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Abstract: In this paper, we summarize the existing methods of solving the evolution equation of the leading-twist B-

meson LCDA. Then, in the Mellin space, we derive a factorization formula with next-to-leading-logarithmic (NLL)

resummation for the form factors F4 y in the B — y{v decay at leading power in A/my. Furthermore, we investigate

the power suppressed local contributions, factorizable non-local contributions (which are suppressed by 1/E, and

1/my), and soft contributions to the form factors. In the numerical analysis, which employs the two-loop-level hard

function and the jet function, we find that both the resummation effect and the power corrections can sizably de-

crease the form factors. Finally, the integrated branching ratios are also calculated for comparison with future experi-

mental data.
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1 Introduction

The radiative leptonic decay of the B meson is of in-
terest as it is the most important channel to extract the
parameters of the B-meson light-cone distribution amp-
litudes (LCDAs) and to test the factorization theorem
when the emitted photon is energetic. A precision study
of this mode can also be helpful in decreasing the back-
ground to the purely leptonic decay process B~ — (v,
which is important for determining the CKM matrix ele-
ment V,;,. The radiative leptonic B — y{v decay amp-
litude is defined by the QCD matrix element

GF Vub

AB—ylv)— 7

where the contribution from final-state radiation is ac-
counted for by the redefinition of the axial form factor
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In the rest frame of the B meson with momentum

pp=mpv, it is convenient to introduce two light-cone
vectors n, and 71, with the definitions

pu=——n,=E,n VZM 2)
H 2 H YR H 2

At leading order in QED and considering the con-
straints from the Ward identity, the amplitude can be
parameterized as [1, 2]

(igeme) V-p{ — [ €upor n’v” Fv(Ey)+guy FA(E)/)} ) 3)

[
FA(E,).
At leading power in A/my, the QCD factorization for-
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mula has been derived for the B — y form factors Fay [3,
4] and was confirmed under the framework of soft-collin-
ear effective theory (SCET) [5, 6]. The form factors
F4v(E,) can be factorized into a convolution of the hard
function, jet function, and B-meson LCDA. The hard
function arises from the matching between heavy-to-light
current in the QCD and SCET; operators, and it has been
calculated up to the two-loop level [1]. The jet function
can be obtained from the matching between SCET; and
SCET; [5], and the next-to-next-to-leading-order
(NNLO) correction has been recently obtained [7]. The
matrix elements of the SCET); operators are actually the
definition of B-meson LCDA. All the ingredients in the
factorization formula depend on the factorization scale,
and the radiative corrections lead to large logarithmic
terms, which need to be resummed. For the hard function,
the three-loop anomalous dimension is known [8-11], and
the two-loop-level anomalous dimensions both for the B-
meson LCDA and the jet function have recently been cal-
culated [7, 12]. Therefore, the sufficient condition for a
complete NLL resummation is readily available. It was
first derived in [13] by performing a Laplace transforma-
tion of the B-meson LCDA.

Although the factorization formula of B — y¢fv decay
is well established at leading power, the power correc-
tions are important for finite bottom-quark mass. The
power-suppressed corrections of O(1/mp) were con-
sidered at tree level [1], where a symmetry-preserving
form factor ¢(E,) was introduced to parameterize the
non-local power corrections. The soft contribution from
the endpoint region of the momentum of the light quark
inside the B meson was first studied using dispersion re-
lation and quark-hadron duality in [14]. The QCD correc-
tion to the soft contribution at one loop and the contribu-
tion from three-particle LCDAs were computed in [2]. In
a comprehensive study on the local and non-local power
suppressed contributions, the soft contribution and the
higher-twist contribution to the B — yfv decay were
presented [15]. The contribution from the hadronic struc-
ture of the photon, which can be defined by the matrix
elements of power-suppressed SCET operators, was stud-
ied in [16, 17]. Moreover, based on transverse-mo-
mentum-dependent factorization, the power corrections to
B — vty decay were investigated in [18]. All these stud-
ies indicate that the power-suppressed contribution is siz-
able and should not be neglected in the determination of
the first inverse moment of the B-meson LCDA.

In this paper, we make improvements from two as-
pects. The first is to derive the scale-independent factoriz-
ation formula at the NLL level in the Mellin space, and
the second is to perform the phenomenological analysis
after combining the NLL leading-power result with the
power corrections. This paper is organized as follows. In
the next section, we review the evolution of the leading-

twist B-meson LCDA. In the third section, we derive the
scale-independent factorization formula of the B—y
form factors and discuss the power-suppressed contribu-
tions; this is followed by the phenomenological analysis.
Concluding discussions are presented in the final section.

2 The evolution of the B-meson LCDA

The B-meson LCDA is one of the most important in-
gredients of the QCD factorization formula for exclusive
B decays. The two-particle LCDAs of the B meson in the
heavy-quark effective theory (HQET) can be obtained
from the coordinate-space matrix elements [19]
ifgmg [ 1+ ¥ (<, >
—— | —1 D7 (¢,

) 3 { (1,29)

o (1,2 - & (1,2 \]"”

+ t 4@
The LCDAs ®*(z,z%) (in curly brackets) can be expanded
around z2 = 0. In the limit, z22 -0, r > t=n-z/2, the B-
meson LCDAs in the momentum space are defined
through the Fourier transformation

dr .. <
q)t(w):szele(Di(T). (5)
T

At leading power, only ¢*(w) is relevant in the B — y{v
decay, and the evolution equation of ¢*(w) is the well-
known Lange-Neubert equation [20]:

d
dinu

017 @)z, 0142 (0)|B()) = —

B (w) = - fo 40Ty (0,0 106" (@10,

T, (W, ) = (rcusp mE 4 y)é(w — ) + 0T ey T(w, ),
w
(6)

where u is the renormalization scale. At the one-loop
level, the anomalous dimensions are

Fcusp = ngﬁlp(j_;)n, 5= Z}y(n)(%)n’
1 n=1

n=

Lo = 4Cr, 9" ==2Cr,
0(w — 0(w-w'

F(ws 0.)/) = (w w) (w d ) 5 (7)
W (W -w ww-w)|,

with the "plus" function defined as

[ olre)em= [ arenlm-go] ®

In the position space, the evolution equation of the B-
meson LCDA takes the form [21]

ding o* (t,p) = _[Fcusp(a's) Iniffi+y ()

1
()] & (1) + fo K @a) D G, (9)
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where at the one-loop level,

a,C
A=pet, ya)=-=-L,
T
3a,C a,C z
yrla) === K= F(—) (10)
T T 1-z/+

Whether in the momentum space or in the position space,
the evolution equation of the B-meson LCDA is the in-
tegro-differential equation. It is difficult to solve directly:
it must be simplified by an integral transformation. To
date, there exist the following treatments:

e Performing the Fourier transformation with respect
to In(w/u) (or the Mellin transform (w"~'y for N = i6):

. “dw . w\™
@ (9,,11)=f —¢ (w)(—) : (11)
0o w H

Then, the evolution kernel of ¢*(8,u) is obtained as [22]

YT -iera +io-
90;;(‘9’#) —eV(tuo)=2ys8 (1O +i6 - g)
;10 I'(1+ioOrd —if+g)
X @p(0+ig. o). (12)

Through the inverse Fourier transformation, we arrive at
the solution to the evolution equation in the momentum
space:

¢t (w,p) :eV(/J,ﬂo)—anM * do’ ' o)
I'(g)
8
X(&) _2F1(1 8:2-82 —), (13)
Mo ) wWs o

where w. =min(w,w’),ws = max(w,w’) ,and the func-
tions V and g take the form

W) g da’
Vv 5 = - YN 1—‘cus ’
(1, o) fa < B@ p(@) o B(@) +7(a)}
a, (1)
2= g(u o) = f darcusp(a) .
(o) lB(a) (14)

e Performing the Mellin transformation to the evolu-
tion equation in the position space [21, 23]:

N L (dr s
¢ =5 [ S . a9

)0 1
In the Mellin space, the evolution equation takes a simple
form:

d
[qing * Va0 G = 0. (16)

with
V(j,as) = j+ s —vr+Teusp [W(G+2) -y @)+ 9G], (17)

where 9(j) =0 at the one-loop level. The solution in the
Mellin space can be obtained directly:

=@" (j(1o), (ko) o)
Hds .
xexp{—f ?V[j(s),as(s)]}. (18)

Ho

GG (), )

e It was found that, if the B-meson LCDA is trans-
formed into the so-called "dual" space, the evolution ker-
nel is diagonalized [24]. The LCDA in the dual space can
be obtained by

< d
= [ Ln 2o en a9
0 w Yw w

which satisfies an ordinary differential equation:

d ,
1@ ) = [Tapin 47" @ ). (20)
L

It is then simple to write the solution:

(CL) )_e (IJO) (0.) )_e ﬂ/’lo g/2 +(CL)/ )
P (' o) P (@ wp) P @
€2y

with

6)’ — e—Zyb a)l,

_ 1
Vi, po) = 3 (V (upt0) = V (uo, ) -

The method mentioned above is equivalent, and the LC-
DAs ¢*(w), ¢*(8), (1), 37(j), p*(«’) are different ex-
pressions of an identical objective. Because the mo-
mentum space and the position space are related through
a standard Fourier transformation, we are able to derive

e ‘
=52 [ do(2) 9@ (22)
i i

and

9 —i6
7 (<ig) = 09 ()#

MCETIR (23)
pT (o) is related to ¢*(0) by deﬁnition:

. _T(1-i) i6
FOw= i | o @n(l) @

Then, we have

~ —1-j
o=ty [ Cpwa(L) T e

At the one-loop level, the most convenient method is to
work in the dual space since the Bessel function is the ei-
genfunction of the Lange-Neubert kernel, which is con-
firmed in [25, 26]. The Lange-Neubert kernel can be ex-
pressed as a logarithm of the generator of special con-
formal transformations along the light cone. When the ei-
genfunction of the generator is transformed to the mo-
mentum space, it is simply the Bessel function in Eq.
(19).

The two-loop-level anomalous dimension of the B-
meson LCDA was first calculated in the coordinate space
in [12]; it is more simply expressed in the dual space:
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[ - +,3(a) - Teusp(@) In(fie” ) +y(a)|n.(s,p1)

1
du
4Crd fo L i, .0, (26)

where sn.(s) =p"(1/s) and a = a,/(4x). This equation is
also transformed into the momentum space in [7], result-
ing in the two-loop-level Lange-Neubert equation. The
advantage of solving the evolution equation at the two-
loop level in the dual space does not hold as the two-loop
evolution kernel is not diagonal in this space. On the con-
trary, the elegant form of the evolution equation (Eq.
(16)) in the Mellin space is maintained. Thus, Eq. (18) is
still the solution to the evolution equation up to the two-
loop level with [23]

20 =ad"(j) = af Bo=3CA(W 1+ D~ @)

1
2@:(0+ Y U +2) 0
2

G DG+ 1) - (1) — %)}

21 2
y.(a) =—aCF+a2CF{4CF §+%—6§3]
83 2«
o8- | anfE-2])
5 8%
yi(a) =—3aCp +a CF{CF[E—T]

+Ca1 +2Tﬂ2]—§ﬁ0}. @7)

In a recent paper [13], an alternative approach to solv-
ing the evolution equation at the two-loop level was pro-
posed. The essential idea of this approach is to perform a
Laplace transformation on the B-meson LCDA,

¢t (m.p) = f ot (w.p), (28)

where @ is a fixed reference scale, which can be used to
eliminate the logarithmic moment o; in the factorization
formula of B — yvf. Then, one could derive

d
(dl + rcusp(av) )¢+ (17,10 [rcu%p(a' 5) (ln —+ 7:(77))

— (@) + 60, as)] 30010

(29)
with the definition
F =£ dxI'(1,x)x" = —[H(n) + H(-1n)],
G ay) =foodx§/+(l,x;as)x”, (30)
0

where ¥.(1,x;a;) starts from the two-loop level, and the

specific expression can be seen in [13]. After the Laplace
transformation, the solution to the evolution equation
reads

(1 +n+ar(us, ) T(1-1n)
F(1=n—ar(us,w)T(1+1n)
m(/l)

m G +ar(ta,p), @)

Xemar(ﬂ»\ #) G+ (7 +ar(us, p), is) - GD

The normalization N(uy,u) depends on the factorization
scale through

G+ (1.10) = Ny, 1)

X exp

@ —ar(U.pt)
N(ug, ) = (_) e (o) +ay (upt) , (32)
where the quantities a,,ar, and S (u,, 1) are given as
a, () Toueo (@) « d
cuspl@ a’
S (s pt) == f do—2 ,
(Hoott B J Ba)
a,(u,) ()
(@)
spl ¥
) __ d cusp .
ar (o, u) f a A@)
a,(Ho)
@
a
woi == [ XS, (33)
a,(uo)
We note that the LCDA ¢*(}) is related to ¢* (i) through
+1 -
P (= ’)y(~)’ F—j-Lw. (34
2mi [

3 B —y form factors

At leading power in A/my, the QCD factorization for-
mula for the B — y form factors can be written as

Qu
Fyip(Ey) =Fa1p(E,) =

" f"" doo ¢B(w,u)
0 w

At the one-loop level, the hard function and jet function
are given as [5, 6, 27]

2 J5(0) Co(Eypo)

Ji(Ey,w,1). (395

C(Ey) =1 - [21 2 M +51n——2L12(1—1)

y niy, r

-2 2
Inr+ % +6]+O(a?)

-r

3r
—lnzr,+

w oz

—-1 2y,
2E,w 6 +0@)

C
Ji(Ey,w,p) =1+ Dr [IHZ
4

(36)

123106-4



Chinese Physics C  Vol. 44, No. 12 (2020) 123106

with r=2E, /m;,. The results of the two-loop level hard terms, it is important to perform resummation to improve
function and jet function can be found in [1,7]. As the the convergence of the perturbative series. The first com-
hard function and jet function contain large logarithmic plete NLL resummation is given in [13]:

M
Favip(Ey) = QQLE £ exp [S (btns p) + S (s p) = Gy, (ks 1) + @y (s, 1) + 27'Ear(‘“s’“j)]
Y
3 2F —ar(nsft;) 2FE.,\" F(l —7]+al"(/~1w,u'))r(l +77)
% )C(E, )( 7) ._7((9, )( Y ) s Mg
T(n) CL(Ey, pn m i @2 ) T(1+n=ar(upu)) T =)
a,(u;)
da ) —ar(Hy.ft) 5
X exp @Q(—U+ar(ﬂmﬂ1),0) i G (=11 + ar(pg, 1)), i) . (37)
a,(u,) A "
I
where the jet function  J(Ly) = J.(~ 2, uj) = is known in the Mellin space. We thus need to perform

the Mellin transformation to the jet function, although it
is not well-defined.Alternatively, we follow the method
scale independent factorization formula at the NLL level in [13] to replace the first argument of J(L,,x;) by a de-
in the Mellin space. The evolution of the B-meson LCDA rivative operator, i.e.,

Ji(n-pw,uj) with L, =In(p*/u3). We now derive the

J

* dw 2E,\ [ dw w
f — ¢ (W) JL(Ey,w,p1) = T 18}, 11) (—7) f — ¢ (w,p) (—) (38)
0o w H 0o w H =0
Taking advantage of Eq. (22), we have
> dw , 1(2E,e\ 1,
f — " (W, ) J L (Ey,w,p1) =270 T 1 (0}, 10) :( z ) ~@"(j— 1) (39)
0 w A O] -0
Employing the evolution function of the hard function and B-meson LCDA, we obtain
Qu mp , ~ ’ . 1
Favip =2E [Uz(Ey,/lh,ll)fB(ﬂh)] [UI(E ,,Uh,,u)CL(Ey,,Uh)] XZHZJJ_(Bj’ﬂj)E
Y
2E,2\ “ds
X ( z ) ; 9~0+(](:us) - l’as(ﬂs)aﬂs)exp{_f _V[j(s)aas(s)]} > (40)
M r(l - ]) s s =0

where U(Ey,up, 1) and Up(Ey,u;,u) are the evolution

FY'P(E)) = E(E,)) + AEE,), FYP(E)) =E(E,)) - AE(E,).
factor of the hard function and B-meson decay constant v (Ey) =8B+ A5(Ey),  FT(Ey) = Ey) = A(Ey)

in the HQET, respectively; the specific expression can be o “42)
found in the appendices of [1,2]. The parameter j de- When the power supprc?ssed F:ontr1but1on is from the re-
pends on the factorization scale through gion where x> ~ 1/A?, in which x denotes the separation
d between the quark-photon vertex and the weak current, it

p@ J) = —Teusplay). (41) is called the soft contribution. Soft contributions with

o ) . higher twist B-meson LCDA are considered in [15]. Be-
The resummed factorization formula in the Mellin space cause they are highly suppressed and numerically small,

seems more compact than Eq. (37). we neglect them in this study. Then, the symmetry break-
Now, we turn to the power suppressed contributions.  jng part only contains the local contribution and can be

At leading power, Fy and F4 are equal due to the left-  yritten as

handedness of the weak interaction current and the heli-

e fpmp  epfpmp

. (43)
4E% 2Eymb

city-conservation of the quark-gluon interaction in the A¢(Ey) =
high-energy limit, although this relation might be broken

by the power corrections. In [15], the power suppressed ~ The symmetry preserving part can be divided into three
contribution is separated into the symmetry-preserving parts, i.e., £(E,) = E1(Ey)+ &1 (Ey) +Eson(Ey), and the ex-

part ¢ and symmetry-breaking part Aé, i.e., plicit expressions for the first two parts are
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) BmB

&L ( E,)=——— 1+2foodwlnw¢t_3(a))
2 0

-2 f ) @m(o,wz)] :
0 w?

ewfpmp | A
4Eymb /lB

+2f dwlf o ¢3(w1,w2)], (44)
0 w1 + w2

where ¢3(wi,wy) and ¢4(wi,wy) are the three particle
twist-3 and twist-4 B-meson LCDAs, respectively. ¢ (w)
is the "genuine" twist-three contribution to the LCDA
¢~ (w) [15]. The soft contribution with QCD corrections is
obtained as

£ (Ey) =

fsott(Ey) - eufB s

CJ_(E ’llh)K (l'lh)U(E ’llha#h’ﬂ)

W 2E, w2 1],
xf do'| —fe - — |pgg(w’, 1), (45)
0 my w

where K(u) is the factor relating the QCD decay constant of
the B-mesontotheHQETdecayconstant,and M? and s arethe
Borel mass and threshold parameter, respectively. The ev-
olution kernel U(E,, pn, 1) = U1(Ey,pn, 1)/ Ua(Ey, 1), 11).
The effective LCDA pJ(w', ) takes the form

@Cr (o 8 o .
1 +—-1 ,
4n {(n T L)

o L +
+3)w’f dwlnw i i¢ (@

w do w

pap(W' ) =" (', ) +

2
+2m £
2Eya)’

2 W' _
H f dwln &
2E y(u’ 0

+fmdw1n2w _,wdi[ﬁ/¢+(w,u)+¢+(w,ﬂ)]}.
0 w| W

(46)
To obtain this function, one must generalize the photon
momentum from p* =0 to —p” # 0, calculate the general-
ized hard-collinear function in this Euclidean region, per-
form the dispersion treatment to the convolution of the
hard-collinear function with the B-meson LCDA, and fi-
nally take the limit p?> — 0. The soft contribution actually
includes the hadronic effect of the photon; it must over-
lap with the contribution of the photon LCDA, which will
be investigated in future work.

—2In

wd |

4 Phenomenological analysis

The fundamental nonperturbative inputs entering the
factorization formula of B — yv¢ decay include the two-
particle and three-particle B-meson distribution amp-
litudes up to the twist-four accuracy. The decay constant

of the B-meson and the parameters appear in the disper-
sion approach. In the numerical analysis, we employ the
following three-parameter model for the leading twist B-
meson LCDA [15]

TG w _- ( w )
——e o UlB-a,3—a,—|, 47
F@) o B o0 (47)
where U(a,y,x) is the conﬂuent hypergeometric function
of the second kind. In dual space, this model has a sim-

pler expression:
, 1 w
@)= — ik (ap-22), (48)
w w

where | Fi(a,B,z) is the confluent hypergeometric func-
tion of the first kind. In the leading power factorization
formula, only the first inverse moment and the logar-
ithmic moments enter the factorization formula; they are
defined by

9" (w) =

L f ) d—“’¢*(w>
() Jo ’
(1) =A5(00) f &y 0

For the three-parameter model, the first inverse moment
and the first two logarithmic moments are obtained as

¢" (). (49)

a-1

5-1

o1 =0B-D—yla— )+ 1y,
wo

Ap = wo,

2
o =af+¢'(ﬁ—1)—¢’(a—1)+%. (50)

If the parameter « =g, the three-parameter model is
simply the familiar exponential model [19]
$r W)= e, (51)
Wo
which is set as our default model. To estimate the error
from the models, we let @ — 8 vary in the region —0.5 < a—
B <0.5. We then employ two models with @ =2.0,8=1.5
and «=1.5,8=20. For the default model, w= 13,
whose determination has been discussed extensively in
the context of exclusive B-meson decays (see [28-31] for
further discussion). Here, we employ A5(1GeV) =0.35+
0.05GeV, which is consistent with the calculations of the
semileptonic B — & form factors with B-meson LCDAs
in the framework of light-cone sum rules [28]. The lead-
ing twist B-meson LCDA with the three-parameter mod-
el is plotted in Fig. 1. In the factorization formula (31), a
new parameter @ is introduced to eliminate o : it can be
determined once the parameters «,( , and Az are given.
In addition, by utilizing the three-parameter B-meson
LCDA model, the logarithmic moments o3 4 are also de-
termined. All the parameters are listed in Table 1.
The higher-twist LCDAs must incorporate the correct
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Table 1.
and Ap is fixed at 0.35 GeV.

Numerical values of the nonperturbative parameters entering the leading twist LCDA of the B meson. Here, the energy scale is u; = 1 GeV ,

Model a B wo/GeV [op) g3 04 Ap/GeV
Default arbitrary B=«a 0.350 1.64 24 14.6 0.35
Model 1 2.0 1.5 0.175 —1.64 -12.2 —-76.3 0.35
Model 2 1.5 2.0 0.700 4.93 16.8 170.0 0.35
2.0 £ (E) e.fzmp [ 1 2(/1% + 2/1%{)
) =T 2 |5 T ¢ca 2.2 |’
. 2E; |2 6A2+213+21y,
: n 2_ 32
e meB A 4(/1 -4 )
1o > yMp | 4B 6A= +21 + Ay
< To highlight the influence of the power suppressed
0.5 contributions, we present the numerical results of the
form factors with different contributions:
0.0 1
0 L 2 3 4 5 Fy =—(0.102+0.00670, +5.4x 103
w [GeV] Ap
Fi . . . s 0.00768
ig. 1. (color online) The leading-twist B-meson LCDA +7.6%10 0-4) |LP +[-0.135+ ,
with the three-parameter model. Setting 1z = 0.35 GeV, the A NLP

black curve represents the exponential model, i.e., 8=a.
The brown and blue curves represent @ =2.0,4=1.5 and
a=15,8=2.0, respectively.

low-momentum behaviour and satisfy the equations of
motion. All the suggested models can be obtained as par-
ticular cases of a more general ansatz:

¢ (w) =w f(w),

1
¢3(w1,w2) =— zNu",;—A%,)wlw%f’(wl +w)),
1
da(w1,w2) =5 N (4% +23) w3 f(w) +w2). (52)

Here, the function f(w) obeys the following normaliza-
tion condition:

foowf(w)da): 1,
0

L_l * 3 _ A2 l 2 32
N_zfo W f)dw = R+ 217 - 1), (53)

The following results can then be derived:
< dw 1
J; o Inw¢? (w) % N Az =43,

< dw > dw 1
fo —lfo 2 P3(@1,02) =3 N (A~ 43,

w1 w] +w)

*d 1
fo wi;mm,wz):ENu%mz). (54)

Taking advantage of the above results, the NLP contribu-
tion with 1/E, and 1/mj corrections can be obtained as

1
Fy=— (0.102 +0.00670 +5.4% 10503
B

. (56)

-5
+7.6X 1070y | , + (—0.101 + w

0.00768)

B

where the photon energy E, is fixed at 2.2 GeV, and A3
and o, are set to be free parameters. The leading power
result in the first parentheses is borrowed from [13], and
the power suppressed contributions include the sym-
metry breaking local term, the symmetry preserving
1/E,,1/my, term, and the soft contribution. It is obvious
that power corrections are sizeable and more important
than the o, terms. Therefore, the power suppressed con-
tribution must play an important role in the determina-
tion of 1. We leave a more detailed study of the sublead-
ing power corrections for a future work.

To test the effect of the large logarithm resummation,
we plot the E, dependence of the leading power form
factor F4,vip in Fig. 2. For the leading logarithmic re-
summation, we employ the tree-level hard function and
jet function as well as the one-loop level anomalous di-
mension and two-loop cusp anomalous dimension. For
the NLL resummation case, we follow the convention in
[13]. In [13], the contributions from the NNLO hard func-
tion and jet function are also considered. Strictly speak-
ing, to resum the logarithmic terms in the NNLO jet func-
tion, we need a three-loop anomalous dimension of the B-
meson LCDA, which has not yet been obtained. While it
is not phenomenologically as important as the hard-col-
linear scale, y; is actually close to the soft scale y,. From
Fig. 2, we can see that the NLL resummation effect signi-
ficantly decreases the LL result, and that the NNLO res-
ult is approximately 5% smaller than the NLL result.
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1.0

0.8

06 Fip(E,)

0.4 \

0.2

00 1.6 1.8 2.0 2.2 2.4
E. [GeV]

Fig. 2. (color online) The leading power contribution to the
form factors: the blue, brown, and black curves stand for
the LL, NLL, and NNLO results, respectively.

The form factors including both the LP contribution
and NLP corrections are plotted in Fig. 3, where for LP
contribution, we adopt the same result as in [13]. Com-
pared with the LP result in Fig. 2, the power corrections
significantly decrease the form factors, and the symmetry
breaking effect from the NLP local contribution is also
sizable. The uncertainties are denoted by the band in
Fig. 3. To obtain the uncertainties, we consider various
sources, including the following: decay constant
f3=0.192+0.0043 GeV; the first inverse moment
Ap =0.35+0.05 GeV; the hard scale u; and hard-collin-
ear scale u; (the same as in [13]); the models of the lead-
ing twist B-meson LCDA in Table 1; the parameters
A=0.48+0.10GeV, 12€[0.027 GeV?,0.088 GeV?], and

0.5

22,€[0.045 GeV2,0.222 GeV?]; the Borel mass M? = 1.25+
0.25 GeV?; and the threshold mass so=1.5+0.1 GeV? in
the soft contribution. The A parameter gives rise to the
most important uncertainty, as the LP result is inversely
proportional to it. Having the form factors at hand, the
differential decay width is expressed as

)

(57)
To guarantee the reliability of our calculation, we cut the
photon energy at E, > 1.5 GeV. We integrate over the dif-
ferential decay width in the interval [1.5 GeV,mp/2] and
then multiply it by the lifetime of the B meson to obtain
the branching ratio Br(E,>15GeV). If we fix
Ap = 0.35 GeV, the branching ratio reads

Br(B — yv) = 0.40" 034 x 107°, (58)
where the uncertainties come from the same source as
that for the form factors (except for Ag). The dependence
of the branching ratio on Az is presented in Fig. 4, where
the parameter Ap varies in the interval [0.3 GeV,0.4 GeV].
We can see that the large uncertainty prevents us from
precisely determining the parameter Ag. It is thus import-
ant to reduce the uncertainty in the parameter estimates,
especially the uncertainty in the B meson LCDA, and to
obtain a more precise prediction of the power suppressed
contribution.

d_r _ a'gmG%:quhF
dE,  6n2

Ocfp

Y

2E
mBEg(l - —7)[|FV|2 +|Fa+
mp

0.0

0.0

-0.1
1.6 1.8 2.0 2.2 2.4

E, [GeV]
Fig. 3.
1.4

S 19},

/X\ 1.0

B

=

1

)

-

m

0.30 0.32 0.34 0.36 0.38 0.40
)\B [GeV]

Fig. 4. (color online) The dependence of Br(B — yv¢) on g

for the photon energy E, > 1.5 GeV.

-0.1
1.6 1.8 2.0 2.2 2.4

E, [GeV]

(color online) The form factors Fy4 with NLP contributions. The uncertainties arise from varying parameters, including A5.

5 Summary

The radiative leptonic decay mode B — yv{ is inter-
esting both theoretically and experimentally. It plays an
irreplaceable role in the determination of parameters of
the B-meson LCDA. The factorization-scale dependence
of the B-meson LCDA is governed by the LN evolution
equation, which is an integro-differential equation and is
not easily solved. We summarized the existing method of
solving the LN evolution equation, for both the one-loop
and two-loop anomalous dimensions. We then derived a
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factorization formula with NLL resummation for the form
factors appearing at leading power in the Mellin space,
which is equivalent to the one obtained in [13] but writ-
ten in a more compact form. The power corrections to the
B — yv( are sizeable, and much effort has been put into
investigating the NLP contributions. In this paper, we in-
cluded the power suppressed local contributions, factoriz-
able non-local contributions (which are suppressed by
1/E, and 1/m;), and soft contributions.

In the numerical analysis, we found that the NLL-re-
summation effect significantly decreases the leading-

power form factors, and that the NNLO correction brings
approximately 5% additional reduction. The NLP contri-
butions are combined with the leading-power NNLO con-
tributions and also manifestly decrease the form factors.
We also calculated the integrated branching fractions of
the B — yv¢ decay. The large uncertainty from various
sources makes it difficult to determine the parameter Ap
and other logarithmic moments accurately. In future
work, we will consider the NLP corrections more system-
atically in the framework of the SCET and in the hope of
reducing the theoretical uncertainty.
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