Chinese Physics C Vol. 44, No. 6 (2020) 065002

Classifying cosmic-ray proton and light groups in LHAASO-KM2A
experiment with graph neural network”

Chao Jin( )" "

Song-zhan Chen(RFA )"

Hui-hai He(fi] 2/f5)'

(for the LHAASO Collaboration)

1Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China

Abstract: The precise measurement of cosmic-ray (CR) knees of different primaries is essential to reveal CR acceler-

ation and propagation mechanisms, as well as to explore new physics. However, the classification of CR components

is a difficult task, especially for groups with similar atomic numbers. Given that deep learning achieved remarkable

breakthroughs in numerous fields, we seek to leverage this technology to improve the classification performance of

the CR Proton and Light groups in the LHAASO-KM2A experiment. In this study, we propose a fused graph neural

network model for KM2A arrays, where the activated detectors are structured into graphs. We find that the signal and

background are effectively discriminated in this model, and its performance outperforms both the traditional physics-

based method and the convolutional neural network (CNN)-based model across the entire energy range.
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1 Introduction

The rapid development of computational resources,
i.e., GPU, deep learning has achieved remarkable pro-
gress in numerous fields, such as object detection and
classification [1-3], machine translation [4,5] and speech
recognition [6— 8]. While traditional methods often re-
solve these issues through handcrafted features based on
expertise knowledge, deep learning methods learn the in-
ternal representation through an end-to-end training
paradigm, i.e., convolutional neural networks (CNNs)
[9,10] and recurrent neural networks (RNNs) [11-13].
The characteristics of sparse connectivity and parameter
sharing make the CNN a powerful engine in analyzing
image data, while internal units with loops and states
make the RNN efficient for modeling time-dependent
series.

The success of these deep learning methods is par-
tially owed to their effectiveness in extracting the latent
representation from regular Euclidean data (i.e., image,
text, speech). Presently, there is an increasing number of
demands for effectively analyzing non-Euclidean data
with irregular and complex structures. Proposed methods
construct this data as graph-structured data and exploit

the deep learning to learn their representation. For ex-
ample, in e-commerce and social media platforms, the
graph-based learning system exploits interactions
between users and products to make highly accurate re-
commendations [14,15]. In chemistry, the molecules are
modeled as graphs to explore and identify their chemical
properties [16].In the high-energy physics field, re-
searchers need to analyze a large amount of irregular sig-
nals. Consequently, studies seek to improve the analysis
efficiency with graph neural networks (GNNs). Impress-
ive progress has been achieved, including improvement
of the neutrino detecting efficiency on the IceCube [17],
exploring SUSY particles [18], and recognizing jet pileup
structures [19] on the LHC.

Precise measurement of the cosmic-ray (CR) spec-
trum and its components at the PeV scale is essential to
probe the CR origin, acceleration, and propagation mech-
anisms, as well as to explore new physics. A spectral
break at ~ 4 PeV, referred to as the CR knee, was dis-
covered 60 years ago [20]; however, its origin remains a
mystery. Precise localization of the knees of different
chemical compositions is key to explore the hidden phys-
ics. Current explanations of the CR knee can be classi-
fied into two categories with different mechanisms, in-
cluding the mass-dependent knee and rigidity-dependent
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knee models [21], where models with the rigidity-de-
pendent knee are often considered to originate from the
acceleration limit and the galactic leakage mechanism,
and many of these models with a mass-dependent knee
are associated with new physics. This new physics in-
volves exploring a new interaction channel and dark mat-
ter, as summarized in Ref. [21]. Although extensive ef-
forts were made aiming at resolving this issue, the experi-
mental measurements exhibit large discrepancies between
each other [22-25].

The Large High Altitude Air Shower Observatory
(LHAASO) performs next-generation CR experiments
[26], which aim to precisely measure the CR spectrum
along with light groups from 10 TeV to EeV and survey
the northern hemisphere to identify gamma-ray sources
with a high sensitivity of 1% Crab units. The observatory
is located at a high altitude (4410 m a.s.l.) in the
Daocheng site, Sichuan Province, Chlna It consists of an
EAS array (KM2A) covering 1.3 km’ area, a 78000 m’
closed packed water Cherenkov detector array (WCDA),
and 12 wide-field Cherenkov/fluorescence telescopes
(WFCTA). The LHAASO-KM2A occupies most of the
area and is composed of two sub-arrays, including a 1.3
km’ array of 5195 electromagnetlc particle detectors (ED)
and the overlapping 1 km? array of 1171 underground
water Cherenkov tanks as muon detectors (MD). The
WCDA contains three water ponds with the effectlve
depth of about 4 m. Each pond is divided into 5 x 5 m’
cells with an 8-inch PMT located at the bottom to ob-
serve the Cherenkov light generated by the EAS second-
ary particles in the water. The focal plane camera in each
telescope of WFCTA has 32 x 32 pixels with a size
0.5° x 0.5° of each.

The layout of each component of LHAASO is illus-
trated in Fig. 1, where the red and blue points represent
KM2A-ED and KM2A-MD detectors, respectively. The
ED detectors are divided into two parts, the central part
with 4901 detectors and an out-skirt ring with 294 detect-
ors to discriminate showers with their core located within
the central area from the outside ones. An ED unit con-
sists of four plastic scintillation tiles (100 x 25 x 1 cm’
each) covered by 5 mm thick lead plates to absorb the
low-energy charged particles in showers and convert the
shower photons into electron-positron pairs. The MD ar-
ray plays the key role in discriminating the gamma-rays
from the CR nuclei background, and it offers important
information for classifying CR groups. An MD unit has
an area of 36 m’, buried by the overburden soil with 2.5
m height for shielding the electromagnetic components in
showers. It is designed as a Cherenkov detector under-
neath the soil, to collect the Cherenkov light induced by
muon parts when they penetrate the water tank.

Several studies addressed the component discrimina-
tion of the LHAASO hybrid detection using both expert-
ise features [27] and machine learning methods [28].

Fig. 1.  (color online) Layout of LHAASO experiment. In-
sets show details of one pond of WCDA, and EDs (red
points) and MDs (blue points) of KM2A. WFCTA, located
at WCDA edge, are also shown.

These hybrid detection methods utilize the effective in-
formation offered by entire LHAASO arrays. Although
they exhibit a remarkable performance, their statistics are
limited due to the poor operation time and aperture. Un-
der the merit of the large area, full duty cycle, and excel-
lent y/P discrimination ability, the LHAASO-KM2A is
an ideal candidate for studying the CR component classi-
fication task. In this study, we leverage the GNN to im-
prove the CR-component classification performance in
the LHAASO-KM2A experiment, where the detector ac-
tivated by the event is formed asgraph-structured data.
Our previous study [21] showed that the issue requires
high accuracy in classifying the CR Proton (P task) and
Light-component (L task) from the background. Hence,
we focus on these two tasks. To evaluate the GNN per-
formance, we introduce the traditional physics-based
method with the handcrafted feature as the baseline. The
subsequent sections are organized as follows. First, we
introduce the physics baseline method in Section 2. Then,
we review the development of the GNN framework and
propose our KM2A GNN framework in Section 3. We
perform the experiment and evaluate the results in Sec-
tion 4 and Section 5. In the last Section, we provide a
conclusion regarding GNN performance.

2 Physics baseline

Current experiments detect high-energy CRs com-
pletely via indirect methods, which measure the second-
ary particles of the extensive air showers (EAS) induced
by the primary CR nuclei. The shower-to-shower fluctu-
ations make classification of CR primaries difficult.
When the CR nuclei impinge on top of the atmosphere,
they suffer hadronic interaction with air molecules and
generate daughter particles recursively. This is referred to
as the hadron cascade. The sequence of this interaction
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proceeds by the following reaction and decay schemes [29]
0

p+p > N+N+ma*+nn

n® -2y )
x* — u* +v, (charge conjugate, c.c.)

ut — et +9,+v,. (c.c)

Here, the photons, electrons, and positrons form most
electromagnetic parts of the EAS and in turn generate
themselves through the pair-production y — e* +¢~ and
the bremsstrahlung process e* — e¢* +vy, which is referred
to as the electromagnetic cascade. Neutrinos form the
missing part of the EAS, which is generally ignored in
experiments. The muons do not form a cascade them-
selves and have a relatively long life (2.2 pus) and com-
paratively small energy loss in the media, such that a
large fraction of muons produced in a shower will penet-
rate the atmosphere and accumulate until their arrival at
the observation level.

The task of classifying CR primary groups relies on
the electromagnetic and muon parts of the EAS. In the
first-order approximation [30], a primary CR nucleus
with mass A4 and energy E can be regarded as a swarm of
A independent nucleons generating A superimposed pro-
ton-induced hadron cascades with energy E/A. Because
the heavier CR nucleus has less energy for each nucleon,
it can interact with the air molecules at higher altitude.
Hence, their shower electromagnetic components will
suffer more attenuation with longer interaction length,
and n* components will have more opportunity to decay
into muon parts. Consequently, the ratio of the electro-
magnetic to muon parts is a component-sensitive estimat-
or, and it is adopted widely in CR experiments [25].

Because the LHAASO-KM2A array can discriminate
the electron and muon parts in the shower by ED and MD
arrays, we formulate the ratio of collected signals from
the MD and ED N,/N, as the physics-based baseline
model. N, and N, denote the collected photoelectrons of
an event recorded by activated MD and ED detectors, re-
spectively. The selection criterion is optimized, where the
active ED detectors are counted within the distance 100
m from the shower core, and the active MD detectors are
counted within 40 ~ 200 m. The occlusion area within 40
m of the MD serves to eliminate the punch-through ef-
fect, where the high-energy electronic particles near the
shower core can penetrate the soil-shielding layer and fire
the beneath MD detectors. We illustrate the distribution
of the ratio N, /N, with respect to CR components and en-
ergies in Fig. 2, based on the simulation in Section 4. As
shown, the heavier components exhibit larger values of
N, /N,, while the proton lies at the bottom.

3 Graph neural network
3.1 Graph neural network overview

GNN architectures are specialized to effectively ana-
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Fig. 2. (color online) Distribution of N,/N, for each CR

group (P (red), He (violet), CNO (blue), MgAlSi (yellow),
Fe (green)) across energies from 100 TeV to 10 PeV.

lyze graph-structured data. Many of them adopt the
concept from convolution networks and design their
graph convolution operations. In comparison with differ-
ent graph convolution schemes, most GNN models are
classified into two categories, including the spectral and
spatial domains [31]. The spectral methods are formu-
lated based on the graph signal processing theory [32,33],
where the graph convolution is interpreted as filtering the
graph signal on a set of weighted Fourier basis functions.
Spatial methods explicitly aggregate the information from
the neighbor through the weighted edges.

Suppose an undirected, connected, weighted graph is
denoted as G ={V,E,A}, which consists of a set of ver-
tices V, a set of edges E, and a weighted adjacency mat-
rix A. The spectral-based approach is defined based on
the normalized graph Laplacian, defined as
L=I1-D"12Ap1/2, where D is the diagonal matrix of G.
Because the Laplacian [ is a real symmetric positive
semidefinite matrix, it can be factored as L= UAUT
through the eigenvalue decomposition algorithm. Hence,
the Fourier basis F(x) = UTx can be used for the graph
filtering, and the spectral graph convolution operation is
further simplified as

x%xG gg=UgyU"x, 2)

where gy = diag(U7 g) is the learnable filter.

Bruna et al. [34] proposed the first spectral convolu-
tion neural network (spectral CNN), with the spectral fil-
ter gg = ®f§j as a set of learnable parameters. Because of
the high computation complexity of the Fourier basis U,
Defferrard et al. [35] proposed the Chebyshev spectral
CNN (ChebNet) by introducing Chebyshov polinomials
as the filter, i.e., go = Y5, 6;T(A), where A = 2A/ Apax — I
Consequently, the ChebNet can avoid computation of the
graph Fourier basis and significantly reduce computation
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complexity. Furthermore, Kipf et al. [36] simplified the
ChebNet as a first-order approximation by assuming the
K =1 and Ap. = 2. The resulting graph convolution is
located entirely in the spatial domain.

The spatial-based graph convolution is defined based
on the node's spatial relations. Following the idea of "cor-
relation with template", the graph convolution relies on
employing the local system at each node to extract the
patches. Masci et al. [37] introduced the geodesic CNN
(GCNN) framework, which generalizes the CNN into the
non-Euclidean manifolds. Boscaini et al. [38] considered
it as the anisotropic diffusion process. Monti et al. [39]
generalized those spatial-domain networks and proposed
mixture model networks (MoNet), a generic framework
deep learning in the non-Euclidean domains. In this
framework, a spatial convolution layer is given by a tem-
plate-matching procedure as

J
(F*2)®) = ) gD;(0f. (3)
j=1

The patch operator in Eq. (2) assumes the form

Diwf= ), wjuley)fOj=1d g

yeN(x)

where J represents the dimension of the extracted graph;
x denotes a point in the graph or the manifold, and
y € N(x) represents the neighbors of x. u(x,y) associates
the node with the pseudo coordinate, and w;(u) is the
weighting function parameterized by learnable paramet-
ers.

The definition of the patch operator associates MoN-
et with other spatial-based graph convolutional models
through the choice of the pseudo coordinate u(x,y) and
the weighting function w;(u(x,y)). Consequently, those
spatial-based methods can be considered as particular in-
stances of the MoNet. In particular, a convenient choice
of the weighting function is the Gaussian kernel

wj(u) = exp (=3 —p) = w—py), (%)

where X; and y; are the learnable d xd and dx 1 covari-
ance matrix and mean vector of a Gaussian kernel, re-
spectively.

Spectral-based methods have their mathematical
foundations in the graph signal processing; however, high
computational costs are involved in calculating the Fouri-
er transform. Spatial-based methods are intuitive by dir-
ectly aggregating information from the neighbors, and
they have the potential to handle large graphs. In contrast,
as the Laplacian-based representation is required for
spectral convolution, a learned model cannot be applied
on another different graph, while the spatial-based convo-
lution can be shared across different locations and struc-
tures. Because the CR EAS event changes its location,
direction, and energy, the spatial-domain method is suit-

able to analyze the LHAASO-KM2A experiment.
3.2 Graph neural network on LHAASO-KM2A

LHAASO-KM2A detectors can record the arrival
time and photoelectron amplitude of shower secondary
particles. The distribution of detector photonelectrons
with respect to the distance from the shower core roughly
obeys the NKG function [40,41] with the most dense re-
gion located at the shower core, while the distribution of
arrival times can be parameterized as a plane perpendicu-
lar to the direction of the shower. Accordingly, we per-
form the data preprocessing procedure by reconstructing
the event to locate the shower core position (xg, yo) and
direction (6y, ¢o). The photoelectrons are normalized to
the reconstructed event energy for an energy-invariant
representation, denoted as pe. Because the shower geo-
metry is often treated as a slanted symmetric plane
around the shower core, we transform the detector posi-
tions (x;, y;) into the cylinder coordinate (r;, ¢;) with the
zero point at the shower core. The shower event along the
time axis is represented by the detector's time residual
dT;, defined as
ri-ro

dl;=T;- —To, (6)

cllroll

where T; is the recording time by the detector, and Ty is
the reference time defined as the earliest time along the
arrival direction surrounding the shower core within 15
m. r; and ry represent vectors of the node position and
shower direction, respectively, and ¢ is the speed of
light.

The ED and MD detectors are constructed as inde-
pendent, weighted, and undirected dense graphs, with
each node containing a three-dimensional vector [pe;,
dT;, r;]. The collection of these vectors depicts the topo-
logy of the event showers. An event graph is shown in
Fig. 3 for illustration. As mentioned above, heavier nuc-
lei may interact at a higher altitudes, thus the secondary
particles will suffer more Compton scattering and result
in the flatter shower fronts than lighter nuclei. The rela-
tions are illustrated as pe—r and d7 —r distributions in
Fig. 4, based on the simulation from Section 4. The three-
dimensional feature is normalized for each channel inde-
pendently. We construct the GNN model similar to Refs.
[17,39]. The n x n adjacency matrix A is defined by ap-
plying the Gaussian kernel to the pairwise distance
llx; — x;|| between the activated detectors, as follows

d;; = em3s=xl-u)?/or (7)
a;; = d”
ij— .
D di ®)
keN

In Eq. (7), a;; is the normalized weight element in the ad-
jacency matrix, and N represents the set of adjacent de-
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Fig. 3. (color online) Graph-structured LHAASO-KM2A

detectors activated by a 500-TeV EAS event, where red
dots represent EDs, and blue dots represent MDs. Dot size
depicts logarithmic scale of recorded photoelectrons.

tectors with respect to the detector i. The u; and o, are
learnable parameters, which define the locality of the
convolutional kernel. In addition, the diagonal elements
in the matrix A are set to zero.

Before implementing the graph convolution layers,
we extract the higher-dimensional features from the in-
put vectors through the learnable function, as shown in
Eq. (8), where the n x 3 vertex matrix v converts into the
n x d® matrix x©,

x@ = ReLu(WOv + b, )

Then, we define a sequence of T convolution layers,
as shown in Eq. (10). Each convolution layer ¢ first ag-
gregates the neighbors by multiplication with the adja-
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cency matrix A and expands the vector from d- to the
2d"- dimension. Subsequently, the weighting function is
applied to update the vector into the d“*"- dimension.
The nonlinear activation function ReLu is employed, ex-
cept in the last convolution layer 7.

GConv(x) = WOLx®, Ax0] + b7, (10)
Loy _ | ReLu(GConv(x ), 141 <T an
GConv(x"), t+1=T

The graph structure is preserved during convolutional
operations. In the last convolution layer, i.e., Tth layer,
we add a global pooling layer to collect features across
the entire graph and compress the graph into a size-in-
variant representation. The nxd") feature matrix is aver-
aged and converted into a 1xd7-dimensional matrix.
The definition of the global pooling layer is

(pooh) _ 1 5 1)
xi =% m : (12)
N neN
At the last layer, we employ a linear layer, and the lo-
gistic regression is applied to evaluate the event score as

the classifier,
y = sigmoid(W oo x(Pooh 4. plpool) (13)

where xP°° ig the d7)-dimensional feature from the glob-
al pooling layer, and y is the voting score. The activation
function sigmoid ensures that the score y spreads within
the range [0, 1], where the signal-like or background-like
event approaches 1 or 0, respectively.

We construct the GNNs for ED and MD independ-
ently, and fuse their outputs through the linear layer in
Eq. (12) with the x®°°) as a 2d"-dimensional vector. In-
dependent GNN models for ED and MD are preserved for
comparison. The entire GNN architecture is illustrated in
Fig. 5.
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(color online) Relations among three-dimensional vectors. Left panel: pe—r distribution. Right panel: dT —r distribution. CR

groups (P (red), He (violet), CNO (blue), MgAlSi (yellow), Fe (green)) are shown for comparison.

065002-5



Chinese Physics C Vol. 44, No. 6 (2020) 065002

c—
—
—
—
=
=
<
—

——

—

—
—
e —

=
==
——

e

= —

e mmmEmEEEsEEmEEEEEEEEEE, e EEEEEEEEEEEEE . --—————

Fig. 5.

Global Pooling

Prediction

e mmmEmEEEEEEmEEEEEEEEEEm, s EEEEEEEEEEEEE . ---————

(color online) KM2A GNN model. Upper red network represents GNN ED model, and lower blue network represents GNN

MD model. Right-most rectangle contains the fusion operation of the two models (GNN ED+MD) and their independent outputs.

4 Experiment

We employ the Monte Carlo simulation to generate
event data for training and evaluating KM2A GNN per-
formance. The primary EAS events are generated by the
CORSIKA package with the hadronic model QGSJETII
[42]. The KM2A detector simulation is performed based
on the Geant4 framework [43, 44]. We generate major
CR groups including the Proton (P), Helium (He), medi-
um group (CNO), heavy group (MgAlISi), and Iron (Fe).
Total events are generated into four energy fragments, in-
cluding 10 ~ 100 TeV, 100 ~ 1 PeV, 1 ~ 10 PeV, 10 ~
100 PeV, with the spectral index of —2.7. Reconstructed
energies from 100 TeV to 10 PeV are considered, which
cover most of the CR knee region. For each task, these
groups are divided into independent signal and back-
ground groups, where only P belongs to the signal for the
P task, and P&He forms the signal for the L task.

After reconstruction of the simulated events [26], we
further select events according to their reconstructed loca-
tions and directions. The reconstructed shower core
spread inside the KM2A array within the distance 200 ~
500 m from the array center is selected. We ignore the in-
ner circular area (within 200 m) to suppress the disturb-
ance from the WCDA for the KM2A reconstruction. Fur-
ther, the reconstructed zenith angle below 35° is also re-
quired. Consequently, 105732 events remain for the fol-
lowing analysis. We split the selected events into train,
test, and evaluation data sets. In consideration for the data
balance, the group ratios for each data set are readjusted
to maintain roughly 1 : 1 signal-to-noise ratio (SNR). The

readjusted data sets for each task are listed in Table 1.
The dataset ratio between the two major energy frag-
ments, with 100 TeV ~ 1 PeV and 1 ~ 10 PeV, is around
2:1.

To train the GNN models, we employ supervised
learning techniques with the mean square error (MSE) as
the loss function. For each training epoch, the loss is cal-
culated on the test dataset to avoid overfitting. The Adam
[45] optimizer is used to optimize the model parameters
based on adaptive estimation of low-order moments. The
training procedure includes two steps, (i) two independ-
ent trainings for the GNN ED and MD models with the
learning rate 0.001, and (ii) a subsequent fine-tuning pro-
cedure fuses the ED and MD model together with the
learning rate 0.0001. It runs over a total of 80 epochs with
the model already converged. All code is written in Py-
thon using the open-source deep learning framework Py-
Torch with GPU acceleration. For each model training,
four identical candidates with different randomized
weights are trained, and the one with the best perform-
ance is selected for further processing, which helps sup-
press the local optimization.

Table 1. Number of signal and background events for each dataset.

P L
data set
signal background signal background
train 14635 14595 24358 23733
test 2875 2831 4754 4713
evaluation 24921 22994 24921 22994
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5 Results

We evaluate model performances on the evaluation
dataset for each task. Fig. 6 displays the distribution of
output scores. All results from the P and L tasks are de-
picted at the left and right channels, respectively. Intuit-
ively, the shape of the score indicates that the task for
classifying the light group is significantly easier than the
singular proton group. We calculate the receiver operat-
ing characteristic (ROC) curves for explicit comparison.
The ROC curves of the physics baseline are integrated on
the N, /N, distribution, while the curves of the GNN mod-
els are integrated on the scores. Results are shown in
Fig. 7. The ROC x axis, referred to as the false positive
rate, indicates the background retention rate. The ROC y
axis, referred to as the true positive rate, indicates the sig-
nal efficiency. Fig. 7 clarifies that the best performance is
obtained with the fused GNN model, whereas the phys-
ics baseline model yields the poorest performance. The
ED GNN model performs better than the MD GNN, im-
plying that the sparsity of the sub-array takes the essen-
tial effect.
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Fig. 7.

To reduce the sensitivity to noise due the limited size
of the data set and to quantitatively evaluate the model
performance, we use the area under the ROC curves
(AUC) as a measure of the model performance. We fur-
ther split the dataset into a sequence of energy bins for
comparison of the performance across the entire energy
range. We split the energy range withing one order of
magnitude into five uniform bins in logarithmic coordin-
ates. The selected events are weighted according to the
Horandel model [46] to mimic the actual spectrum for the
subsequent analysis. We calculate the AUC values of the
models at each bin and plot them in Fig. 8. The results
confirm the conclusions announced above. Furthermore,
they also show that the fused GNN model outperforms
the physics baseline for all energies. We average the
AUC:s values and list them in Table 2. The fused GNN
model achieves the highest score with 0.878 for the P
task, and 0.959 for the L task. The AUC score of the L
task consistently exceeds the P task by a considerable
amount, which is about 0.068 in the physics baseline and
rises up to 0.081 in the fused GNN model. Because the
nuclear numbers of the Proton and Helium are close, it is

------- GNN ED signal
==== GNN MD signal
= GNN ED+MD signal
GNN ED background 1
GNN MD background
= GNN ED+MD background

0.3

0.2

0.

=
o
o
[=}
o
[=}
w
=}
N
of
P ¢
=}
o
=}
~
o
(o<}
[=}
©
-

(color online) Distribution of output scores from each model for P task (left) and L task (right).

-

54
©

o
©

0.7H-'
2 :
2 ;
o 0.6f -
e |/
3 0.5 -
8k
2 0.4f
o
0.3
E — - - baseline
02 ----- GNN ED
SR GNN MD
01 —— GNNED+MD
P S I W WU WU WS EE S TS P S
0 03 04 05 06 07 08 09 1

False Positive Rate

(color online) ROC curves from each model for P task (left) and L task (right).

065002-7



Chinese Physics C Vol. 44, No. 6 (2020) 065002

|
0.95F
L /%
L e Y
0.97 /i\f ,’%/;A/
o | Sy
2 r //B//\ A/f\ /
C > T -G "A& /
0.85/— - N CE NS
-
N -5 baseline
sl B 5 GNN ED
g - GNN MD
L % GNN ED+MD
bl b b b b b by b by 1]
07845~ "55 54 56 58 6

62 64 66 68
log(E (GeV))

Fig. 8.

Table 2. Average AUC scores.

P L
0.836 0.904
0.847 0.93
0.861 0.936
0.878 0.959

difficult to discriminate the Proton from the Helium back-
ground.

With regard to the real measurement, the significant
quantity extracted from the ROC curves is the purity,
which is a criterion for subtracting background contamin-
ation [22]. The derived purities are shown in Table 3,
which are under the same selection efficiency as the
LHAASO hybrid detection methods [27,28], for compar-
ison. Results demonstrate that the GNN method yields
state-of-art performance among KM2A-only methods and
performs comparably to the hybrid detection except for a
slight deficiency in the P task. The hybrid detections, in-
cluding making handcrafted features [27] and the gradi-
ent boosted decision tree (GBDT) [28], employ latent
representations from WCDA, KM2A, and WFCTA in the
LHAASO experiments under stricter selection criteria.
This achieves high performance, but causes loss of signi-
ficant statistics. We also show the apertures of KM2A-
only and hybrid detection methods in Table 3. Aperture
results are derived from the selection criteria. The
KM2A-only methods can achieve an aperture 87x larger
than hybrid detections. Considering the WFCTA's strict
observation condition with only ~ 10% duty cycle [27],
the total statistics of the KM2A are expected to be the on
the order of 870x larger than the hybrid detection. We il-
lustrate the expected observation with a one-day opera-
tion of the KM2A on the proton- and light-group spectra
in Fig. 9, where the rigidity- and mass-dependent knee
models are adopted from Refs. [21,47]. As demonstrated
in Refs. [21,48], the spectral blur from the measurement

1
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(color online) AUC values across energy range from 100 TeV to 10 PeV from each model for P task (left) and L task (right).

maintains the spectral slope and knee position. Hence, the
input spectra are adopted as the observation in Fig. 9,
with emphasis on the statistical error bars.

We further construct a simple CNN model for com-
parison with the GNN model. The entire ED and MD ar-
rays are rescaled into regular grids, with (85x97) pixels
for ED and (40 x 46) pixels for MD. Activated detectors
are filled into corresponding grids, with others remaining
zero. We construct the CNN model with a series of con-
volution modules for the ED and MD images, and fuse
their output together through a linear layer as the classifi-
er. Their performance is shown in Table 3 as well. This
demonstrates that the CNN exhibit a poor performance,
which we attribute to the insufficient ability in analyzing
the large variance of the EAS (10s ~ 1000 activated de-
tectors) and inefficient representation of the image struc-
ture (zero grids > 90%). In contrast, because the graph
convolutional kernel in Eq. (7) is the Gaussian function
with only two learnable parameters ((u;, o), while the
number of parameters in a CNN convolutional layer is
Cou X Cin X K2, the training efficiency of the CNN is far
less than that of the GNN.

To evaluate systematic errors, we further consider the
influences from two aspects. The first contribution is the
hadronic model, selected for generating the Monte Carlo
simulation data. From the reasearch on the LHAASO-
KM2A prototype array, this difference between the had-
ronic models (QGSJETII and EPOS) is roughly 5% with
regard to the secondary particles [49]. Hence, we choose
a variance of 5% on the recorded pe in estimating system-
atic errors. The resulting errors vary within 2.4% for the
P task and 0.4% for the L task. In the actual running of
the KM2A experiment, the detector may be randomly
dropped, which will then not be fired as the CR event is
recorded. As this type of effect does not occur in the sim-
ulation, this will introduce systematic errors in the infer-
ence of the real data. Supposing that the detectors may
drop 5% in the actual running, we randomly drop them
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Table 3.

Signal purity and aperture results of each model in LHAASO experiment

Purity (%) (+stat.+sys.)

Aperture (m? - sr) (+stat.+sys.)

P L P L
handcraft (hybrid) [27] ~90 ~95 ~1.5¢3 ~4e3
GBDT (hybrid) [28] ~90 ~97 ~3.63 ~7.2¢3
baseline (KM2A) 73.4+2.5+2 4 93.20.9+1.1 3.2e5+1.3e3+1.0e4 6.3e5+2.7e37.6¢3
CNN (KM2A) 75.4+2.5+2 4 93.3+0.9+1.1 3.2e5+1.33+1.0e4 6.3e5+2.7e37.6¢3
GNN MD (KM2A) 77142325 95.9+0.6+1.2 3.2e5+1.3e3+1.0e4 6.3¢5+2.7¢3+7.6¢3
GNN ED (KM2A) 82.8+1.9+2.6 96.6+0.6:1.2 3.2e5+1.3¢e3+1.0e4 6.3e5+2.7e37.6¢3
GNN ED+MD (KM2A) 84 £1.9+2.7 98.2+0.4:1.2 3.2e5+1.3e3+1.0e4 6.3¢5 £2.7¢3+7.6¢3
[ acquired, a detailed comparison between the simulation
and real data is necessary for estimating other systematic-
n ry g y
al errors.
= r"e g,
".:5 e u
S B A "., 6 Conclusion
“’.‘E103f. L ™ A a A 4 A "
% C LI .. A , N [] .
o [ . Y Deep learning has contributed extensively to signific-
< p g y g
L. .
"'g - " . YT ant progress in numerous fields. Therefore, we leverage
s —=— P+He(A) ., * this technology to improve classification performance in
ot —=—P(®) ' ; the LHAASO -KM2A experiment. We propose a fused
- P +He (2) {- GNN model, which constructs independent networks for
+— P2 the KM2A ED and MD arrays, and fuse their outputs for
- s C — classification. This model is demonstrated to be effective,
10 £y 10 and its performance outperforms the traditional physics-
Fig. 9. (color online) Expectation on proton- and light-group based method as well as the CNN-based method over the

spectra measured by LHAASO-KM2A with one-day obser-
vation. Triangular markers represent spectra predicted by
one of the rigidity-dependent knee models (Z) [47], and
square markers represent spectra predicted by one of the
mass-dependent knee models (A) [21].

from the fired detectors on the simulation data and re-
evaluate the model performance. The results shows that
this effect causes errors of aproximately 2.1% for the P
task and 1.1% for the L task. The analysis demonstrates
the stability of the GNN method. Both the evaluation of
statistical and systematic errors are shown in Table 3. In
future studies, when the LHAASO experimental data is

entire energy range. Furthermore, we compare the per-
formance of the GNN framework for independent ED and
MD arrays. The ED array is found to behave better than
the MD array. We attribute this to the higher density con-
figuration of the ED array. Moreover, in comparison with
the LHAASO hybrid detection method, our KM2A GNN
model exhibits competitive classification performance.
Owing to the large area and full duty cycle of the KM2A
array, it can acquire statistics on the order of ~ 870x
higher than the hybrid detection.

We thank the LHAASO Collaboration for their sup-
port on this project.
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