0(6) case shown in Ref. [5], us-
wl s pED ing the above commutation relations and identities, one
or can verify that

k(D) (1
X k ayxj+a)
PNH(()I)PNszler(Xp)M;Vd nLM)= {Z -4

k
+a'Vs0, -i—cy(l)SO ]l_[p_15+(xp)|vs;Vd7]LM>

= I+x;
(a(l) (1)))5 2xi(xp+1
+Z[ j +g0(2x; 59, -250,) + gV Z 2xj(x; + 1) g l—[S Colvssvan L M), 20)
j@En T p(#))
e+l (2) @
A1) k+1 . _ agyjta, N v k+1 _
Pr2H, PN+21_[p_1s+(yﬂ)|Vde77LM>—{;l—ijrafs SO +a,’S% l_[p:]S+(y;J)|Vx,Vd77LM>
(@? (2))y. o Loy v+ 1) K+
[H—’ +gP(2y;89,-280,) +g® Y L5t [ ] S Gp)lvaivanL M), @1)
i Vi j@p YTV P#))

ST 0~ X8 =y 8a) &
PR P[ ]S Clvisvaniy =y I"T‘,jﬂf( a )(‘H’) st ]S opsvanL sy
=t MipVi =YD p))

. kzl [Tt O = %0(85 + 8a)
= TG 0=y +y))

where the identities (18) and (12) for y; within the summation over j are applied,

[T s pivvanLma), (22)

p=1

A~ k+1 k+1
PhwnP[ |7 S Oplvssvan L) = (5055 +8aS D[ | -, Oplvsivan L)

k+1
2yj(8syj = 8a)
—Z[zgsy,s v +28480%+ Z # ]_[s Gp)lvsivan LM)
J

J=1 J&ED p#))
S 5 285y = 8a)
_Z 28,80, +284 80 + » | =L 20
jn YT
nﬁ(’;])(l + V) Zt;lej)(xi =) k
e T ST - Z X ST ST [y vanL ), (23)
H( 1(1+x) p=1 i=1 t(;t,)(xi_xt)(xi"'l) P
where the identity (19) is used.
Therefore, the eigen-equation
AIEvvanLM) = ES, (1, vsvanLM) (24)

is fulfilled if and only if
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09) @, Q)
@\l - “))x. 20 + 1)
@ M7, ¢o 0 <0 o
@ L By (2250, -280,)+¢ Z—
v, VaiiL © @ _.©
[ L+x; @y KXy T
ket ket 1 <o © 7! (xm (4"))
©) 0o <0 (gsy —8d) (i) _ .
-BY, Z(ngy. §0,+2g,8 d*Z =0 for j=1,2,--- .k, (25)
YL i @ _ © O _ 0y ©
P rer SR Fop (@ =0+ 1)
2 2
D e L T A < e ik ol IS i1 05 =58 = 8)
18" +¢2(2y; 80, -285%) + ¢ a =
VeVast), L 1+ (Z) - ) (O_ (f) VeVast, L nk+] (y({)_ (O)(l'i' (Z))
Y i@y Yy 7Y wzp\Vj ~ Y
for j=1,2,--,k+1, (26)
and
k a<1>x<£)+a(1>
© © d Mgo _,(Wgo
CYv\,vd,n,L [Ek,v“vd,L_Z 1 ) @y N s Ty §%
j=1 +Xj
&l &1 20000 -0 | T 1+
<0 <0 ' (:t) Yu
=By, nLZ[zgsy 780+ 2848 0+ 50 N2 @7
Yok £ £ O _ ¢ 1+x9) 7
j=1 (&) Yi —Y; 1(
el 2 O, (2 ket @ _ ({)
O o _Z“f Y % ogs 50, | = ¢© Z 07 =205 + 8a) o8
oL | EkvvaL s L
Vi Vasl] ViV, = 1+y(§) V Vaslls “ 1;(—;1])0}(4) ytf))(l +y;§))
Egs. (27) and (28) are nothing but the eigen-equation kii 1(y({) ({))(gs +g4)
09) © =
A B @ vl | O @y vonL j=1 f{;l)(y@) y,’[))(l +y('{))
c pll 2@ =By | 20 29 / i
Byt Byt el @O ()
+1 o v +a _ _
with p=) —L < ’ = L 1aP50,+aP5%,.  (30)
kD <z>+ M = 1+
A‘Zas R +a50, +a’s0 © @) %) .
- = x(() s 0 osTg O Thus, afv L Bj;vm’L, and E,fv v, €an be expressed in
terms of the variables {x'¢} } (j=1,2,---,k) and { (‘V)}
ke kel 2y g,y g0) - (g)j © ©
B=) |2g, y@)So +2g45% + W (= 1,2,~-.,k+ D). Once o, Bv;,w’L, and £,/ | , are
= i YTy expressed in terms of A, B, C, and D shown in Eq. (30),
nkz;: (1 +y(£)) the  wvariables {x%)} (j=12,---,k) and {yf)}
X L{) (j=1,2,- ,k+1) are determined by Egs. (25) and (26). It
[T (1 +x57) is evident that Eq. (25)—(28) become
1 (1) ({) k @, O
@V =)y 26040+ 1)
T 80050, -2850) +g® N L =0 for j=1,2, k, 31)
1+x; X, =X
Jj J (&) J j
k a(l)x<§>+a(l)
d Dao Deo
ES 1=~ —+a’s%+al)5%, o), 20, 87, | =0, (32)
a1 +X;
or
© 1 9y O
(@ -y - 2000+
d +8P2y 980, -280)+g® Y LT —0 for j=1,2,-- ,k+1, (33)
14© j i @0
j J(#)) 7 Jj
ket a(2>y(o +o®
© d @50 .. @0, O _ @)
Ek,vs,v‘,,L - Z 1+y([) +ag’S s+a'd S§Y%, a’v,\,vdL 0, ﬁ VoL #0, (34)
j=1
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when g, = g4 = 0 without configuration mixing, which are
the Bethe ansatz equations and the corresponding eigen-
energy of the U(5)—O(6) transitional case for the N-bo-
son normal states and the N +2-boson intruder states, re-
spectively.

Similar to the results shown in Ref. [17], there are ex-
tended Heine-Stieltjes polynomials y(x) related to Egs.
(31) and (33) satisfying

P o 800 oy 00 s
fori=lori= 2, where F(x) = x(1 + x)?,
GPO(x)/F(x) =]L [@ -2890;
+M 2k+2] (36)
gD(1+x) ’

and V@(x) is a linear function of x determined by Eq.
(35). The roots of Egs. (31) or (33) are zeros of y(x) or
y?(x). Hence, the polynomial approach shown in Ref.
[17] applies to this case as well, which can be used to ob-
tain a solution of Egs. (31) and (33) when there is no con-
figuration mixing with g; = g, =0.

It is evident that the pairing operators ]—[k,l *(x (O)

and ]—[k“SJr (Z)) used in Eq. (9) are symmetric with re-

(9 49

spect to any permutation among {x|”,---,x; and

{y(f), , y,(i)]} Therefore, there are k!(k+ 1)! identical
roots of Egs. (25) and (26), where only one is needed to
construct the eigenstate (9). Once the {-th root
{x(lo, - ,x,(f)} and {y(l‘v), ,y,(i)l} of Egs. (25) and (26) are
obtained, the pairing operators S*(x ("V)) and

ﬂkH +(y(()) in Eq. (9) can be expressed as

(())S +IlS +k—p
s Py P

l—[/’; (o) st(x(:) .
k+1
1—[/IZ+1

(?) = Z SO, YOy Trg I (37)
where S(”)(X(IO,"' (Z))_Zl<z|< <, <knq1 f{)
> X ](({)) = 1’ and

Ve
with  SOGL, ... similarly ~ for
SWEO ... y,(i)l), is the u-th elementary symmetric poly-
nomial of the k root-components {x, @ ... ,x,(f)} of Eq. (25),

which is helpful for calculating matrlx elements of phys-
ical quantities of the system.

starting

3 Exemplified solution

The solution of Eq. (1) can be derived using the ex-
tended Heine-Stieltjes polynomial approach shown in Eq.
(35). When there is no configuration mixing with

gs = ga =0, the roots {xf)‘?,--- Efk)} and {yéﬂ), ,yéi)ﬂ} can
be obtained, where the total number of roots is 2k + 3, for
which N =2k+v;+v; forthe allowed angular mo-
mentum quantum number L determined by the reduction
rule (v;0) | L of O(5)>0(3). Then, for small values of g

and gy, the root {x(l‘w), . ,x,(f)} and {y(f), © } of Egs.

" Vit
(25) and (26) for the given ( is obtained using
{xffl),~~~ E)‘;()} and {yf)(]), . ,yf)‘;()ﬂ} as the initial root to de-

termine the solution. Repeating this procedure, one can
identify 2k + 3 sets of the roots for any real values g, and
ga- Notably, all roots are real when g; = g, =0, which is a
common feature of the general SU(1,1) Gaudin models
without previous study of the configuration mixing [5,
17, 18]. However, for g, #0 and g, # 0, complex roots
occur in the middle part of the spectrum when the mixing
of the N-boson and N +2-boson configurations is relat-
ively strong, particularly when £ is large, which is com-
mon when the configuration mixing strengths g, and gy
become sufficiently large. Because -1 and 0O are singular
points of Egs. (25) and (26), the real part of the root com-
ponents lies in the union (-0, 1) J(—1,0) [ J(0,0), where
no pair of the root components is the same. In fact, simil-
ar to the solution of the pairing model [19], all root com-
ponents are always symmetric with respect to the real ax-
is on the complex plane; namely, if a root component is
complex, the conjugate root component must be involved.

To demonstrate the feature of the solution, we con-
sider an example with " = 0, aill) =0.3MeV, gV =-05
MeV, o = 1.5 MeV, P = 1.8 MeV, g® =-02 MeV,
and g, =g, =0.2 MeV. Only v, = v; = 0is exemplified in
the following. As shown in Table 1, all roots in this case
are real for N =2. It is obvious that the first two roots
mainly lie in the N =2 configuration, as indicated by the
small B89 /a'9 values, whereas the last three roots mainly
lie in the N+2 =4 configuration, as indicated by the rel-
atively larger 89 /a'© values. For N = 4, the pattern of the
roots is similar. The first three roots mainly lie in the
N = 4 configuration, whereas the last four roots mainly lie
in the N+2 =6 configuration. As shown in Table 2, the
third root components with y(3) = y(23)* and the fifth root

components with x(ls) = x(ZS) are complex in this case. In
fact, with further increasing of the configuration mixing
strengths g; and g,, complex roots also occur for the
N =2 case. Because the two roots with relatively small
B9 /a® values mainly lie in the N =2 configuration,
whereas the three roots with relatively larger 54 /a9 val-
ues mainly lie in the N+2 =4 configuration, the root of
the ground state in this case becomes complex when g; or
ga become sufficiently large. For example, if we keep
other parameters the same as those shown in Table 1, the
root of the ground state becomes complex when
g5 = ga > 6.06492 MeV with x\" = 0.56635,!" = 0.72673+

0.000271, " =0.72673-0.000271, BV /a) = -0.3067,

064102-5



Chinese Physics C  Vol. 44, No. 6 (2020) 064102

Table 1. Roots of Egs. (25) and (26), ratio 8¢ /a® used in eigen-state (9) and corresponding eigen-energy @ (in MeV) of the model for N =2,
where the parameters of Eq. (1) are considered as aﬁl) =0, (1511) =0.3 MeV, g =-0.5 MeV, a?) =15 MeV, ailz) =1.8 MeV, g® = —-0.2 MeV, and
gs=g4=0.2MeV.

x(].() y(l.() y;.l ) B 1a® E©

=1 -1.21628 —-1.23643 0.92428 —0.03496 -0.92692

;=2 4.13257 1.27972 3.02724 —-0.04105 0.38300

=3 0.38403 —2.88886 —-1.23803 4.99472 4.45235

{=4 —-0.83687 —1.38586 1.96679 3.92177 4.93409

(=5 3.65856 0.66637 9.05257 2.33688 5.88248

Table 2. Same as Table 1, but for N = 4, where I = V—1.
) 29 y© N W B o O

’=1 —-1.18956 —-1.25809 -1.29710 —1.18038 0.95864 —-0.02389 -3.19779
{=2 —-1.12636 3.76299 —1.14255 1.17349 3.10565 —-0.02637 —1.94532
(=3 0.78722 11.78400 0.79059 - 0.59541 0.79059 +0.59541 10.41310 —0.03314 0.48860
{=4 -2.51113 1.06583 —3.9343 -1.55612 —-1.05363 3.72052 4.72435
(=5 —0.38146—1.12141 —-0.38146+1.12141 —1.73495 —-1.11698 1.49812 3.10755 5.25399
{=6 —-1.13035 3.19011 —-1.24602 0.613486 8.04287 2.37150 6.15037
=7 0.73826 10.59300 0.331345 1.70441 18.8986 1.51102 7.55080

EM =_-14.8053 MeV for g, = g; =6.06492 MeV. There-
fore, the complex solution is likely to occur when the
configuration mixing is sufficiently strong.

To apply this theory, the Hamiltonian (1) is em-
ployed to describe the low-lying spectrum of 'Cd with
N =6 bosons, where the term A; = fL-L is added to Eq.
(1) to lift the degeneracy of the levels with the same seni-
ority but different angular momentum quantum numbers.
The E2 operator is chosen as

T, (E2)=q,Py (d;s + s“ﬁ) Py +¢5Pni2 (dZs + sfczﬂ) Pnio
(38)
with which the B(£2) values are given by

2Lf+ 1 , 2
mk{f;vdn LATE2NE:van L]
(39)

where ¢, and ¢ are effective charge parameters of the
normal and intruder configurations, respectively, and the
reduced matrix element is defined in terms of the CG coe-
fficient, such that (Zp.v,n' nL ¢, va Liy=0¢,0v,y,0L,.1,
with unit identity operator .

Similar to that in Ref. [13], the level energies up to
the three-phonon states in the normal bands and the in-
truder states 07(i), 27(i), and 47(i) of '%Cd deduced in
Ref. [20] are considered. The model parameters are pro-
duced by a best global fit to the experimental level ener-
gies alone, where we obtain a/(sl) =0, a;l) =1.261 MeV,
gV=-1 keV, a’=300 keV, o}’ =1416 MeV,
g?» =-51 keV, g, =220 keV, g, =200 keV, f=5 keV,
and ¢}/q> = -0.38. Then, the experimentally measured

B(E2;L; — Ly) =

B(E2) ratios, R(L; — Ly) = B(E2;L; — Ly)/B(E2;2] — 07),
provided in Ref. [20] are fitted by only adjusting the ra-
tio ¢5/qo. The fitted low-lying level energies and B(E2)
ratios are shown in Table 3, where the corresponding res-
ults of the 2n-particle and 2n-hole configuration mixing
from n =0 to n — oo in the U(5) limit of the IBM (CMS5)
[13] are likewise provided. The ratio g5 /g2 = 2.9 is mainly
determined according to the lower limit of the experi-
mental ratio R(4] (i) — 2{(i)). Regarding the level ener-
gies, the U(5)— O(6) transitional description is slightly
better than the CM5, whereas the B(£2) ratios generated
in the two models are quite the same for the transitions
among normal states. However, although the E2 decays
out of the intruder band are still weaker [20], the B(£2)
ratio R(2{(i) — 07(7)) and those for the transitions from
the intruder states to the normal states predicted in this
model are far larger than those of the CMS5, as shown in
II1. Arguably, these values can be reduced when config-
uration mixing with N + 2n bosons for n > 2 is considered.
Because the E2 operator is simply selected as the generat-
or of O(6), as shown in Eq. (38) and in the CM5 case
[13], the E2 selection rules are similar to those given in
the U(5) or the O(6) limit without configuration mixing,
which are given by Av; = +1. Therefore, the Av;=+2
transitions, such as B(E2;23 — 07), and the Av, = 0 trans-
itions, such as B(E2;2{(i) — 2{) and B(E2;4](i) — 47]),
are consistently zero. To improve the theory, the O(6)
symmetry breaking terms, such as the (d'd); term, which
allows Av, = 0 transitions, must be added in the E2 oper-
ator. Alternatively, high order interactions, such as those
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Table 3.

Some low-lying level energies and B(E2) ratios R(L; — Ly) = B(E2;L; — Ly)/B(E2;2} — 0%) of 108Cd, where « indicates that the corres-

ponding spin assignment is not fully confirmed. The spin of both 03 (i) and 03 (i) states was assigned with (0*,1%,2%), as shown in Ref. [21]. Model

parameters are considered as aﬂl) =0, ai,l) =1.261MeV, g = -1 keV, o

keV, f=5keV, and ¢, /g2 = 2.9.

(2) _

K

=300 keV, @’ = 1.416 MeV, g = -51 keV, g, =220 keV, g4 =200

Level energy/MeV This study Exp. [20, 21] CMS5 [13] R(L; — Ly) This study Exp. [20, 21] CMS5 [13]
EQ27) 0.789 0.632 0.718 R4} —2]) 1.475 1.5639 1.6688
E@47) 1.574 1.508 1.484 R(23 —2]) 1.475 0.6579 1.6688
E@2) 1.504 1.601 1.470 R(23 — 07) 0 0.0676 0
E(03) 1.350 1913 1.264 R(27 (D) — 07 (D)) 1378 >0.338 0.3428
EG}) 2234 2.146 2.268 R () = 27(D) 0.213 >0.226 0.5901
E(43) 2.274 2.239 2.276 R(27 (D) — 07) 0.338 >0.002 0.0029
E(0}) 2.174 2.375 1.896 R(47 () —27) 0.234 > 0.005 0.0043
EQ23%) 2.059 2.486 1.982 R(27 () —27) 0 >0.015 0
E(67) 2.384 2541 2.298 R(47 () — 47) 0 >0.015 0

E(0F () 1.755 1.720 1.720
EQF(3) 2.367 2.163 2.438
E(41(®) 2797 2739 3.084
EQ2%(3i) 2.727 2.366 3.070
E(0% (1) 2.639 2.740% 2.984
E(0% (1) 2.856 2.936% 2.984

adopted in Ref. [14], may be considered.
4 Summary

In this study, we demonstrate that the U(5)-O(6)
transitional Hamiltonian of the interacting boson model
with two-particle and two-hole configuration mixing is
exactly solvable. An exact solution is derived based on
the Bethe ansatz approach, where the Bethe ansatz equa-
tions are provided to determine the eigenstates and the
corresponding eigen-energies . The solution features are
numerically exemplified by the N =2 and N =4 cases. As
an example of application, some low-lying level energies
and B(E2) ratios of '®Cd are fitted and compared with
the corresponding experimental data.

Because the solution of the Hamiltonian without con-
figuration mixing can be easily derived using the exten-
ded Heine-Stieltjes polynomials, the roots of the Bethe
ansatz equations for cases with small mixing parameters
are approximately found using the roots of the equations
without configuration mixing as the initial values. There-

fore, a progressive approach can be established to obtain
the solution of the model with arbitrary mixing paramet-
ers. Although the solution is only demonstrated for the
N& (N +2) configuration mixing, it is expected that the
model with 2n-particle and 2n-hole configuration mixing
for n =0 up to a finite n is also exactly solvable by using
the identities and procedures shown in Sec. 2. This is be-
cause the eigenstates of the model can always be ex-
pressed in terms of binomials of s- and d-boson pair oper-
ators, although the equations involved become more com-
plicated. A similar extension to the IBM-II case is like-
wise straightforward. Moreover, a chain of isotopes or
isotones in the vibrational to y-soft transitional region
may be analyzed using the model to reveal their shape
phase coexistence and evolution, for example, as the ana-
lysis for Cd isotopes shown in [22—24], which will be
considered in our future study.

One of the authors (F. Pan) is grateful to Professor P.
Van Isacker for stimulating discussions on the subject
and his suggestion on conducting this work.
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