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Abstract: Asymptotically safe gravity is an effective approach to quantum gravity. It is important to differentiate

modified gravity, which is inspired by asymptotically safe gravity. In this study, we examine particle dynamics near

the improved version of a Schwarzschild black hole. We assume that in the context of an asymptotically safe gravity

scenario, the ambient matter surrounding the black hole is of isothermal nature, and we investigate the spherical ac-

cretion of matter by deriving solutions at critical points. The analysis of various values of the state parameter for iso-

thermal test fluids, viz., k = 1, 1/2, 1/3, 1/4 show the possibility of accretion onto an asymptotically safe black hole.

We formulate the accretion problem as Hamiltonian dynamical system and explain its phase flow in detail, which re-

veals interesting results in the asymptotically safe gravity theory.
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1 Introduction

The process of accretion of matter onto a black hole is
a hot topic in theoretical physics. This process is mainly
responsible for the formation of Quasi-periodic oscilla-
tions and emission of gravitational waves. The accretion
phenomena plays a role in the formation of astronomical
objects, such as stars, planets, galaxies, quasars, etc. The
most significant phenomena in the universe, including
gamma-ray bursts, X-ray binaries, active glactic nuclei,
tidal disruption events mainly occur because of the accre-
tion of gas onto black holes. An accretion disk forms
when gaseous matter rotates and accumulates around the
black hole. In the past century, it was realized that grav-
ity powers most luminous objects in the universe through
accretion. Our main aim is to study accretion onto black
holes, known to be the strongest gravitating objects re-
sponsible for emitting high-energy fluxes from astronom-
ical objects. Moreover, black holes have an event hori-
zons that act as borders that are traversed by fluids that
enter them.

Research on the accretion process in Newtonian grav-
ity began in 1952 by Bondi [1] and later on by Michel [2]
in 1972 in the context of general relativity. The differ-
ence between the Bondi and the relativistic accretion
models is that the former allows stellar winds or ejecta
(v>0) from the stellar surface, which is the opposite of
the accretion (v < 0), whereas the same process of ejecta
does not directly apply to black holes, since black holes
are not composed of gas and have no gaseous surface.
Any kind of ejection, such as jets from the black holes,
occurs only in the presence of charged plasma floating
around the black hole under the effect of strong magnetic
fields. We have disregarded these considerations in this
study. According to Michel's approach, the discussion of
critical points in relation to accretion is provided in Ref.
[3]. A detail study of the accretion process onto spheric-
ally symmetric black holes in general relativity and other
theories of gravities can be found in [4-17], and the refer-
ences therein. Babichev et. al. [18, 19] have shown that
phantom accretion onto a black hole decreases its mass.
In contrast, if the black hole solutions are considered in
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the Friedmann-Robertson-Walker universe, it is observed
that the black hole accretion may increase the mass of
gravitational objects [20].

Black holes that exist as a fundamental part of our
universe provide the most intriguing solutions to
Einstein's field equations. Einstein's general theory of re-
lativity explains very well the exterior and horizons of
black holes, whereas it fails to describe the physics of the
deep central region, which is is strongly affected by
quantum effects. In this context, Weinberg [21] proposed
a theory of asymptotic safe gravity (ASG), which em-
beds gravity in the quantum field theory framework. As
its central property, the effective average action satisfies a
formally exact functional renormalization group equation.
Presently, it has accumulated substantial evidence that the
gravitational renormalization group flow possesses a non-
trivial fixed point, which could provide the ultra-violet
completion of gravity at trans-Planckian energies. The
concept of an asymptotically safe gravitational theory has
been applied to theories of gravity (such as the Einstein
gravity [22] and f(R) gravity [23]), cosmology [24, 25],
and black holes [26]. In this study, we investigate the re-
lativistic accretion problem in the context of an infra-red
limit of an asymptotically safe scenario. We follow the
Hamiltonian dynamical formalism in the phase space
(r,n), where r is the areal radius, and » is the particle
density of the fluid. We assume that the improved ver-
sion of the Schwarzschild black hole is surrounded by a
special type of perfect fluid, namely the isothermal type.
We then investigate the matter particle dynamics by de-
riving solutions at critical points. The solutions we ob-
tain for the accretion problem describe the Michel flow
and the critical point through which it passes. Hence, to
discuss critical flows, we investigate the effect of ASG on
the accretion process, which is the main purpose of this
work.

By expressing accreting matter by the isothermal
equation of state, we provide a complete description of
the fluid flow behavior near the black hole.

The remainder of this paper is structured as follows:
in Section 2 we provide a brief review of field equations
to define the static, spherically symmetric black hole met-
ric in ASG within the infra-red limit. We also present
some fundamental equations related to accretion to ex-
plain a steady-state, radial perfect fluid flow by specify-
ing our assumptions on the fluid equation of state and
presenting our results. In Section 3, governing equations
for improved Schwarzschild black hole accretion and
conservation laws are presented. We then evalute our res-
ults at sonic points by considering the isothermal fluid
and analyze its flow by choosing suitable values of the
state parameter. We also formulate fluid equations as
two-dimensional Hamiltonian dynamical systems on the
phase space (r,n) by assuming that the Hamiltonian de-

pends on the accretion rate in Section 4. We perform a
detailed analysis by providing numerical plots for the
phase flow of isothermal fluid on modified Schwarz-
schild background and discuss the effect of coupling
parameter. Conclusions are presented in the last section.

2 Notation and equations for spherical accre-
tion in ASG with in infra-red limit

Recently, Cai and Easson [27] found black hole solu-
tion in ASG scenario considering higher derivative terms
in their investigation. They discuss how the inclusion of
quantum corrections modifies the Schwarzschild black
hole solution. According to Ref. [27], the geometry of a
static spherically symmetric Schwarzschild (anti)-de Sit-
ter black hole in ASG in the /R limit is given by

2GM 2G*M
dszz—(l— + §)altz
r r
2GM  2G2Me\!
+ (1 - + é:) dr? + r*d6* + r* sin 0d¢?,
r r

(1)
where G and M denotes the gravitational constant and
mass of the black hole, respectively. The outer horizon,
which is merely the null hypersurface of the modified
version Eq. (1) of the Schwarzschild black hole taking
quantum corrections into account can be written in ap-
proximate form as

Ty = g [1 —2cosh(%cosh_lﬁ)], 2

% —1. r, given in Eq. (2) is the only real

root of 1 -2 4 ZG;M§ =0, which can be calculated us-
26M

ing the Weierstrass Polynomial r=z+ =5*. By expand-

ing Eq. (2) to the leading order of £, we can approximate
it as [27]

where 8=

¢

FIR = 2GM m (3)
If we insert the running coupling parameter £ =0 into
Egs. (1) and (3), we can retrieve the classical Schwraz-
schild black hole metric and the corresponding event ho-
rizon, respectively. Here, we review some important
equations describing the steady state Michel flow on a
Schwrazschild (anti) de Sitter black hole in ASG. Further
detail and generalization to an even more general static
spherically symmetric black hole background is provided
in Refs. [16, 28, 29].

As described in the introduction, we model the flow
of a perfect relativistic fluid, neglecting the effects re-
lated to viscosity or heat transport, and further assume
that the fluid's energy density is sufficiently small, such
that its self-gravity can be neglected. We assume that the
flow of the perfect fluid onto the improved Schwraz-
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schild black hole is steady-state flowing in the radial dir-
ection, described by the particle density n (also called ba-
ryonic number density), pressure p, and the energy dens-
ity e by an observer moving along the fluid four-velocity
u“u, = —1. To investigate the accretion process onto high
derivative black hole, as described above, we need to re-
view the fundamental equations of accretion for the un-
derlying geometry of the spacetime.

The accretion dynamics of a perfect matter is gov-
erned by the following conservation laws

Vo J* =0, @

V. T =0, )
where J*=nu® is the particle current density, and
T% = nhu®uP + pg® is the stress energy tensor. V refers to
the covariant derivative with respect to the spacetime
metric. Here and onwards, we assume that 4 denotes the
enthalpy per particle defined by h=2° [30] where
h = h(n) is a function of the particle density # only. In the
spherical symmetry stationary case, the above Egs. (4)
and (5) reduce to

r*nu = const = K, 6)

2GM 2G*M
h(l— G +S+

1/2
S uz) =const =L, @)
r r

which expresses the conservation of particle and energy
flux through a sphere of constant areal radius ». We stress
here that to analyze the perfect fluid flow, Egs. (6) and
(7) will play the main role in the background of im-
proved Schawrzschild black hole, as they will be helpful
to convert the present problem into a Hamiltonian dy-
namical system.

3 Flow behavior at critical point

Physically, a critical point r = r. describes the trans-
ition of the flow's radial velocity measured by the static
observer from subsonic to supersonic. If we consider the
barotropic fluid for which there is a constant pressure
throughout (i.e. & = h(n)), then its equation of state can be
expressed as [30]

dh  ,dn
N
where a denotes the local speed of sound.

Differentiating Eqgs. (6) and (7) with respect to », we

obtain

®)

GM 3G*M¢

2r 2r3

u2)

)

2GM 2G2M§
1- T+ u?
du 2u r r
2GM  2G*M¢é
—_—t—+
r r3

dr r~
uz—c%(l—

where ¢? = k is the square of the speed of sound, and & is

a state parameter for the isothermal equation of state
(EoS) p =ke. The above Eq. (9) can be converted into a
two-dimensional autonomous Hamiltonian dynamical

system:

2
fl(r,u)zgzr{uz—cz(l—m—M 26 Mf )} (10)

dl r r

_du 2GM ZGzMg
folruw) =7 = { (1— : 3 )
GM 3G*M¢

T T } (a

with an arbitrary parameter /, whose phase portraits con-
sist of » versus s, indicate solutions of Eqs. (6) and (7).
To obtain critical points, we set the right hand side of
Egs. (10) and (11) equal to zero, which after solving yield

, GM 3G*M¢

=—+ 12
MC zrc 27‘? > ( )
GM .\ 3G*M¢é
BV 3
2= 2re 2 (13)
3GM  7G*M¢
1- 7 T 3
2rs 2r;

By using Egs. (12) and (13), we can obtain the sonic
points, which refer to the critical points of the dynamical
systems of Eqgs. (10) and (11). From Eqgs. (6) and (7),
after performing several intermediate steps, one can ar-
rive at very important equation, which is helpful to de-
scribe the critical flows of the fluid under consideration

\/ 2GM  2G2M¢
}"

— =+ w? =AM (14)

- =4

For the standard equation of state, the critical point
(r¢,u.) is the saddle point, and thus the solution must pass
through it. The detailed discussion of this critical point
will be presented in the forthcoming sections.

4 Hamiltonian analysis for isothermal test
fluids

To analyze the perfect matter flow, it is useful to em-
ploy a dynamical system whose orbits consist of graphs
of solutions of the system Eqs. (6) and (7). Such a sys-
tem can be defined conveniently in terms of » and v
(where v is the three-velocity of the fluid). We formulate
our problem in terms of the Hamiltonian dynamical sys-
tem on the phase space (r,n), where the vector field de-
scribing the dynamics is the Hamiltonian vector field as-
sociated with the function F(r,n). By assumption, F is
constant along the trajectories of phase flow and thus
meets the definition of level curves. The main usefulness
of converting the accretion problem into a dynamical sys-
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tem is that the fluid behavior near the critical point of F
can be analyzed using standard tools of the theory of dy-
namical systems [31, 32].

In Egs. (6) and (7), we used two integrals of motion K
and L. We stress here that any one of them , or any com-
bination of these integrals can be utilized as Hamiltonian
system for the fluid flow. Assuming that the Hamiltonian
system is a function of two variables » and v and square
of the left hand side of Eq. (7), i.e.,

2GM  2G*M
H(r,v) = h* 1——Ci + G3 ¢

+u?|, (15)
.

which in a more general form can be written as

2 2
H(r.v) = h (V,V)(f(FQ)+M )_ (16)
1-v
We introduce the following pair of a dynamical system
r=H, v=-H,, (17)

where the dots denote the 7 derivatives, and the #, and
H,, denote partial derivatives of H with respect to » and
v, respectively. By solving the right-hand-side of the
above equation and subsequently equating to zero results
in the desired critical point (r.,u.), we obtain the follow-
ing fundamental pair of equations

rel=ad)f.,re = 4f.al, (18)
which are thus helpful to derive the following important
equations

2_ 2
Ve = ag,

(ag =k) Hrcfc,,( + fu

- [%f} (19)

1
D) = 3refo 20)

We point out here that the above pair of Egs. (19) and
(20) is equivalent to Egs. (12) and (13) and provide the
critical radius and critical speed of the moving fluid.
Thus, we shall use these equations to locate the position
of the critical point (r.,u’). We know that one of the most
appreciative tools for energy conservation is the Hamilto-
nian. In the current study, the precise form of the general
Hamiltonian Eq. (15) in terms of the variables » and v for
the isothermal test fluid can be expressed as

1-

26GM 2GZM§)]_k
+
r r
(1—v2)! K2k e
where £ is the state parameter, and v is the ordinary three-
dimensional speed of the fluid, which is given by

H(r,v) = , 21

2
V2= - (22)
2GM  2G*Mé
1- +
r r
We remark here that u is well-defined everywhere,

and the velocity v is defined outside the horizon. Com-

+u?

plete derivation of these fundamental equations is
provided in Refs. [33-35].

4.1 Isothermal fluids

Expressing accreting matter by the isothermal equa-
tion of state (EoS) P = ke (where £ is a state parameter),
we present a complete description of the fluid flow beha-
vior near the black hole.

1) The fluid at which isotropic pressure and the en-
ergy density of the fluid particles is same is referred to as
ultra stiff fluid. In this case, the state parameter has the
value k = 1. This value of the state parameter reduces Eq.
(19) to f, =0, which yields r. = ry, i.e., the critical radius
and event horizon coincide. In this case, the Hamiltonian
in Eq. (21) reduces to

1

v2é”

(23)

As above, the Hamiltonian shows constant of motion
i.e., H = H,, and we observe that v behaves as % To ex-
plain the physical behavior of the fluid flow, we need to
sketch contour plots of H(r.,v.) = H.. From the Fig. 1 on
top left, the black curve indicates the solution for
H=H., the red curve indicates the solution for
H =H.+0.005, the green curve shows the solution for
H =H.+0.02999, the magenta curve depicts H =
H,.—0.0001, and the blue curve depicts H = H.—0.09. In
summary, we observe that for v > 0, there is particle emis-
sion, and v < 0 depicts the fluid accretion.

2) If the isotropic pressure is less than the energy
density, it has characteristics of an ultra-relativistic fluid.
In this type of fluid, the EoS takes the form p = e¢/2. After
setting k= 1/2 in Eq. (19), we obtain the following ex-
pression for the critical radius

14
re=2GM- 25 (24)
2 25M

The Hamiltonian in Eq. (21) in this case reduces to

\/( 26M 2G2M§)
1- +

r r

e

We can observe that H in Eq. (25) is not defined for
(r,v*) = (ry,1). However, for some constant values of
H = Hy, one can solve it for v2. The five trajectories of
solutions to Eq. (25) in the phase space are shown in top
right diagram of Fig. 1. Here, the black curve indicates
the solution for H = H,, the red curve depicts the solu-
tion for H=H.-0.01, the green curve for H =
H,.—0.005, the magenta curve for H = H.+0.01, and the
blue curve for H =H.+0.005087. From the contour
plots, we see that they are doubly-valued and show un-
physical behavior, such we can say that there is no phys-
ical significance of such fluid in ASG.

3) For the radiation fluid, we have the state parameter

H = (25)
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0 2 4 6 8 0 12 14 T
Fig. 1.

0 3 10 15 20

(color online) Contour plot of Hamiltonian #(21) for ultra-stiff (k = 1), ultra-relativistic (k = 1/2), radiation (k = 1/3) and sub-re-

lativistic (k = 1/4) fluids where M =1,G,¢ =0.5. The black curve in these graphs depicts the curve that passes through the critical

saddle point i.e. H = H..

k=1/3. This fluid has the property to absorb the radi-
ations emitted by the black hole. The insertion of k = 1/3
in Eq. (19) results in the following real approximation of
the critical radius

5¢&
re~3GM - o (26)
while the Hamiltonian in Eq. (21) takes the form
( | _2GM 2G2M§~‘)2/ ’
r 3
H= . 27)

r4132/3(1 —2)*3

From above Hamiltonian, we see that the point
(r,v?) = (r,,1) is not a critical point of the dynamical
Hamiltonian system. However, the expression for v* can
be obtained by fixing H = Hy. The characteristics of solu-
tion curves are depicted in the left lower picture, where
the black curve shows the solution for H = H,, the red
curve for H =H.+0.00099, the green curve for
H =H.+0.0009, the magenta curve for H =H.—0.04,
and the blue curve for H = H,.—0.09.

Here, for the radiation fluid, we find some surprising
characteristics as it gets closer to the black hole. The
black, magenta, and blue curves exhibit unphysical beha-
vior, however, the green curves describe highly interest-
ing behavior of the transonic type. The fluid has super-
sonic velocity before the critical point, but as soon as it

approaches the critical point, the speed becomes subson-
ic.

4) In sub-relativistic fluids, energy density exceeds
the isotropic pressure, and the assigned value to the state
parameter is k = 1/4. Repeating previous steps, we obtain
an approximation of the critical radius as

7 26 &
re=3M -9 m

The insertion of Eq. (28) into Eq. (20) provides the
desired critical point (r., u).

In this case of a sub-relativistic fluid, the Hamiltoni-
an Eq. (24) takes the following form

2GM  2G*Mé
+
r r3
rl2(1—v2y>

From above equation, it is evident that the point
(r,v?) = (rp,, 1) is not a critical point of the dynamical sys-
tem. Now, we draw contour plots of H in the (r,v) plane
by fixing H = H, which describes the following behavi-
or of the moving fluid. The black curve shows the solu-
tion for H =H,, the red curve for H =H.+0.03, the
green curve for H =H.—0.0399, the magenta curve for
H =H.+0.0009, and the blue curve for
H =H.—-0.0317999. The curves shown in the lower right
figure describe the behavior of the moving fluid as fol-

(28)

3/4

1-
H =

29
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lows: in the blue and green curves, the fluid reaches near
the critical point to show transonic behavior, but surpris-
ingly fails to do so. Hence, in this scenario, we define this
motion as unphysical behavior of the fluid (as they show
velocity as a double valued function). However, blue and
magenta curves show the supersonic accretion motion in
the region v > v, and subsonic motion in the region where
V<V

4.2 Critical analysis for isothermal fluids

Unlike the Schawrzschild black hole, the quantum
gravity affects the accreting fluid near the improved ver-
sion of Schawrzschild black hole. Furthermore, if we do
not entertain the quantum gravity effects, the above
presented results are easily reducible to what already
been published in [2]. We discuss the asymptotic behavi-
or of isothermal fluids with EoS p=ke, such that
0 <k < 1. Eq. (13) can be written in the following form

GM 3G*M. 3GM  T1G*M
—+ ¢ (1— +—§), (30)
2re 2r} 2r? 2r3

which can again be reduced to a depressed cubic equa-

. . . . . _ 7GM
tion by introducing the Wierstrass polynomial r = ¢+ =%+,

which is equivalently expressed as

£—pte—q=0, (31)
where
49G* M? 343G M?
P=—1 4= "0 (32)

Here, Eq. (31) has three roots: one real root and the other
two will be complex conjugates of each other. This fol-
lows directly from the Cardano formula

rczi/—q+m/W+(/—q—m/W, (33)
where W = +/p? +¢%. We can perform a detailed analysis

by computing the Jacobian matrix for the Eqs. (10) and
(11), for instance

o o
or  Ou

J= 34
or Ou

With the help of the above Jacobian matrix, one can de-
termine that either the critical values are center, saddle, or
spiral. If both eigenvalues are real and have different
signs, we have a saddle point. If the real part of the com-
plex eigenvalues is negative, then we have a spiral and if
the real part of the complex number is zero, we have a
center.

Hence, using Egs. (19) and (20), one can obtain r. and
ul, respectively (velocity of the fluid at sonic point).
Then, after putting (r,u.) in Eq. (14), we find the con-
stant A to obtain « in an explicit form. Moreover, from
the normalization of the four-velocity vector, one can also
derive an expression for u,(r). Thus, after finding the ex-
plicit forms of # and u,, one can sketch (;—‘)2 along the r-
axis to see whether for each case k= 1, 1/2, 1/3, 1/4, the
fluid passes through the sonic point, as sketched in Fig. 2.
In Fig. 1, we have discussed non-transonic solutions, but
we have also plotted the transonic solutions for the iso-
thermal fluid in Fig. 2. The transonic solutions yield a
maximum accretion rate, because they pass through the
critical point. In Fig. 2, we see that the fluid trajectories
may form an orbit for k = 1/4 near the Cauchy and event
horizon.

5 Conclusion

The model of spherical accretion is used generally to
test various theories of modified gravity. To test these

MZ/MIZ
25¢ :
L [
200
r I —k=1
F |
1.5¢ I
: : ----k=1/2
1LoF 1
0.5F :
| | — k=1/4
I \ ' L | —— L
T I i r
1.0 1.5 2.0 3.0
Fig. 2. (color online) Transonic solutions for isothermal fluid with equation of state p = ke with k=1,1/2,1/3,1/4. The value of coup-

ling parameter ¢ = 0.5 and other constants are fixedtobe M =G =1.
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theories from the astrophysical perspective, we must in-
vestigate how the behaviour of fluids is modified under
the change of parameters of modified gravity appearing
in the metric of black holes. By varying these free para-
meters of modified gravity, the positions of critical points
might shift, and the speed of fluid flow might enhance or
decay near the black hole. Moreover, the fluid behavior
might shift from supersonic to subsonic. In the literature,
the spherical accretion on black holes has been studied
under the frameworks of different modified gravities, like
the braneworld gravity [36], Horava-Lifshitz gravity [37],
AR) gravity [33] and f{T) gravity [34], to list a few. In the
present study, we were motivated to test another candid-
ate theory of quantum gravity namely, the higher derivat-
ive asymptotic safe gravity in the infra-red limit. From
Eq. (3) of our paper, the size of black holes in the ASG
theory is smaller compared to the Schwarzschild BH.
Furthermore, Eq. (26) suggests that the position of the
critical point shifts further towards the BH, and it is smal-
ler than the respective critical point for the Schwarz-
schild BH. Thus, one can compare and distinguish the re-
lativistic accretion models from Schwarzschild BH from
a ASG BH by changing the ¢ parameter.

In this study, we adapt the Hamiltonian method of
Michel type accretion as developed by several authors of
this work [33]. This method is more general than the ori-
ginal method of Michel. Here, we use the general equa-
tions for spherical accretion including conservation laws
for the ASG BH static metric. The pressure of the perfect
fluid for such spherically symmetric flows is, up to a
sign, the Legendre transform of the energy density. This
leads to a simple differential equation allowing the de-
termination of the energy density, enthalpy, or pressure
knowing one of the equations of state. Furthermore,
Bondi's model of accretion on a normal star is the oldest
model of spherical accretion employing Newtonian
mechanics. In that model, the fluid is adiabatic and non-
viscous, and the flow is always transonic, thus it allows
the existence of critical point. The Bondi model also al-
lows the outflows during accretion, which can explain the
jet phenomenon from certain active galactic galaxies, see
for details [38]. However, we found that the fluid flow

can be more general than Bondi model. The fluid flow
can have subsonic, supersonic, and transonic regimes.
Also, because of relativistic treatment, more than one
critical point might exist, which allows the heteroclinic
flows as well.

In our study, we investigated both adiabatic and iso-
thermal fluid flows, since both of them have important
astrophysical relevance, see Refs. [38]. Thus, there are
astrophysical situations where either entropy is constant
and temperature varying (adiabatic) or vice versa (iso-
thermal). In the isothermal case, the sound speed of ac-
cretion flow at any radii is always equivalent to the sound
speed at a sonic point. Hence, if the temperature of the
flow is known, one can easily compute the critical point.

In the Newtonian stellar accretion model, the size of
critical radius is considerably larger than the relevant
Schwarzschild radius of the star (several hundreds or
thousands times the Schwarzschild radius of the star),
while the corresponding critical radius for the ASG im-
proved black hole is between 2M and 6M, or comparable
to three times the Schwarzschild radius. Therefore, for
accretion over black holes, the fluid experiences transon-
ic or ultra-sonic flow just seconds before entering the ho-
rizon. The ASG black holes are predicted to be smaller in
size compared to the Schwarzschild black hole, while
both have same mass. Thus, the relevant transitions from
sonic to supersonic to ultrasonic flows occur at a signific-
antly faster rate for ASG black holes. In the study of ac-
cretion near the black hole, we found that no physical sig-
nificance of the radiation fluid exists in asymptotic safe
gravity. We observe that the effect of ASG parameter af-
fects the fluid behavior for small values of radial para-
meter. Moreover, in the critical analysis of the isothermal
test fluids, we observe that the fluid trajectories may form
a closed orbit for k = 1/4 near the Cauchy horizon. It is
interesting to consider astronomical observation effects,
such as accretion rate and temperature, as done in Refs.
[17, 39, 40], which we aim to address our future research.

The authors would like to thank the anonymous refer-
ee for providing insightful comments.
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