Chinese Physics C Vol. 44, No. 6 (2020) 064104

Hadronic spectra from deformed AdS backgrounds®

Eduardo Folco Capossolil,z;l)

Alfredo Vega™

Miguel Angel Martin Contreras””

Danning Li(Z=FH5E) "

Henrique Boschi-Filho'™

'Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21.941-972 - Rio de Janeiro-RJ - Brazil
2Departamento de Fisica / Mestrado Profissional em Praticas da Educagao Basica (MPPEB), Colégio Pedro II,
20.921-903 - Rio de Janeiro-RJ - Brazil
3Instituto de Fisica y Astronomia, Universidad de Valparaiso, A. Gran Bretafia 1111, Valparaiso, Chile
4Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou 510632, China

Abstract: Because of the presence of modified warp factors in metric tensors, we use deformed AdSs spaces to apply

the AdS/CFT correspondence to calculate the spectra for even and odd glueballs, scalar and vector mesons, and bary-

ons with different spins. For the glueball cases, we derive their Regge trajectories and compare them with those re-

lated to the pomeron and the odderon. For the scalar and vector mesons, as well as baryons, the determined masses

are compatible with the PDG. In particular, for these hadrons we found Regge trajectories compatible with another

holographic approach as well as with the hadronic spectroscopy, which present an universal Regge slope of approx-

imately 1.1 GeV’.
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1 Introduction

Quantum Chromodynamics (QCD) is a non-Abelian
quantum field theory employed for dealing with strong
interactions. Although it boasts enormous success in the
high-energy regime, the use of QCD is difficult when in-
vestigating processes that occur at low energies (IR re-
gions) because of the failure of the perturbative approach.
This peculiar feature of the QCD is related to the fact that
it is a confining theory in the IR, implying that only
bound states of quarks or gluons are observed.

Hadronic spectroscopy is a highly interesting field
with regard to the application of new approaches to ex-
tract information about hadronic properties, given that
results are comparable with the experimental data.

Among several techniques within the field of Hadron-
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ic spectroscopy, there is one that emerged in 1997 pro-
posed by Juan Maldacena, referred to as the Anti de Sit-
ter/Conformal Field Theory or AdS/CFT correspondence
[1-5]. This correspondence is very useful, as it provides
guidance on how to relate a weak coupling theory, which
is in this case represented by a superstring theory in a ten-
dimensional curved space, named AdS 5 x S with a strong
coupling theory, which in this case is a super conformal
Yang-Mills theory with extended supersymmetry N =4,
symmetry group SU(N — co) in a flat four-dimensional
Minkowski space.

However, the AdS/CFT correspondence cannot be
used directly to reproduce QCD, as the latter is not a con-
formal theory, as it possesses numerous different scales
(masses, critical temperature, etc.). Some proposals ap-
peared to break the conformal invariance and build ef-
fective theories known as AdS/QCD models, e.g., the
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hardwall model. In this model, the conformal symmetry
is broken via introduction of a hard IR cutoff at a certain
value zyax of the holographic coordinate z and by consid-
ering only a slice of the AdSs space within the interval
[0,zmax] [6— 8]. Achievements in hadronic spectroscopy
within the hardwall model are presented in several stud-
ies [9-15].

Another example of breaking the conformal invari-
ance is given by the softwall model. In this model, a soft
IR cutoff is employed via introduction of a dilaton field
in the action. This approach was proposed in Ref. [16] to
study mesonic spectroscopy. Usually, this model is re-
ferred to as the original softwall model. Several modifica-
tions of this model were considered subsequently to deal
with hadronic spectroscopy, as presented in e.g., Refs.
[17—26]. Further addressing some modifications in the
Refs. [27-32], instead of the introduction of a dilation in
the action, a modified warp factor in the AdS metric was
considered. Particularly, in Ref. [29], such a modifica-
tion was proposed to study hadronic spectroscopy. Other
modifications of the softwall model were used in Refs.
[28, 30, 31] to discuss the quark-antiquark potential and
in Ref. [32] to deal with scalar and tensor glueballs. One
open problem associated with the softwall model is the
sign of the dilaton. In the original case, the dilaton is an
exponential with a negative argument [16]. In Refs.
[33—35], aurthors argued that a positive dilaton is pre-
ferred, which the authors of Ref. [36] disagree with.
These authors also point out that a positive dilaton im-
plies the existence of a massless scalar in the spectrum.

In this study, inspired by Ref. [27-29], we investig-
ate these problems with modified warp factors in the
AdS s metric instead of introducing dilaton fields in the
action. In this sense, in our setup, we consider deformed
AdS backgrounds. Subsequently, using this approach, we
compute the hadronic spectra for several particles with
different spins. We employ the same form for the warp
factor in the metric by fitting the free parameter in each
case. The values of the parameters are observed to be dif-
ferent for each sector. This scenario is similar to the case
of the original softwall model, where different dilaton
fields are needed for each particle sector. The main ad-
vantage of our approach is that we can also directly deal
with fermions, contrary to the original softwall model.
Furthermore, our approach provides appropriate masses
and Regge trajectories, for instance, for odd and even
spin glueballs.

This paper is organized as follows. In Section 2, we
present a brief review of the original softwall model and
our deformed AdS background. In Section 3, we apply
our model to the even and odd spin glueball states. In
Section 4, we study the case of scalar mesons obtaining
their spectra. We calculate the hadronic spectra for the
vector mesons in Section 5, and in Section 6 we address

the baryonic case with spins 1/2, 3/2, and 5/2. For those
particles, we also obtain the corresponding Regge traject-
ories. In particular, we derive the Regge trajectories re-
lated to the pomeron and the odderon for the glueballs .
Finally, in Section 7, we present the conclusions and fi-
nal comments.

2 Softwall model and deformed AdS setup

There are at least two interesting reasons behind the
emergence of the softwall model. The first is related to
the introduction of the soft IR cutoff instead a hard cutoff
as in the hardwall model, as this approach seems more
natural. The second reason lies in the fact that the soft-
wall model truly yields linear Regge trajectories, which
was an established behavior since the beginning of had-
ronic spectroscopy studies, i.e.,

J(m) ~ o’ m* + v, (D

where J is the total angular momentum; m represents the
hadronic mass; o’ (Regge slope) and a( are constants.
The relationship between radial excitation n and its
squared hadron mass is given by:

m* =~ 'n+ P, 2
with 8 and B, as constants.

In the original formulation of the softwall model, the
action of the fields, up to some constant, is described by:

S = f dPxy—ge®@r, 3)

where ®(z) is the dilaton field, usually given by
®(7) = k72, where [k|~A and £ is the Lagrangian
density.

The main difference between the original softwall
model and the present study is the modified AdS s metric
tensor using an exponential warp factor for all glueballs
and hadrons. In Ref. [29], the authors used different warp
factor profiles, usually logarithmic ones, for each hadron-
ic sector.

As we employ the same warp factor profile in the
AdS space for all glueballs and hadrons, we refer the ap-
proach of this study as a deformed AdSs background.
Then, we write the deformed AdS 5 metric as:

2
QCD?

R .
dsz :gmndxmdxn = Z—zekZ (de + nw,dx“dxv)

=4 (dZ? + 1, dadr), 4)

where R is the usual AdS radius (from here onwards, we
assume R =1 throughout this text), 7, is the flat
Minkowski space metric tensor in four dimensions with
signature (—,+,+,+), z is the holographic coordinate, and
X" =(z,x") for u=0,---,3. The warp factor A(z) in Eq. (4)
can be read as:
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2
A(z) = —log(z) + ]% . &)

In our model, the action for the fields is simply given
as:

S =fd5x\/—_g£, (6)

where g is the determinant of the five-dimensional metric
tensor presented in Eq. (4).

3 Hadronic spectra for glueballs states

Fritzsch and Gell-Mann pointed out in Refs. [37, 38]:
“If the quark-gluon field theory indeed yields a correct
description of strong interactions, glue states must exist in
the hadron spectrum”. This sentence reveals the import-
ance of those “glue states”, nowadays referred to as glue-
balls. Glueballs are colorless bound states of gluons pre-
dicted by QCD, but not experimentally detected to date.

Glueballs are characterized by J*¢ where J (even or
odd) is the total angular momentum, P is the p—parity
(spatial inversion), and C = is the C—parity (charge con-
jugation) eigenvalues. For the glueballs case, P = (-1)F
and C = (-1)ES,

Numerous experimental efforts were conducted in the
search for glueballs [39-42]. Some theoretical and non-
holographic approaches are described in Refs. [43—48].
The holographic approach is presented in Refs. [49-58].

In this study based on a deformed AdS space, we
compute the masses of even spin glueballs with
P =C =+1 and odd spin glueballs with P = C = -1. Even
spin glueballs with P = C = +1 are particularly interesting,
as in the Chew-Frautschi plane, their states lie on the
Pomeron Regge trajectory. In contrast, odd spin glue-
balls with P = C = —1lie on the odderon Regge trajectory.

We start our calculation using the standard action for
a massive scalar field X in 5D space, given by:

S = f d’x V=g [§" X" X + M3X?]. (7

From the action (7) one can find the following equa-
tions of motion, such that:

Inl V88", X1~ \=gM5X =0, ®)

where g = e~ 2AQ@ym,
The Eq. (8) can be written as:

Ol On™d,X] - 4O M2IX =0, 9)
with the warp factor A(z) given in Eq. (5).
Defining B(z) = —3A(z), we obtain:
Ole™ P 1™, X]—e ™ M2X = 0. (10)

Next, we use a plane wave ansatz with the amplitude
only depending on the z coordinate and propagating in the
transverse coordinates x* with momentum g,,,

X(z,4%) = v(z)e'd". (11)

After some algebraic manipulation and defining
v(z) = lﬁ(z)e? we obtain a “Schrodinger-like” equation:
Bl2 Z B" Z ~2B()

2T e v =, (1)

with B(z) = —3A(z) and E = —¢” as eigenenergies.

")+

3.1 Results for even and odd spin glueball spectra

To compute the glueball masses, Eq. (12) must be
solved numerically. To this end, from the AdS/
CFT dictionary, we first relate the masses of supergrav-
ity fields in the AdS space (Ms) with the scaling dime-
nsions of an operator in the boundary theory (A), such that:

M2 =(A-p)A+p-4), (13)

where p is the index of a p—form. For the case of the scal-
ar glueball 0™*, we obtain p = 0. Because the scalar glue-
ball is dual to the fields with M5 =0, its conformal di-
mension is A = 4.

Second, the scalar glueball state is represented on the
boundary theory by the operator O4, given by:

04 =Tt (F?) =Tr (F"F). (14)

To raise the total angular momentum J, we follow
Ref. [11] by inserting symmetrised covariant derivatives
in a given operator with spin S, such that the total angu-
lar momentum after the insertion becomes S +J. In the
particular case of the operator O, = Tr F2, we obtain:

O4+J =Tr <FD{/1]...D#J}F), (15)

with the conformal dimension A =4+J. For J =0 we re-
cover A = 4.

Thus, for even spin glueball states after the insertion
of symmetrized covariant derivatives, we obtain:

M2 =J(J+4); (evenl). (16)
Hence, we write Eq. (12) as:

B/Z(Z) B,/(Z) -2B)
1T te T U =),
(17

Solving Eq. (17), for even glueball states, one obtains
the four-dimensional masses presented in Table 1.

Using the data from Table 1, we plotted a Chew-
Frautschi plane, here represented as m?xJ, where J is
total angular momentum, and m? is the squared even
glueball mass represented by the dots in Fig. 1. Using a
standard linear regression method, we obtain the equation

J(m?) = (0.25£0.02)m> + (0.88 £0.51), (18)

which represents an approximate linear Regge trajectory
associated with the pomeron in agreement with Refs. [59,
60].

In contrast, for odd glueball states, the operator Og

")+
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Table 1. Even glueball masses expressed in GeV from Eq. (17) with
warp factor constant k as kgpe = 0.3 12 GeV2.

Table 2.  Odd spin glueball masses expressed in GeV as from Eq.
(22) with the warp factor constant k as kgpo = 0.3 12 GeV>.

Even glueball states J©C

O++ 2++ 4++ 6++ 8++ 10++

0dd glueball states J©€
1 377 5~ 7 97~ 11—

Masses 0.76 2.08 3.17 422 5.26 6.30

Masses 2.63 3.70 4.74 5.78 6.81 7.84

24T T T

-10 0 10 20 30 40 50
m? (GeV?)
Fig. 1. (color online) Approximate linear Regge trajectory

associated with the pomeron from Eq. (18). The dots cor-
respond to the masses found in Table 1 for even glueball
states within the deformed AdS s space approach.

that describes the glueball state 1~— is given by [14, 51,
61, 62]:

O = SymTr(F, F?), (19)
where this dual operator creates odd glueball states at the
boundary. This operator has the conformal dimension

A =6, and after the insertion of symmetrized covariant
derivatives, we obtain:

Os+s = SymTr(Fu FDy.. Dy F), (20)
with A = 6+ J. Therefore,
M2 =(J+6)(J +2); (odd J), (21)
and we can rewrite Eq. (12) as:

B/Z(Z) ~ B//(Z)
4 2

—W’(z)+[

(22)

Solving Eq. (22) for odd glueball states, we obtain the
four-dimensional masses presented in Table 2.

Using the data in Table 2, we plotted a Chew-Frauts-

chi plane m?x J in Fig. 2 for odd spin glueballs. Using a

standard linear regression method, we obtain the equation

J(m?) ~ (0.18 £0.01)m” + (0.47 £0.45), (23)

which is in agreement with Ref. [63], within the nonre-
lativistic constituent model.

Notably, the value for the constant k£ in the warp
factor A(z) for even spin glueball represented by kg and
for odd spin glueball represented by kg, have the same

+e T (J+6)(J + 2)] ¥(2) = - Y(2).

-6
L]
4
2
L]
0+ T T T
0 10 20 30 40 50 60 70
m? (GeV?)

Fig. 2. (color online) Approximate linear Regge trajectory

associated with the odderon from Eq. (23). The dots corres-
pond to the masses found in Table 2 within the deformed
AdS 5 space approach for odd spin glueballs.

numerical value kgpe = kgpo = 0.312 Ge V2.

To facilitate the comparison between our results with
the deformed AdS model and other approaches, we sum-
marize several results provided by the literature in Tables
3 and 4.

4 Hadronic spectra for scalar mesons

Mesons are bound states between a quark and an anti-
quark that can be represented by a spin singlet with total
spin § =0 or a spin triplet with total spin § =1. The
coupling between S and the orbital angular momentum L
must be considered, producing a total angular mo-
mentum J=L in the case of the singlet state, and
J=L-1,L L+ 1in the case of the triplet state.

In mesonic spectroscopy [68], mesons are character-
ized by 19(JFC), where [ is the isospin, G is the G-parity
defined G = (1) = 1, and P is the P-parity defined for
mesons as P = (—1)5*!. Finally, C is the C-parity defined
as C = (—=1)!*5. In the boundary theory, scalar mesons are
represented by the operator:

Osm =Dy, Dyyq with > Ji=, (24)
i=1
where J is the total angular momentum.

In this section, we address light scalar mesons, i.e.,
J =0 and unflavored (S =C = B=0).

Within the holographic approach, the description of
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Table 3.  Glueball masses for J¥C states expressed in GeV, with even J, achieved with non-holographic models from the literature. Numbers in paren-

theses represent uncertainties.

Even glueball states J©C

Models used
o++ o+t 4++ 6+t
N, = 3 lattice [64] 1.475(30)(65) 2.150(30)(100) 3.640(90)(160) 4.360(260)(200)
N, = 3 anisotropic lattice [43] 1.730(50)(80) 2.400(25)(120)
N, = 3 anisotropic lattice [45] 1.710(50)(80) 2.390(30)(120)
N, = 3 lattice [46] 1.58(11)
N, — oo lattice [46] 1.48(07)
Constituent models [47] 2.42 2.59
Constituent models [48] 3.99 3.77 4.60
Table 4.  Glueball masses for J7C states expressed in GeV, with odd (% M) is the error defined by;
J, achieved with non-holographic models from the literature. 3
00;
0dd glueball states J*€ YoM = — | x 100, (26)
Models used 0;
1= 3= 57° 7" . o
Relativistic many body ls <05 <00 where 60; depicts the deviations between the data (Mcxp)
[63] ’ ) ‘ ‘ and the model prediction (My,). Throughout the text, in
Non-Relativistic 3.49 3.92 515 6.14 the cases where the experimental data is provided at inter-
constituent [63] .
. vals, as in the f;(1370) state, we use the average value of
Wilson loop [65] 3.49 4.03 . ..
the interval to evaluate the deviations. We moreover com-
Vacuum correlator [66] 3.02 3.49 4.18 4.96 pute the total r.m.s error defined by:
Vacuum correlator [66] 3.32 3.83 4.59 5.25
Semi-relativistic 1 y 00; :
- 1
potential [67] 3.99 4.16 526 Orms = N-N, Z (_Oi ) x 100, (27)
Anisotropic lattice [45] 3.83 4.20 i=l
Isotropic lattice [44, 304 433 where N and N, are the number of measurements and
64] ' ' parameters, respectively. From Eq. (27), we find that d,,

the scalar glueball (gg) and the scalar meson (¢g) is the
same; however, the main difference is provided by the
bulk mass, which defines the hadron identity. To study
the scalar meson, we must start from the action for a
massive scalar field (7), which will leads us to the
“Schrodinger-like” equation (12).

4.1 Results for scalar mesons spectra

Employing the relationship M2 =(A-p)(A+p—-4)
and identifying Ms as the scalar meson bulk mass, the in-
dex of the p—form the total angular momentum
(p=J=0) for the scalar meson and A depicts the con-
formal dimension, which is A =3, as each quark contrib-
utes with 3/2. Finally, we rewrite Eq. (12) with Mg =-3
as:

BIZ(Z) ~ B’ (Z)
4 2

where B(z) = -3A(z). Solving Eq. (25) numerically with
the warp factor constant k, identified as kg, = —0.3322
GeV’, we obtain the masses compatible with the family
of the scalar meson fy, with I¢J7¢ = 0*(0**), as indicated
in Table 5. The error presented in last column of Table 5

" (2) + —3e7 W@ = —Pu),  (25)

=3.77% for Table 5.

Using the data from Table 5, we plotted a Chew-
Frautschi plane, represented as nxm?, where n is the
holographic radial excitation, and m? is the squared scal-
ar meson mass represented by the dots (our model) or
squares (PDQ) in Fig. 3. Using a standard linear regres-
sion method, we obtain the experimental and theoretical
Regge trajectories for the scalar meson f; family, such
that:

m2, = (0.639+0.027) n+(0.458 +0.135),  (28)

exp
m2, = (0.647+0.002) n+(0.513£0.011).  (29)

The authors of Refs. [70, 71] within a holographic
softwall model likewise computed the masses for the f;
meson family and derived its Regge trajectory slightly
differently from Eq. (29). This can be explained, as the
data selection scenarios in these references are different
from the current study. In these past studies, the scalar
meson f(500) was included, which might have caused
the slight difference of the slope and the intercept com-
pared to our study.

To connect our results with the mesonic spectroscopy
data [68, 72—74], we split the isoscalar states fy into two
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Table 5.
Column n=1,2,3,---

Masses of light unflavored scalar meson fy (S = C = B=0).
represents holographic radial excitation of

scalar mesons. The ground state is represented by n=1. Column

Mexp, represents experimental data from PDG [69]. Column My, rep-

resents the masses obtained within the deformed AdSs space ap-
proach using Eq. (25) with kg, = —0.3322 GeV’. Column %M rep-
resents the error of My, with respect to Mexp,, according to Eq. (26).

Scalar meson fj (07(0%))

fomeson  Mep/GeV [69]  My/GeV %M
n=1 f0(980) 0.990+0.02 1.089 9.97
n=2 Sfo(1370) 12t0 1.5 1.343 0.54
n=3 fo(1500) 1.504 +0.006 1.562 3.87
n=4 fo(1710) 1.723+0.006 1.757 1.96
n=>5 f0(2020) 1.992+0.016 1.933 2.96
n=6 f0(2100) 2.101+£0.007 2.095 0.27
n=17 f0(2200) 2.189+0.013 2.246 2.61
n=38 f0(2330) 2.337+0.014 2.388 2.17
61
h °
] o
5] °
7 [m]
b =}
4 o
h O
E-
93 2
T 3
] °
] O
2_
] o
] °
1 O
7 [ ] Our Model
h O PDG
0 IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|
0 1 2 3 4 5 6 7 8 9
n
Fig. 3. Scalar meson f, family squared masses as a function

of their holographic radial excitation n obtained within the
deformed AdSs space approach (dots) and from PDG
(squares), as presented in Table 5.

sets. The first set, ie., set 1, is related to the
ni = (uii+dd)/ V2 states, which are represented by
f0(980), fo(1500), f5(2020), and f;,(2200). The second set,
ie., set 2, is related to s5 states, also called fj, which is
represented by fp(1370), fo(1710), f5(2100), and f,(2330).

Using the states that belong to set 1, we plot a Chew-
Frautschi plane represented as n,xm?, where n, is the
spectroscopy radial excitation, and m? is the squared scal-
ar meson mass represented by the dots (our model) or
squares (PDQ) in Fig. 4. Using a standard linear regres-
sion method, we obtain the experimental and theoretical
Regge trajectories for set 1, given by:

m2 =(1.314+0.017) n, — (0.285+0.332),

exp

(30)

6—
5] °
7 a
n £(2200)
4 u]
] °
% ] £(2005)
83
£ ] °
] 5]
2] fo(1500)
] °
1— [m] [ ) Our Model
] O PDG
1 £2(980)
0-|||||IIII|||||||||||||||IIII|||||||||
1 2 3 4
ne
Fig. 4. Scalar meson f [nii = (uii +dd)/ V2] states belonging

to set 1 squared masses as a function of their spectroscopy
radial excitation n,, obtained within the deformed AdSs
space approach (dots) and coming from PDG (squares).

m2 = (1288 £0.009) n, —(0.117£0.024).  (31)

For the states belonging to set 2, we plot Fig. 5 and
obtain the experimental and theoretical Regge trajector-
ies, given by:

mﬁxp =(1.236+0.052) n, — (0.576 £ 0.142), (32)
mtzh = (1.300+0.005) n, — (0.496 £ 0.012). (33)

The Regge trajectories for scalar mesons belonging to
the set 1 and 2 from our model, represented by Egs. (31)
and (33), present Regge slopes of 1.25+0.15 GeV’, which

6

] °
4 m]
5] f(2330)
. o
4] £o(2100)
£ 7
O3 8
E 7 fo(1710)
2]
] o
] £4(1370)
1
] (4 Our Model
i a PDG
0 T T T T | T T T T | T T T T | T T T T l T T
0 1 2 3 4
ne
Fig. 5. Scalar meson fy[s3] states belonging to set 2 squared

masses as a function of their spectroscopy radial excitation
ny, obtained within the deformed AdSs space approach
(dots) and from PDG (squares).

is close to the universal value 1.1 GeV’ [72, 75].

5 Hadronic spectra for vector mesons
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Vector mesons have the same internal structure (gg)
as the scalar mesons, but with total angular momentum
J = 1. They are represented on the boundary theory by the
operator:

Ovm=4y'Dy,-Dyyg with > Ji=J.  (34)
i=1

In the holographic description, vector mesons are dual
to the massive vector field in the AdS 5. Hence, the action
for a massive vector field is needed, given by:

1 1 m n m
S =—5 f dxy=g [Egp 81" FynF pg + Mg A,,Am], (35)
where the vector field stress tensor is defined as
an = amAn - anAm-
The equations of motion are achieved by 6S/54, =0,
such that:

Ocle™ Fon" 19 le™ O™ Frnu )
—ePOMIA, " =0, (36)

where B(z) = —A(2).

Considering a plane wave ansatz with the amplitude
only depending on the z coordinate and propagating in the
transverse coordinates x* with momentum g, we obtain

Az, %) = v(2)e 4 ¢, (37)

assuming A, =0 and €e =1"'ee€, =1 is the unitary
4—vector defined in the transverse space to the z coordin-
ate, with components ¢, = 1/2(1,1,1,1). We use the fact
d,A* =0, which implies g’e, = n*'¢e; = q-€ =0, ensur-
ing that the field can be written as a plane wave. Notably,
F = 0.A, and 7™0,Fu, = —g°A,. After some algebraic
manipulation and defining v(z) = y(2)e %, we obtain the
"Schrédinger-like" equation, given by:

B/Z(Z) B//(Z)
x 2 "

—y"(2)+ e 2BOME y(2) = Py (2), (38)

where E = —¢? are eigenenergies.
5.1 Results for vector mesons spectra

We consider the case J=1. Then, recalling that
M2 =(A-p)(A+p—-4) and identifying Ms as the vector
meson bulk mass, the index of p—form as total angular
momentum (p = J = 1) for the vector meson and A as the
conformal dimension, which is A =3, as each quark con-
tributes with 3/2. Finally, we rewrite Eq. (38) as:

BIZ(Z) ~ B//(Z)
4 2

W@ =@, (39

")+ [

with B(z) = —A(z) and M3 = 0 for vector mesons.

Solving Eq. (39) numerically with the warp factor
constant k, given by ky, = —0.613> GeV’ , we obtain the
masses compatible with the family of vector meson p,
with 1¢JFC¢ = 17(17), as indicated in Table 6. The error
presented in the last column of Table 6 (%M) was

definied in Eq. (26). We also compute the total r.m.s er-
ror defined by Eq. (27). For Table 6, we obtain 6, =7.87%.

Using the data from Table 6, we plotted a Chew-
Frautschi plane, represented as nxm?, where n is the
holographic radial excitation, and m? is the squared vec-
tor meson mass represented by the dots (our model) or
squares (PDQ) in Fig. 6. Using a standard linear regres-
sion method, we obtain the experimental and theoretical
Regge trajectories for vector meson p, such that:

m. =(0.720+0.076) n—(0.223+0.302),  (40)

exp
mi =(0.754+8x 107y n. (41)

We did not include the intercept in Eq. (41), because its
value is very close to zero (» 107'®). Moreover, in Eq.
(41), the uncertainty in the slope is very small, indicating

Table 6. Masses of light unflavored vector meson p (S = C = B =0).
Column n=1,2,3,--- represents holographic radial excitation of
vector mesons. The ground state is represented by n = 1. Column
Mexp represents experimental data from PDG [69]. Column My, rep-
resents masses obtained within the deformed AdS 5 space approach
and using Eq. (39) with kyy = —0.6132 GeV. Column %M repres-
ents the error of My, with respect to Mexp, according to Eq. (26).

Vector meson p (11(177))

pmeson M. /GeV [69]  My/GeV oM
n=1 e(770)  0.77526 £0.00025 0.868327 12.0422
n=2 p(1450) 1.465+0.025 1.228 16.1775
n=3 p(1570) 1.570+0.070 1.50399 4.20467
n=4 p(1700) 1.720 +£0.020 1.73665 0.968271
n=>5 p(1900) 1.909 +0.042 1.94164 1.70972
n=6 p(2150) 2.155+0.021 2.12696 1.30123
5—
] s
4
] u
3 - [u]
g
[} .
g | o
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24
] °
1
1 L]
] o ®  Our Model
] O  PDG
0IIII|IIII|IIII|IIII|IIII|IIII|IIII|
0 1 2 3 4 5 6 7
n
Fig. 6. Vector meson p family squared masses as a function

of their holographic radial excitation, obtained within the
deformed AdSs space approach (dots) and from PDG
(squares), as presented in Table 6.
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that this fit is practically a straight line.

The authors of Refs. [70, 71] also computed the
masses for the p meson family and derived their Regge
trajectories within their holographic softwall model, ob-
taining approximately the same value for the slope and
intercept (considering uncertainties) as the present study,
Eq. (41). The data selection scenarios in those studies are
different from the present study, as they included the vec-
tor meson p(1282) as the first radial excited state and ex-
cluded the vector meson p(1570), which the authors ar-
gue may be an OZI violating decay of the p(1700). If we
assume the existence of the p(1282) as the first radial ex-
citation (n=2) of the p meson family, then the corres-
ponding percentage error %M in Table 6 would be smal-
ler, and so would the 6, error.

As performed for the scalar mesons, we can resort to
the mesonic spectroscopy data [68, 72- 74] and note that
all vector mesons listed in Table 6 are not in the same
spectroscopic state, meaning that only p(770), p(1450),
0(1900) and p(2150) belong to the S —wave represented by
1381, 2354, 3351, and 43S, respectively. In this study, we
used the spectroscopic notation, such as n25*'L;, where n,
is the spectroscopy radial excitation. Using these states,
we plot a Chew-Frautschi plane represented as n, xm?,
where 7, is the spectroscopy radial excitation, and m? is
the squared vector meson mass represented by the dots
(our model) or squares (PDG) in Fig. 7. Using a standard
linear regression method, we obtain the experimental and
theoretical Regge trajectories for vector meson p belong-
ing to the S —wave, so that:

m2 = (1.363+£0.092) n, — (0.648+£0.252),  (42)

exp

mg, = (1.357+0.213) n, - (0.754£0.584).  (43)

The Regge trajectory for vector mesons belonging to
the S—wave from our model, represented by Eq. (43),
yield a Regge slope in the range 1.25+0.15 GeVz, which
is close to the universal value 1.1 GeV’ [72,75].

Furthermore, if we follow the original motivation for
the softwall model, it would be natural to suppose that ky,
and ky, are related to the string tension for the flux tube
that connects the two quarks inside the meson. This in-
formation is contained in the confining part of the ¢g po-
tential, and it is in principle a spin-independent term.
Therefore, in the AdS/QCD models with dilatons in the
action, the slope parameter must be universal for scalar
and vector mesons, as in the conventional softwall model
[16, 49].

Interestingly, ksn and ky, are related, namely
3ksm = kym. This peculiarity could be attributed to the fact
that in the EOM for scalar mesons, Eq. (9), we per-
formed the substitution B(z) = —3A(z). In contrast, in the
EOM for vector mesons, Eq. (36), we used B(z) = —A(2),
leading to kym ~ 3kem.

s

p(2150)

8

p(1900)

w

m2 (GeV?)

o

N

p(770) p(1450)

[ ]
[m] L] Our Model
m] PDG

O T T T T T T T T T[T T T T [T T T T [T T T T[T T T T[T T T T TTTT]
0,5 1 1,5 2 2,5 3 3,5 4 4,5
ne

Fig. 7.
masses as a function of their spectroscopy radial excitation

Vector mesons p belonging to S—wave squared

n, obtained within the deformed AdS s space approach (dots)
and from PDG (squares).

6 Hadronic spectra for baryons

Within the quark model, constituent baryons are
particles with a semi integer spin formed by a bound state
of three valence quarks. In this study, we disregard states
of baryons with higher complexity, composed of three
quarks added to any number of quark and antiquark pairs,
e.g., pentaquark states (gqqqg). Hence, we use the follow-
ing description for baryons, such that:

lg9g9) 4 = |color)4 ® [space; spin—flavor)g . (44)

The three colors are represented by an S U(3) singlet,
without dynamics and completely antisymmetric. The
spatial wave function is related to O(6), and the spin-fla-
vor wave function is related to S U(6). A review on bary-
on physics is provided in e.g., Refs. [76, 77]. In this
study, we are interested in light baryons composed of u
and d quarks with a spin of 1/2 and with higher spins (3/2
and 5/2).

Within the holographic description, baryons are dual
to the massive spinor fields in AdSs. We start our discus-
sion from the free spinor field action without surface
terms [78-81]:

S = f dx g D —ms)P. (45)
AdS

We disregarded the hypersphere S3, as for our pur-
poses, the spinor field does not depend on these coordin-
ates. Further, in the action (45), g is the determinant of
the metric of the deformed AdS 5 space, given by Eq. (4).

As we deal with fermions in a curved space, we need
to construct a local Lorentz frame or a vielbein. To sim-
plify our notation, we will use a,b,c to denote indexes in
flat space, and m,n, p,q to denote indexes in curved space
(deformed AdSs space). The Greek indexes u,v are
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defined in the Minkowski space. Thus, a useful choice is:
ezl ZGA(Z)(Szp 621 — e—A(z)élrzn, eMa — e—A(z)nma’ (46)

with m=0, 1, 2, 3, 5.
The Levi-Civita connection is defined as:

1 .
rll;m = Egpq(angmq +amgnq - aqgmn)a with 8mn = 62A(Z)nmn'
(47)
The corresponding spin connection ), , is given by:
Wiy = eadne" +ee! T, (48)

Because the only non-vanishing I'?, are:
I, =A@, Ti5=-A'(z) and T% = -A’(9)d),  (49)
we obtain:

W) =-w) = 0.A(2)5), (50)

and all other components disappear.
The equations of motion are easily derived from Eq.
(45), such that:

D—-ms)¥ =0 and ¥(=D —ms) =0. (51)
Using Egs. (4), (46), and (50), we express the operat-
or p in Eq. (51), such that:
D Egmnefql')’a (am + %wfnczbc)
=e 19y 95 +e 1 y9, + 24" (2)y", (52)

where we employed that y, = (¥4, ¥5), {Ya.¥s} = 21a», and
s = %[yﬂ,ys]. Here, vy, are the usual Dirac's gamma
matrices.

The first Dirac equation in Eq. (51) assumes the fol-
lowing form:

(9y°05 +e4OY9, +24'(2)y" —ms) ¥ =0,  (53)

where 05 = 9, z is the holographic coordinate in the AdS
space, and ms is the fermion bulk mass. Considering a
solution that can be decomposed into right- and left-
handed chiral components, such as:

1-9° 1 S
‘P(X”,z)=[ 27 fi@)+ +27 fR(z>]T(4)(x), (54)

with Wy (x)  satisfying the Dirac  equation
B -M)¥P4(x)=0 on the four-dimensional boundary
space. The left and right modes also obey y° fi/r = Ff1/r
and y”@,,fR = me.

Because the Kaluza-Klein modes are dual to the chir-
ality spinors, we expand ¥, g, such that:

Wir(#,2) = > f R0 (). (55)

Using Eq. (55) with Eq. (54) in Eq. (53), we obtain a
set with two coupled equations, namely:
(0:+24'@e"@ +mse*@) ¢ (2) = + M3 (56)

and

(az +24A"(2) e —ms e ) Pp(2) = —M 7 (2). (57

Decoupling Egs. (56) and (57), and performing the
following change of variables

bR = (e ", (58)

we obtain a Schrodinger-like equation written for both
right and left sectors, given by:

—Uj @)+ |m3e D £mse QA @) |yryL(2) = M, (2),
(59)
where M, in Eq. (59) depicts the four-dimensional fermi-
on mass.

6.1 Results for spin 1/2 baryons spectra

Here, we deal with light baryons with spin S =1/2
formed by u and d quarks. To this end, we consider the
following operator on the boundary theory:

Op = qDy,..D¢qDy,.,..Dy \q with Zf, =L, (60)
i=1
where L is the orbital angular momentum. Here we con-
sider only the case L =0.

From the AdS/CFT dictionary, we find the following
relationship for the fermion bulk mass (ms) and its con-
formal dimension (A), such that:

Ims| = A—2. (61)

As each quark u or d contributes with A =3/2, then
the baryon formed by three quarks exhibits A =9/2 and
consequently ms =5/2.

Replacing ms =5/2 in the Schrddinger-like equation
(59) and solving it numerically, with the warp factor con-
stant & identified as ki, =0.2052 GeVz, we obtain the
masses compatible with the family of N baryon, with
I(JPY=1/2(1/2*), as indicated in Table 7. The error
presented in last column of Table 7 (%M) is defined in
Eq. (26). We also compute the total r.m.s error defined by
Eq. (27). For Table 7, we obtain d,,,; = 4.09%.

Using the data from Table 7, we plotted a Chew-
Frautschi plane represented as nxm?, where n is the holo-
graphic radial excitation, and m? is the squared N(1/2%)
baryon mass represented by the dots (our model) or
squares (PDQ) in Fig. 8. Using a standard linear regres-
sion method, we obtain the experimental and theoretical
Regge trajectories for the N(1/2*) baryon, such that:

mi . =(0.863+0.029) n+(0.114+0.111),  (62)

exp
m = (0.860+0.042) n—(0.081+0.164). (63)

As performed for the scalar and vector mesons, we re-
sort to baryonic spectroscopy and attempt to recognize
which baryons among those listed in Table 7 belong to
the same spectroscopy state. According to Refs. [76, 77],
we see that the states N(939), N(1440), N(1710), and
N(2100) belong to the state D; = (56,28), with spectro-
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Table 7.
ents holographic radial excitation. The ground state is represented

Masses of N(1/2*) baryons. Column n=1,2, 3,--- repres-

by n=1. Column Mexp represents experimental data from PDG
[69]. Column My, represents the masses of N(1/2%) baryons with
k12 = 0.2052 GeV’, obtained within the deformed AdS s space ap-
proach and using Eq. (59). Column %M represents the error of My,
with respect to Mexp, according to Eq. (26).

Baryons N(1/2%)

Nbaryon  M,/GeV [69]  Mu/GeV %M
n=1 N(939)  0.93949+0.00005  0.98683 5.04
n=2 N(1440)  1.360 to 1.380 1.264 7.76
n=3 N(1710)  1.680t0 1.720 1.531 9.94
n=4 N(1880)  1.820to 1.900 1.791 3.70
n=>5 N(2100)  2.050t02.150 2.046 2.58
n==6 N(2300)  2.30070.906 +0.1 2.296 0.19

scopy radial excitation n,, corresponding to n, =1,2,3,4,
respectively, with orbital angular momentum L=0. In
this notation, D represents the 56-plet, which can be
broken into an octet with spin 1/2 (*8) and a decuplet
with spin 3/2 (*10). For these mentioned states, we plot a
Chew-Frautschi plane represented as n, x m?>, where n, is
the spectroscopy radial excitation, and m? is the squared
N(1/2%) baryon mass belonging to the (56,28), state rep-
resented by the dots (our model) or squares (PDG) in
Fig. 9. Using a standard linear regression method, we ob-
tain the experimental and theoretical Regge trajectories
for N(1/2%) baryon in the (56,%8), state, such that:

mZ, = (1.160+0.090) n, — (0.384 +0.246),  (64)

exp

m2, = (1.038 £0.204) n, — (0.320£0.560).  (65)

The Regge trajectory for the N(1/2*%) baryon belong-
ing to the same multiplet comes from our model, repres-
ented by Eq. (65), and presents a Regge slope near to
1.081+0.036 GeV’ [82], which is close to the universal
value 1.1 GeV’.

6.2 Results for higher spin baryons spectra

Here, we deal with light baryons, according to the
same structure as in the previous section and a higher
spin, meaning e.g., S =3/2 or § =5/2. To this end, we
employ the same approach for the higher spin glueball, as
in Subsection 3.1. To obtain the spectrum for spin 3/2 ba-
ryons, we insert symmetrized covariant derivatives in the
operator Op, given by Eq. (60). Then, the conformal di-
mensions related to the spin 3/2 baryons is now
Az =11/2, with ms=7/2. Solving Eq. (59) with the
warp factor constant k given by k3, = 0.205? GeV’, we
obtain the masses compatible with the family of N bary-
on, with I(J")=1/2(3/2*), as indicated in Table 8. The
error presented in last column of Table 8 (%M) is defined

o
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Fig. 8. N(1/2%) baryon family squared masses as a function

of their holographic radial excitation, obtained within the
deformed AdSs space approach (dots) and from PDG
(squares), as presented in Table 7.
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Fig. 9. N(1/2%) baryons belonging to the (56,28) state

squared masses as a function of their spectroscopy radial

excitation n,, obtained within the deformed AdSs space ap-
proach (dots) and from PDG (squares).

in Eq. (26). We also compute the total r.m.s error defined
by Eq. (27). For Table 9 one finds d,,,; = 9.00%.
Observing the column (%M) in Table 8, the errors
between M., and My, are excessively high, especially for
n=1 and n=2 states. A possible reinterpretation would
be a missing state, which represents the ground state for
the N(3/2%) baryons family. Taking into account this as-
sumption, regarding a possible missing state, we can rein-
terpret Table 8 as in Table 9, where in the first line we
present a possible baryon prediction obtained within the
deformed AdS model. The error presented in last column
of Table 9 (%M) is defined in Eq. (26), and we compute
the total r.m.s error defined by Eq. (27). For Table 9, we
find that J,,,; = 2.13%. We excluded our prediction of the
error calculation. The errors in Table 8 are greater than in
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Table 8.
ents holographic radial excitation. The ground state is represented

Masses of N(3/2*) baryons. Column n=1,2, 3,--- repres-

by n=1. Column Mexp represents experimental data from PDG
[69]. Column My, represents the masses of N(3/2%) baryons with
k32 = 0.2052 GeV’, obtained within the deformed AdS s space ap-
proach and using Eq. (59). Column %M represents the error of My,,
according to Eq. (26).

Baryons N(3/2%)
Nbaryon M., /GeV [69]  Min/GeV %M
n=1 N(1720)  1.660 to 1.690 1.326 23.05
n=2 N(1900)  1.900 to 1.940 1.606 12.27
n=3 N(2040) 2.04070993+0.025  1.878 8.72

Table 9.
ents holographic radial excitation. The ground state is represented

Masses of N(3/2*) baryons. Column n=1,2, 3,--- repres-

by n=1. Column Mexp represents experimental data from PDG
[69]. Column My, represents masses of N(3/2%) baryons with
k32 = 0.2052 GeV’, obtained within the deformed AdS s space ap-
proach and using Eq. (59). Column %M represents the error of My,
with respect to Mexp, according to Eq. (26). In the first line, we

present a possible baryon prediction within our model.

Baryons N(3/2%)
Nbaryon  M,/GeV [69]  Mu/GeV %M
n=1 1.326
n=2 N(1720)  1.660 to 1.690 1.606 4.14
n=3 N(1900)  1.900 to 1.940 1.878 2.19
n=4 N(2040)  2.040*5993+0.025  2.144 5.09

Table 9. However, this possible ground state N(1330) that
we are reinterpreting is not found in PDG. In PDG the A*
states with J” =3/2* and mass around 1320 MeV is
found; hence, our model is possibly not capable to distin-
guishing these two states. This first state could be A(1232)
as both trajectories, A and N(3/2%), are supposed to be
degenerate in the chiral limit, as it happens with mesons p
and w.

Using the data from Table 9, we plotted a Chew-
Frautschi plane represented as nxm?, where 7 is the holo-
graphic radial excitation, and m? is the squared N(3/2%)
baryon mass represented by the dots (our model), by the
triangle (our model prediction), or squares (PDG) in
Fig. 10. Using a standard linear regression method, we
obtain the experimental and theoretical Regge trajector-
ies for N(3/2%) baryons, such that:

mly, = (0.678£0.117) n+(1.517+0.364),  (66)

m2, = (1.021£0.017) n+(0.501 £0.047).  (67)

For the linear fit in Eq. (67) we took into account our pre-
dicted state.
The Regge trajectory for the N(3/2*) baryon family
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Fig. 10. N(3/2%) baryon family squared masses as a function

of their holographic radial excitation, obtained within the
deformed AdSs space approach (dots), our model predic-
tion (triangle), and from PDG (squares), as presented in Ta-
ble 9.

from our model, represented by Eq. (67), presents a
Regge slope near to 1.081+0.036 GeV’ [82], which is
close to the universal value 1.1 GeV".

At this point, we deal with baryons of spin 5/2. To
this end, once again, we insert one more symmetrized co-
variant derivative in the operator Op given by Eq. (60).
Then, we obtain the conformal dimension, given by
As;p =13/2, which provides ms =9/2. Solving Eq. (59)
with the warp factor constant k given by ks;, = 0.190?
GeV’, we obtain the masses compatible with the family
of N baryons, with I(J¥)=1/2(5/2"), as indicated in
Table 10. The error presented in the last column of
Table 10 (%M) is defined in Eq. (26). We compute the
total r.m.s error defined by Eq. (27). For Table 10 one
finds J,s = 2.76%.

From Table 10, we plotted a Chew-Frautschi plane as
nxm?, where n is the holographic radial excitation, and
m? is the squared N(5/2") baryon mass represented by the
dots (our model) or squares (PDG) in Fig. 11. Using a
standard linear regression method, we obtain the experi-
mental and theoretical Regge trajectories for N(5/2*) ba-
ryons, such that:

m2, = (0.785+0.135) n+(1.934£0.291),  (68)

mtzh =(0.931+0.031) n+(1.429 £ 0.068) . (69)

The Regge trajectory for the N(5/2%) baryon family
from our model, represented by Eq. (69), present a Regge
slope near to 1.081 +£0.036 GeV’ [82], which is close to
the universal value 1.1 GeV’.

Notably, the numeric values of the warp factor con-
stant & for the baryons in this study are approximately in-
dependent of their spin, meaning that k2 = k32 = ks 2.
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Table 10.
ents holographic radial excitation. The ground state is represented

Masses of N(5/2%) baryons. Column n =1, 2, 3,--- repres-

by n=1. Column Mexp represents experimental data from PDG
[69]. Column My, represents the masses of N(5/2%) baryons with
ks = 0.1907 GeV’, obtained within the deformed AdS s space ap-
proach and using Eq. (59). Column %M represents the error of My,
with respect to Mexp, according to Eq. (26).

Baryons N(5/2%)
Nbaryon  p.,./GeV [69]  Mp/GeV %M
n=1 N(1680) 1.665 to 1.680 1.542 7.78
n=2 N(1860) 1.830*120 1.804 1.44
n=3 N(2000) 2.090 + 120 2.059 1.49
4,5
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Fig. 11.  N(5/2%) baryon family squared masses as a function
of their holographic radial excitation, obtained within the
deformed AdSs space approach (dots) and from PDG
(squares), as presented in Table 10.

7 Summary and conclusions

We studied the hadronic spectra based on the holo-
graphic model within deformed AdSs space metrics, es-
tablishing that the warp factor is A(z) = —log(z) + kz%/2 in-
stead of A(z) = —log(z) of the pure AdS space. This de-
formation implies that there is no dilaton field in the ac-
tion, as in the original softwall model. In our model, dif-
ferent values are needed for the parameter £ for each
particle sector. A possible interpretation for this behavior
is the following: if one assumes that the QCD vacuum is
defined by the metric, our result of multiple values of &
indicates that the QCD vacuum should be non-trivial and
possibly composed of various non-equivalent vacua
states.

The main achievement of this study is to provide an
approach that can adequately accommodate the spectra
for even and odd glueballs, scalar (07(0"*)) and vector
mesons (17(177)), as well as N baryons with spin 1/2, 3/2,
and 5/2 using the same holographic approach. This im-

plies that the masses of these mentioned particles, com-
puted using our model, and the derived Regge trajector-
ies are in agreement with the literature.

For the even and odd glueball cases, our model
provides appropriate masses, as indicated in Tables 1 and
2, when compared with other approaches (a summary of
even and odd spin glueball masses obtained from lattice
and other models is given in Tables 3 and 4). The com-
puted masses for higher even and odd spin glueballs were
placed in a Chew-Frautschi plane m?x J. We derived the
Regge trajectories related to the pomeron and the odder-
on, which are likewise in agreement with the literature.

Our model performs well for scalar mesons, provid-
ing appropriate masses for the fy (07(07")), as indicated in
Table 5, as compared with the data from PDG [69]. The
obtained Regge trajectory from m? xn is compatible with
the one of the holographic softwall model [70, 71]. Us-
ing spectroscopy data for the scalar mesons, we split
them into two sets. The first one contains only
ni = 1/ V2(uit + dd), while the second contains only s5.
For these sets, we derived Regge trajectories in m?xn,
and found that they are compatible with the literature [72,
75].

For the vector meson p(17(177)) our model provided
appropriate masses as well, as shown in Table 6 com-
pared with PDG. The obtained Regge trajectory from
m?xn is compatible with the one from the holographic
softwall model [70, 71]. Using the spectroscopy data for
the vector mesons, we selected the S —wave states and de-
rived their Regge trajectory in m? x n,, finding agreement
with the literature [72, 75].

Our model also provides appropriate masses for the
N(1/2%) baryon, as shown in Table 7, compared with
PDG. In this case, we likewise used the baryonic spectro-
scopic data to select states in the same multiplet, only
varying their radial excitation. From these states, we de-
rived the Regge trajectory, which was compatible with
the literature [82].

For the N(3/2*) baryon, we obtained unsatisfactory
results for the masses, as shown in Table 8. These results
can be improved by introducing a hypothetical baryonic
state to occupy the ground state (Table 9). Using this as-
sumption, the errors decrease and the derived Regge tra-
jectory is compatible with the literature [82].

Finally, for the N(5/2%) baryon our model provides
appropriate masses, as shown in Table 10, in comparison
with PDG, and the Regge trajectory is in a reasonable
agreement with the literature [82].

It is important to note that in our model, the form of
the warp factor is the same for all studied particles,
whereas the parameter £ is adjusted for each case. In Ref.
[29], the authors employ different warp factors for each
kind of particle that is dependent on the angular mo-
mentum. In our case, for even and odd glueballs, the

064104-12



Chinese Physics C Vol. 44, No. 6 (2020) 064104

value of £ is the same, kgpe = kgho = 0.312 GeV”. For scal-
ar and vector mesons, we found that k,,, ~ 3ksy, as dis-
cussed at the end of Subsection 5.1. For the baryonic
case, we found ky 2 = k32 = kso.

The Regge trajectories presented in this study related
to hadronic spectroscopy for scalar mesons (31), (33),
vector mesons (43), and baryons (65), (67), (69) point to-
wards a universal Regge slope around 1.1 GeV’ in accord-
ance with the literature [72, 75, 82, 83].

Our model finds different signs in the exponential of

the warp factor, depending on each hadronic sector.
Hence, the question regarding the sign of the dilaton in
the original softwall model persists. Despite the different
signs for different sectors, we have no massless fields in
our model. This is a consequence of the deformed geo-
metry instead of the introduction of a dilaton field in the
action as in the original softwall model.

The authors would like to thank Carlos Alfonso Bal-
lon Bayona for useful discussions, and Oleg Andreev and
Song He for useful correspondence.
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