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Abstract: In this study, the mathematical expression formulated by Bohr for the moment of inertia of even-even nuc-
lei based on the hydrodynamical model is modified. The modification pertains to the kinetic energy of the surface os-
cillations, including the second and third terms of the R-expansion as well as the first term, which had already been
modified by Bohr. Therefore, this work can be considered a continuation and support of Bohr's hydrodynamic model.
The procedure yields a Bohr formula to be multiplied by a factor that depends on the deformation parameter. Bohr's
(modified)  formula  is  examined by applying it  on  axially  symmetric  even-even nuclei  with  atomic  masses  ranging
between 150 and 190 as well as on some triaxial symmetry nuclei. In this paper, the modification of Bohr's formula is
discussed, including information about the stability of this modification and the second and third terms of the R-ex-
pansion in Bohr's formula. The results of the calculation are compared with the experimental data and Bohr's results
recorded earlier.  The results  obtained are  in  good agreement  with  experimental  data,  with  a  ratio  of  approximately
0.7, and are better than those of the unmodified ones.
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1    Introduction
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The  problem  of  calculating  the  moment  of  inertia
( ) of  even-even nuclei  has received considerable at-
tention since the 1950s [1-3]. The hydrodynamical model,
first  introduced by Bohr [4],  considered the nucleus as a
droplet of  incompressible  irrotational  fluid.  As  a  con-
sequence, the  collective  motion  of  the  nucleus  was  pic-
tured  as  a  quadrupole  of  classical  oscillations  similar  to
those of the liquid droplet discussed in detail by Rayleigh
[5]. This description of Bohr led to a simple relationship
between  the  moment  of  inertia  and  the  deformation
parameter , , where  is the inertial parameter.
This  relationship  is  referred  to  as  Bohr's  formula.  In  the
particular  case  of  small  oscillations  and,  hence, ,
the radial  coordinate  of  the  surface  at  the  polar  coordin-
ates  can  be  approximated  as ,  i.e.,  the  radius  of
the  spherical  shape  of  the  liquid  drop  at  equilibrium.

Rayleigh's  calculations  indicated  that . The  val-

MOI
B

MOI

ues of the  calculated using Bohr's formula with the
values  of  derived  by  Rayleigh  are  five  times  smaller
than  those  obtained  experimentally.  Furthermore,  one
cannot explain the  of deformed nuclei by consider-
ing the extreme case of a rigid deformed shape [6].

MOI
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An alternative approach used to describe the  of
deformed nuclei was based on the cranking model intro-
duced  by  Inglis  [7].  In  this  model,  the  kinetic  energy  of
rotation is obtained by considering the motion of the nuc-
leons  in  the  rotating  self-consistent  field.  In  contrast  to
the  hydrodynamical  model,  the  resultant  values  for  the
cranking  model  are  found  to  be  2-3  times  larger  than
those for the experimental ones. Therefore, both models-
Bohr's hydrodynamical model and Inglis's cranking mod-
el-have  been  modified  by  several  authors  [2, 8-14]. Re-
cently,  a  valuable  thorough  quantitative  comparison  of
predictions  for  both  form  factor  and  moment  of  inertia
obtained  using  four  different  models  (Hartree-Fock,
cranking model, rigid rotator, and irrotational fluid flow)
for  the  rare  earth  nuclei , , , ,
and  was proposed in [9]. The authors of [9] exten-
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Hf
ded  their  work  to  observe  the  electromagnetic  form
factors for some  isotopes of odd masses [15].

R R0

R R0

In  this  study,  we  assumed  that  Rayleigh's  approach
within the approximation of  to  is the reason for the
poor agreement of Bohr's results. Accordingly, we expan-
ded  about  and  worked  out  the  second  and  third
terms of this expansion in addition to the first one, which
has  already  been  discussed  by  Rayleigh.  The  obtained
equation, which is referred to as the modified form of Bo-
hr's  relationship,  is  verified  on  axially  symmetric  nuclei
of  atomic mass ranging between 150 and 190 as  well  as
on a number of triaxially symmetric nuclei. The results of
both the modified and original formulas of Bohr are com-
pared with the experimental data presented in Table 1 as
well  as  with  the  numerical  values  proposed  in  [9],  as
presented  in  Table  2.  It  is  found  that,  even  though  the
agreement with experimental data as well as with numer-
ical  ones is not so good, the enhancements in the results
are  remarkable-the  ratios  of  the  modified  Bohr  results
(current work)  to  the  experimental  results  are  approxim-
ately  0.6  to  sometimes  0.7  instead  of  0.2  in  the  case  of
Bohr's original work.

2    Formalism

R(θ,ϕ)
The surface of the nucleus that is represented in polar

coordinates  by  can be  expanded in  spherical  har-
monics as follows [1]

R(θ,ϕ) = R0

1+∑
µ

α∗λµYλµ(θ,ϕ)

 , (1)

R0
αλµ R

α∗λµ = (−1)µαλ,−µ R

αλµ =
∑
ν

Dλµν(θ j)aλν Dλµν(θ j)

where  is the radius of the spherical nucleus (i.e., when
all  have  vanished).  Because  of  the  reality  of ,

,  and because  is  rotationally  invariant,

,  where  is  the  transformation

αλµ aλν

θ j
j = 1,2,3

Yλµ λ,µ

operator,  and  are  the  deformation  parameters in
space-fixed  [16] and  body-fixed  coordinates,  respect-
ively,  and  are  the  Euler  angles  connecting  the  space-
fixed  and  rotated  frames  (where )  [17,18].  The
functions  are spherical harmonics of the order .

λ = 2

a21 = a2,−1 = 0 a22 = a2,−2 , 0 a20 , 0
λ = 2

a0 a2

β γ a0 a2

a0 = β · cos(γ) a2 =
β
√

2
· sin(γ)

If we  consider  only  the  quadratic  deformation  of  or-
der  2  (i.e., )  and  choose  the  rotating  coordinates  to
coincide with the principal coordinates, then one can eas-
ily  verify  that , ,  and 
(we will drop the index  from the deformation para-
meters henceforth). Therefore, we are now left with only
two  parameters  and  to  describe  the  shape  of  the
nucleus  and three  Euler  angles  to  specify  the  orientation
of the principal axes of the nucleus. Sometimes, it is more
convenient to use  and  instead of  and  with the

definition  and ,  referred  to
as the Bohr notation [19].

3    Hydrodynamical model

(▽⃗×v(r) = 0) ▽⃗ ·v(r) = 0

dτ
χ(r) v(r) = ▽⃗χ(r) χ(r)

▽2χ(r) = 0 χ(r) =∑
µ

ξ∗2µr
2Y2µ(θ,ϕ) =

1
2

∑
µ

α̇∗2µr
2Y2µ(θ,ϕ) ξ∗µ

α̇∗µ α

ξ∗µ =
R0

2R
α̇∗µ

R R0

ξ∗µ
1
2
α̇∗µ

ρ0

The  hydrodynamical  model  assumes  the  irrotational
flow  and the incompressibility  of
the nuclear matter [20]. Hence, the velocity of the volume
element  can  be  derived  from  the  scalar  potential

 as .  Therefore,  is the  general  solu-
tion  of  the  Laplace  equation  [6,17]: 

, where  is a para-

meter  that  is related  to  (the  time  derivative  of )

through the relation . If the oscillations are as-
sumed to be small, then  can be approximated as  and

 becomes . Therefore, the kinetic energy of the en-
tire liquid drop with constant density  is

T =
1
8
ρ0

∑
µµ′

α̇∗µα̇
∗
µ′

∫
dτ

{
∇⃗

[
r2Y2µ(θ,ϕ)

]
· ∇⃗

[
r2Y2µ′ (θ,ϕ)

]}
=

1
8
ρ0

∑
µµ′

α̇∗µα̇
∗
µ′

∫
dΩ

{[
4Y2µY2µ′ +

∂Y2µ

∂θ

∂Y2µ′

∂θ
+ csc2 θ

∂Y2µ

∂ϕ

∂Y2µ′

∂ϕ

]∫ R(θ,ϕ)

0
r4dr

}

=
1
8
ρ0

∑
µµ′

α̇∗µα̇
∗
µ′

∫
dΩ

{[(
4−µµ′)Y2µY2µ′ −L+Y2µL−Y2µ′

]∫ R(θ,ϕ)

0
r4dr

}
, (2)

∂

∂θ
=

1
2

(L+e−iϕ−L−e+iϕ)

icotθ
∂

∂ϕ
=

1
2

(L+e−iϕ+L−e+iϕ)

r

where we have used the identities 

and  [21]  to  obtain  line  3

from line 2. The integration over  in Eq. (2) can be ex-
panded as

∫ R(θ,ϕ)

0
r4dr =

R5

5
=

R5
0

5

1+∑
µ

α∗µY2µ(θ,ϕ)

5

=

R5
0

5
+R5

0

∑
σ

α∗σY2σ+2R5
0

∑
σσ′

α∗σα
∗
σ′Y2σY2σ′ + ...

 . (3)
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3.1    Rayleigh's and Bohr's original work

R(θ,ϕ)

R0
R5

0

5

As  the  oscillations  are  assumed  to  be  small, ,
the upper limit  of the integral  in Eq. (3),  can be approx-

imated as , and the integral results in , which is the
first  term in the expansion of  Eq.  (3).  The integration in
Eq. (2) along with only the first term of Eq. (3) was car-
ried out by Rayleigh. He obtained

T =
1
2

B
∑
µ

|α̇µ|2, (4)

B B =
ρ0R5

0

2
where  is the inertial parameter expressed as .

a0 a2 (
α̇λµ = ΣνDλµνȧλν+

Ḋλµνaλν
)

Eq. (4) describes the kinetic energy of the surface os-
cillations of  a  classical  liquid  droplet  in  space-fixed  co-
ordinates.  According  to  Bohr,  for  deformed  nuclei,  the
collective motions should be of vibrational and rotational
modes. To distinguish between these two modes, Bohr re-
wrote  Eq.  (4)  in  terms  of , ,  and  the  three  Euler
angles.  For  this  purpose,  we  use 

. Therefore,

T =
1
2

B
∑
µ

∑
νν′

D2∗
µνD

2
µν′ ȧ

∗
νȧν′︸          ︷︷          ︸

vibration

+ Ḋ2∗
µνḊ

2
µν′aνa

∗
ν′︸          ︷︷          ︸

rotation

+ Ḋ2∗
µνD

2
µν′a

∗
νȧν′ +D2∗

µνḊ
2
µν′ ȧ

∗
νaν′︸                               ︷︷                               ︸

cross terms

 . (5)

The  three  terms  in  Eq.  (5)  represent  the vibrational,
rotational, and cross terms, respectively, where the cross-
terms  should  vanish  according  to  the  properties  of  the
transformation matrix [1,16]. Further, the time derivative
of rotational transition in the second term of Eq. (5) is ex-
pressed as [22]

Ḋλµm
(
θ j

)
= −i

∑
m′,k

Dλµm′
(
θ j

)
⟨λm′|Lk |λm⟩ωk, (6)

k = 1,2,3where  represent the body-fixed axes. By substi-
tuting Eq. (6) into Eq. (5) and considering only the rota-
tional part, we obtain

Trot =
1
2

B
∑
µ

∑
νν′

( ∑
m,m′,k,k′

D2∗
µmD2

µm′⟨2m|Lk |2ν⟩∗

⟨2m′|Lk′ |2ν′⟩a∗νaν′ωkωk′

)
. (7)

Dλ∗µν′
∑
µ

Dλ∗µmDλµm′ = δm,m′

Using the unitary property of the transformation mat-

rix [23]  (i.e., ), Eq. (7) can be re-
written as

Trot =
1
2

B
∑
νν′

∑
k

⟨2ν|L2
k |2ν′⟩a∗νaν′ω2 =

1
2

∑
k

ℑkω
2, (8)

k = k′ ν ν′where  because  and  should  be  even.  Further,

kthis leads to an MOI along the axis :

ℑBohr
k = B

∑
νν′

⟨2ν′|L2
k |2ν⟩aνaν′ . (9)

We refer to this relationship as the original form of Bohr's
formula.

R5
0

5

ℑBohr
1 ,ℑBohr

2 ℑBohr
3

Till  now,  we  have  briefly  presented  the  well-known

Bohr results, with  being the first term of the radial dis-
tribution in Eq.  (3).  The full  algebraic  details  can be ac-
cessed  from  the  works  of  Preston  [16],  Eisenberg  [17],
and Pal  [21].  Further, ,  and  (that  is  the
MOI along each of the three body-fixed axes) can be sim-
plified using the identities of Ladder operators [24,25] as
follows:

ℑBohr
1 =B

∑
νν′

⟨2ν′|L2
1|2ν⟩aνaν′

=
1
4

B
∑
νν′

⟨2ν′|L2
++L2

−+2L+L−|2ν⟩aνaν′

=B
(
2
√

6a0a2+2a2
2+3a2

0

)
. (10)

Similarly,
ℑBohr

2 = B
(
−2
√

6a0a2+2a2
2+3a2

0

)
. (11)

ℑBohr
3 = B

∑
ν

⟨2ν|L2
3|2ν⟩aνaν = 8Ba2

2. (12)

In general,

ℑBohr
k = 4Bβ2 sin2

(
γ− 2πk

3

)
. (13)

(γ = 0) ℑBohr
3 = 0

For  the  special  case  of  axially  symmetric  nuclei
 and 

ℑBohr
1 = ℑBohr

2 = 3Bβ2, ℑBohr
3 = 0. (14)

R R0

However, the values of the MOI calculated using Eq.
(13) are nearly five times smaller than those measured by
the empirical fitting of the first few low-lying levels. We
estimate that this poor agreement can be attributed to the
assumption  that  the  oscillations  are  small,  to  the  extent
that  has  been  approximated  as  at  several  places  in
Rayleigh's  work,  in which this  assumption is  verified by
considering  the  second  and  third  terms  in  Eq.  (3).  The
second term  of  the  integration  in  Eq.  (2)  will  be  dis-
cussed in  Subsection  3.2.  The  third  term  will  be  dis-
cussed in Subsection 3.3.

3.2    First-order modification of MOI

T ′
Let  us  denote  the  integration  in  Eq.  (2)  with  the

second term in Eq. (3) as ; thus,

T ′ =
1
8
ρ0R5

0

∑
µµ′

α̇∗µα̇
∗
µ′

∑
σ

α∗σ

∫
dΩ

×
{[

(4−µµ′)Y2µY2µ′ −L+Y2µL−Y2µ′
]
Yσ

}
. (15)

α̇∗µ′ = (−1)µ
′
α̇−µ′In Eq. (15), using the property  of the
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α̇µ α̇µ′

∑
µµ′

α̇∗µα̇
∗
µ′ =

∑
µµ′

α̇∗µ (−1)µ
′
α̇−µ′ µ = −µ′

α

deformation parameter, and because  and  represent
two arbitrary components for the velocity at a given point
on  the  surface  of  the  nucleus,  the  expression

 should be zero unless 

(orthogonal property of ).  This  result  can  be  written
mathematically as∑

µµ′

α̇∗µα̇
∗
µ′ =

∑
µµ′

α̇∗µ (−1)µ
′
α̇−µ′δµ,−µ′ . (16)

Substituting this result in Eq. (15), we obtain

T ′ =
1
8
ρ0R5

0

∑
µµ′

α̇∗µ (−1)µ
′
α̇−µ′δµ,−µ′

∑
σ

α∗σ∫
dΩ

{[
(4−µµ′)Y2µY2µ′ −L+Y2µL−Y2µ′

]
Yσ

}
. (17)

L± = (λ±µ)(λ± (µ+1))Yλ,µ±1

µ′ −µ
µ′

Using  the  identity  and
replacing  each  by  in  Eq.  (17)  indicates  that  the
summation over  is removed and Eq. (17) becomes

T ′ =
1
8
ρ0R5

0

∑
µ

∣∣∣α̇µ∣∣∣2 ∑
σ

α∗σ∫
dΩ

{[
(4+µ2)Y2µ (−1)µY2,−µ︸       ︷︷       ︸

Y∗2,µ

− (2−µ) (3+µ))Y2,µ+1 (−1)µY2,−(µ+1)︸           ︷︷           ︸
Y∗2,µ+1

]
Yσ

}
. (18)

µ+1
µ

As the subscript index  in the second part in Eq.
(18) is a dummy variable, it can be replaced by  without
any change in the value of the integration. This leads to

T ′ =
1
8
ρ0R5

0

∑
µ

∣∣∣α̇µ∣∣∣2 ∑
σ

α∗σ(10+µ)
∫

dΩY2σY2µY∗2µ

=CB
∑
µ

∣∣∣α̇µ∣∣∣2α∗0⟨220µ|2µ⟩, (19)

C =
5
2

√
5

4π
⟨2200|20⟩ B =

1
2
ρ0R5

0where  and . To obtain the
second line of Eq. (19) from the first, we use the identity∫

dΩYλ1µ1
Yλ2µ2

Y∗λ3µ3
=

√
(2λ1+1)(2λ2+1)

4π (2λ3+1)

⟨λ1λ2µ1µ2|λ3µ3⟩⟨λ1λ200|λ30⟩. (20)

Therefore, we get

T ′ =CB
∑
µ

∣∣∣α̇µ∣∣∣2 α̇∗0⟨220µ|2µ⟩, (21)

C =
5
2

√
5

4π
⟨2200|20⟩ B =

1
2
ρ0R5

0where  and .  In  body-
fixed coordinates, the rotational kinetic energy part of Eq.
(19) can be written as

T ′Rot =CB
∑
µ

∑
νν′σ

Ḋ2∗
µνḊ

2
µν′D

2
0σaνaν′aσ⟨220µ|2µ⟩

=CB
∑
νν′σ

∑
km,k′m′

∑
µ

D2∗
µmD2

µm′D
2
0σ⟨220µ|2µ⟩︸                             ︷︷                             ︸

=⟨22m′σ|2m⟩

·

⟨2m|Lk |2ν⟩∗⟨2m′|Lk′ |2ν′⟩aνaν′aσωkωk′ , (22)

k′ k ν ν′ ∑
µ

Dλ1
µ1ν1

Dλ2
µ2ν2

Dλ3∗
µ3ν3

⟨λ1λ2µ1µ2|λ3µ3⟩= ⟨λ1λ2ν1ν2|λ3ν3⟩

where  = ,  as  and  can  only  be  even.  Using  this

condition  together  with  the  identity 

 [24,26], we obtain

TRot
′ =2CB

∑
νν′

∑
km

⟨22m0|2m⟩⟨2ν|Lk |2m⟩

× ⟨2m′|Lk |2ν′⟩aνaν′a0ω
2
k =

1
2

∑
k

ℑ′kω2
k , (23)

ℑ′k

k

where  in the last line of Eq. (23) is referred to as the
first-order modification in the value of the moment of in-
ertia along the body-fixed axes , and it can be defined as

ℑ′k = 2CB
∑
νν′

∑
m

⟨22m0|2m⟩⟨2ν′|L2
k |2ν⟩aνaν′a0. (24)

ℑ′1 ℑ′2 ℑ′3
ν,ν′,m

ν = 0,2,−2 ν′ = ν,ν±2 m = ν,ν±1
k = 1

To extract , , and  from Eq. (24), it should be
noted  first  that  the  allowed  choices  of  are

, , and , respectively. The
first correction in MOI corresponding to  can be ob-
tained as

ℑ′1 =2CB
∑
νν′

∑
m

⟨22m0|2m⟩⟨2ν′|L2
1|2ν⟩aνaν′a0

=
1
4
×2CB

∑
νν′

∑
m

⟨22m0|2m⟩

· ⟨2ν′|
(
L2
++L2

−+2L+L−
)
|2ν⟩aνaν′a0

=2CB

√
2
7

{
2a2

2a0−3a3
0−
√

6a2a2
0

}
. (25)

Similarly,

ℑ′2 = 2CB

√
2
7

{
2a0a2

2−3a3
0−
√

6a2a2
0

}
, (26)

ℑ′3 =2CB
∑
ν

⟨22ν0|2ν⟩⟨2ν|L2
3|2ν⟩a0a2

ν

=2CB
∑
ν

⟨22ν0|2ν⟩⟨2ν|2ν⟩ν2α2
να0

=2CB


√

2
7

(2)2a0a2
2−

√
2
7

(0)2a2
0a0 +

√
2
7

(2)2a2
−2a0


=16

√
2
7

CBa0a2
2. (27)

γ = 0 a2 = 0
a0 = β ℑ′1,ℑ′2 ℑ′3
In the case of axial symmetry, we have , ,

and , and the values of , and  are as follows:
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ℑ′1 = ℑ′2 = −6

√
2
7

CBβ3, ℑ′3 = 0. (28)

3.3    Second-order modification of MOI

2R5
0Σσσ′α

∗
σ×

α∗σ′Y2σY2σ′ T ′′
Similarly,  Eq.  (2)  with  the  third  term 

 of radial integration, which is denoted by ,
can be written as

T ′′ =
1
4
ρ0R5

0

∑
µµ′

α̇∗µα̇
∗
µ′

∑
σσ′

α∗σα
∗
σ′

×
∫

dΩ
{[

(4−µµ′)Y2µY2µ′ −L+Y2µL−Y2µ′
]
Y2σY2σ′

}
=

1
2

B
∑
µ

∣∣∣α̇µ∣∣∣2 ∑
σ

|ασ|2

×
∫

(10−µ)dΩ
{
(−1)σY2σY2−σ(−1)µY2µY2−µ

}
,

(29)

B =
1
2
ρ0R5

0

Y2σY2−σ Y2µY2−µ

where  is  the  inertial  parameter,  which  was
mentioned in Section 3. Each pair  and  in
the second line of Eq. (27) can be coupled using the iden-
tity [25-27]

Y j1m1
Y j2m2

=

√
2 j1+1

4π

√
2 j2+1

4π

×
∑

j

√
4π

2 j+1
Y jm⟨ j1 j2m1m2| jm⟩⟨ j1 j200| j0⟩.

Therefore, the integration in Eq. (29) becomes∫
dΩ

{
(−1)σY2σY2,−σ (−1)µY2µY2,−µ

}
=

25
4π

(−1)σ+µ∑
j

1
2 j+1

⟨22µ−µ| j0⟩⟨2200| j0⟩⟨22σ−σ| j0⟩. (30)

If we use the identity∑
jm

⟨ j1 j2m1m2⟩⟨ j1 j2m′1m′2⟩ = δm1m′1δm2m′2 ,

jone  can  easily  verify  that  the  summation  over  in  Eq.
(30) is unity. Substituting this result into Eq. (29), we ob-
tain

T ′′ =
1
2

25
4π

B
∑
µ

∣∣∣α̇µ∣∣∣2 ∑
σ

|ασ|2 (10−µ) .

µ µ

T ′′
As  runs from -2 to 2, the summation over  should

be zero. Finally,  can be simplified as

T ′′ =
1
2

B
∑
µ

∣∣∣α̇µ∣∣∣2 ∑
σ

|ασ|2
250
4π
. (31)

∑
µ

∣∣∣α̇µ∣∣∣2
In  body-fixed  coordinates,  the  rotational  part  of  the

quantity  has been treated in detail in Subsection

∑
νν′k

⟨2ν′ |Lk |2ν⟩aνaν′ω2
k∑

σ

|ασ|2 = β2

2.1, and the result is , from which it

can be easily verified that . Therefore,

T ′′rot =
250
4π
β2 1

2
B
∑
νν′k

⟨2ν′ |Lk |2ν⟩αναν′ω2
k

=
1
2

∑
k

ℑk
′′ω2

k , (32)

ℑk
′′where  the  quantities  are  referred  to  as  the  second

modification to MOI; they can be obtained as

ℑk
′′ =

125
2π
β2 B

∑
νν′k

⟨2ν′ |Lk |2ν⟩αναν′︸                      ︷︷                      ︸
ℑBohr

k

, (33)

or

ℑk
′′ =

125
2π
β2ℑBohr

k . (34)

ℑBohr
k

ℑBohr
k

125
2π
β2

The  values  of  are  already  known  and  the
second-order  modification  of  MOI  can  be  obtained  by
multiplying  by  a  factor  of .  For  the  special
case of axial symmetry,

ℑ1
′′ = ℑ2

′′ =
750
4π
β4, ℑ3

′′ = 0. (35)

4    Results and discussion

The total  MOI including the  first  and second correc-
tions can  be  obtained  for  the  special  case  of  axially  de-
formed nuclei as follows:

ℑTotal
k =ℑBohr

k +ℑ′k +ℑk
′′

=3Bβ2−6CB

√
2
7
β3+

750
4π

Bβ4

=ℑBohr
k

1−2C

√
2
7
·β+ 250

4π
β2

 , (36)

ℑBohr
k1−2C

√
2
7
·β+ 250

4π
β2


which  is  simply  multiplied  by  the  modification

factor .

β

MOI

ℑBohr
k ℑ′ ℑ′′

A comparison  of  the  calculated  results  and  experi-
mental  data  of  MOI  for  the  even-even  axially  deformed
nuclei is presented in Table 1. The first column of the ta-
ble denotes the nucleus, whereas the second column rep-
resents  the  deformation coefficients,  which are extrac-
ted  from  the  associated  electric  quadrupole  transitions
[22].  The  third  column  presents  the  experimental  values
of , which  are  deduced  from  the  experimental  en-
ergy  spacing  of  the  ground-state  rotational  bands  [22].
The fourth,  fifth,  and  sixth  columns  represent  the  calcu-
lated values using Eqs.  (14),  (21),  and (30) to determine
Bohr's ( ) first- ( ) and second- ( ) order modific-
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ℑTotal
k = ℑBohr

k +ℑ′k +ℑk
′′ ℑk

ℑrig = Brig(1+0.31β)
Brig = 0.0138A5/3h̄2/MeV ℑrig

ℑTotal
k

0.6 0.2

ℑ′′

ations  to  the  MOI,  respectively.  The  seventh  column
presents  the  total  MOI  value  obtained  from Eq.  (36),  as

.  All  values  of  the  MOI, ,  in
Table  1 are  presented  in  units  of ,
where  and  is the MOI for a
rigid body having the same volume, shape, and density of
the nucleus. One can see from Table 1 that there is a large
enhancement in the calculated values of . It is equal
to  in the case of the experimental ones instead of 
in  the  case  of  the  unmodified  ones.  It  is  remarkable  to
note  that  the  second modification  ( ) to  the  MOI con-

250
4π β

2 ℑBohr

ℑ′
tributes  times more than the Bohr value ( ). On
the other  hand,  the first  modification ( ) is  quite  negli-
gible.  These  phenomena  are  depicted  clearly  in Fig.  1a)
and b); Fig  1a) depicts  only  the  contribution  of  the  first
modification.

β

In order to illustrate the effects of the first and second
corrections separately on Bohr's results, we draw a curve
only  for  the  first  correction  plus  the  values  of  Bohr  and
another curve for Bohr's values plus only the second cor-
rection  (the  orange  curves  in Fig.  1a) and b)); as  func-
tions of the deformation parameter .

ℑTotal ℑExp. ℑBohr
Hydro.model ℑ′ ℑ′′

MOI

Table 1.    Comparison of calculated results  with experimental data  [22] and as well as values of first  and second  modi-
fications of  for even-even axially deformed nuclei.

Nuclei β ℑexp . ℑBohr ℑ′ ℑ′′ ℑTotal

152Sm 0.290 0.380 0.069 0.018 0.116 0.203

154Sm 0.336 0.551 0.092 0.028 0.206 0.325

154Gd 0.280 0.373 0.065 0.016 0.101 0.182

156Gd 0.320 0.498 0.083 0.024 0.170 0.277

158Gd 0.346 0.547 0.097 0.030 0.231 0.358

160Gd 0.354 0.561 0.101 0.032 0.252 0.385
160Dy 0.301 0.490 0.074 0.020 0.134 0.228
162Dy 0.320 0.512 0.083 0.024 0.170 0.277
164Dy 0.334 0.558 0.090 0.027 0.201 0.319

164Er 0.306 0.456 0.077 0.021 0.143 0.240

166Er 0.323 0.496 0.085 0.025 0.176 0.286

168Er 0.320 0.496 0.083 0.024 0.170 0.277

170Er 0.310 0.484 0.078 0.022 0.150 0.250

170Yb 0.304 0.455 0.076 0.021 0.139 0.235

172Yb 0.311 0.477 0.079 0.022 0.152 0.253

174Yb 0.308 0.475 0.078 0.022 0.146 0.245

176Yb 0.301 0.445 0.074 0.020 0.134 0.228

176Hf 0.300 0.410 0.074 0.020 0.132 0.226

178Hf 0.310 0.380 0.078 0.022 0.150 0.250

180Hf 0.270 0.380 0.060 0.015 0.087 0.162

182W 0.280 0.340 0.065 0.016 0.101 0.182

184W 0.250 0.310 0.052 0.012 0.065 0.128

186W 0.259 0.272 0.056 0.013 0.074 0.143

186Os 0.201 0.247 0.034 0.006 0.027 0.068

188Os 0.191 0.214 0.031 0.005 0.022 0.059

190Os 0.180 0.180 0.027 0.004 0.018 0.050

192Os 0.160 0.160 0.022 0.003 0.011 0.036

194Pt 0.152 0.097 0.020 0.003 0.009 0.032

196Pt 0.122 0.089 0.013 0.001 0.004 0.018

198Pt 0.130 0.076 0.015 0.002 0.005 0.021

Continued on next page
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β ⩽ 0.15

β > 0.15

β = 0.3

The graph includes curves for the original formula of
Bohr  and  the  experimental  results  for  comparison.  It  is
clear  from this  figure  that  for  all ,  the  effects  of
both  of  them  are  small  enough  to  be  neglected.  As

 the contribution  of  the  second  correction  in-
creases more rapidly  than that  of  the  first  one and it  be-
comes  greater  than  the  zeroth  order  when .  This
means that for nuclei with large deformation parameters,
the  assumption  of  small  oscillations  suggested  by
Rayleigh is not adequate. That means the first term is not

enough to represent the situation of the nucleus.

ℑCurr.

ℑNum.

A comparison of the results obtained using the modi-
fied  form  of  Bohr's  relationship  (the  current  work

e), Eq.  (34),  and the results  of  Bohr's  original  rela-
tionship,  Eq.  (14),  with  the  numerical  calculations
( )  presented  by  Berdichevsky  et  al.  [9]  as  well  as
experimental  data  for  a  few nuclei  are  listed  in Table  2.
The numerical values were calculated based on the crank-
ing model with the Sk-3 field.

Two features can be noted from Table 2:

ℑ/ℑrig βFig. 1.    (color online) Variation of  with respect to deformation parameter  for axially deformed nuclei: a) Bohr + first and b)
Bohr + second modifications.

 

Table 1-continued from previous page

Nuclei β ℑexp . ℑBohr ℑ′ ℑ′′ ℑTotal

222Ra 0.184 0.223 0.029 0.005 0.019 0.053

224Ra 0.171 0.291 0.025 0.004 0.014 0.043

226Ra 0.197 0.351 0.033 0.006 0.025 0.064

228Ra 0.212 0.400 0.038 0.007 0.034 0.079

226Th 0.220 0.330 0.041 0.008 0.039 0.088

228Th 0.225 0.403 0.042 0.009 0.043 0.094

230Th 0.233 0.433 0.045 0.010 0.049 0.104

232Th 0.243 0.450 0.049 0.011 0.058 0.118

234Th 0.233 0.467 0.045 0.010 0.049 0.104

230U 0.245 0.443 0.050 0.011 0.060 0.121

232U 0.257 0.470 0.055 0.013 0.072 0.139

234U 0.251 0.516 0.052 0.012 0.066 0.130

236U 0.263 0.485 0.057 0.014 0.079 0.150

238U 0.268 0.480 0.059 0.014 0.085 0.159

238Pu 0.271 0.493 0.061 0.015 0.089 0.164

240Pu 0.278 0.488 0.068 0.018 0.111 0.196

ℑrig ℑrig = (1+0.31β)Brig Brig = 0.0138A5/3 h̄2

MeV .
aAll values of the moment of inertia are in terms of rigid body moment of inertia  where  and 
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i)  In  general,  the  results  of  the  modified  form  of
Bohr's relationship are much closer to the numerical res-
ults than of the original ones for all nuclei in question.

154Sm
158Gd

154Sm 158Gd

ii)  The  results  of  this  work  for  the  nuclei  and
 are close to the numerical ones (the ratio of the dif-

ference  is  nearly  8%  for  and  16%  for ,
whereas  it  becomes  large  for  the  remaining  nuclei).
However,  there  are  significant  enhancements  owing  to
the modification factor.

ℑ/ℑrig βThe  ratio  with  respect  to  deformation  for
axially even-even deformed nuclei are illustrated in Fig. 2.

ℑBohr

β

The  filled  squares  denote  the  experimental  data,
whereas the red line represents the  values, which lie
quite far from the experimental data [22]. Our results for
Bohr +  first  modification  and  Bohr  +  second  modifica-
tion are  represented  with  the  blue  line,  which  shifts  to-
wards the  experimental  data  drastically.  The  shifting  in-
creases rapidly with an increase in , mainly owing to the
second modification to the MOI.

β = 0.27

Y2µ

Y2µ

Y2

For an average value of  in  the  listed axially
deformed nuclei, the Bohr estimates are only 18% of the
experimental  value,  whereas the Bohr estimates with the
first modification improve by 4%-5%, reaching 22%-23%
of  the  experimental  value.  As  soon  as  we  include  the
second  modification  to  this,  the  MOI  values  improve  to
beyond  53%  of  the  experimental  value.  In  mathematics,
this occurs because of the symmetry properties of spher-
ical harmonics. One can notice even number of  oper-
ators involved in the Bohr estimates and the second modi-
fication, whereas an odd number of  operators are in-
volved  in  the  first  modification.  Physically,  it  supports
the large amplitude of vibrations at the nuclear surface for
deformed rotating  even-even  nuclei.  Further  improve-
ments have been predicted when a similar exercise is car-
ried out for the next higher order terms, particularly with
the next-to-next term having an even number of  oper-
ators involved, which is going to be very complicated in
nature and is in progress. Furthermore, we can obtain the
total MOI in  three  coordinates  for  triaxial  nuclei,  as  fol-
lows:

ℑTotal
1 =ℑBohr

1 +ℑ′1+ℑ1
′′

=4Bβ2 sin2
(
γ− 2π

3

)1+2C

√
2
7
βcosγ+

250
4π
β2


−2CB

√
2
7
β3 cosγ

(
3
√

3βsinγ+6cosγ
)
, (37)

ℑTotal
2 =ℑBohr

2 +ℑ′2+ℑ2
′′

=4Bβ2 sin2
(
γ− 4π

3

)1+2C

√
2
7
βcosγ+

250
4π
β2


−2CB

√
2
7
β3 cosγ

(
−3
√

3βsinγ+6cosγ
)
, (38)

ℑTotal
3 =ℑBohr

3 +ℑ′3+ℑ3
′′

=4Bβ2 sin2(γ)

1+2C

√
2
7
βcosγ+

250
4π
β2

 , (39)

where we have used Eqs. (10), (11), and (12) to calculate

ℑ ℑ h̄2/MeVTable 2.    Comparison of values of  for some rare-earth even-even axially deformed nuclei (all values of  in units ).

Nuclei β [22] ℑExp. ℑNum. ℑBohr ℑCurr.

154Sm 0.336 36.59 24.54 6.20 21.91
156Gd 0.320 33.73 31.11 5.69 19.20
158Gd 0.346 33.73 29.88 7.84 25.26
164Dy 0.334 40.88 30.27 6.73 23.87
166Er 0.323 37.22 28.69 8.47 21.77
168Er 0.320 28.12 28.12 6.44 21.49
174Yb 0.308 39.22 31.13 7.13 20.09

 

ℑ/ℑrig

β

Fig. 2.    (color online) Variation of  with respect to de-
formation parameter  for axially deformed nuclei. Bohr +
first + second modifications.
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ℑBohr
1 ,ℑBohr

2 ,ℑBohr
3

the  Bohr  values  of  the  MOI,  represented  as
, respectively. The first modifications to

the MOI are obtained using Eqs. (25), (26), and (27), re-
spectively,  and  Eq.  (34)  is  used  for  the  second-order
modification to the MOI.

ℑTotal
kThe total MOI, , for the triaxial nuclei has been

(
ℑBohr

)
ℑ1,ℑ2,ℑ3

1− 2− 3−
(β,γ)

calculated using Eqs. (37),  (38),  and (39).  A comparison
of  the  calculated  results  with  the  experimental  data  and
Bohr  estimation  is  presented  in Table  3.  All  the
experimental values for the moments of inertia 
along the , , and  body axes, respectively, as well
as  the  deformation  parameters  have  been  acquired

ℑBohrTable 3.    Comparison of calculated results of total MOI with experimental data [28] and Bohr estimates  for triaxial nuclei, respectively.

A β γ ℑExp.
1 ℑBohr

1 ℑTotal
1

110Ru 0.283 29.0 22.0 3.33 9.164

150Nd 0.283 10.4 27.5 4.96 13.982

156Gd 0.330 7.9 55.0 6.97 23.952

166Er 0.346 9.2 42.2 8.65 31.660

168Er 0.345 8.4 42.6 8.67 31.666

172Yb 0.331 4.9 38.3 7.88 27.281

182W 0.241 10.0 35.9 4.94 11.602

184W 0.234 11.3 30.6 4.82 10.955

186Os 0.207 20.4 32.4 4.16 8.286

188Os 0.193 19.9 26.5 3.67 6.872

190Os 0.184 22.1 24.1 3.44 6.163

A β γ ℑExp.
2 ℑBohr

2 ℑTotal
2

110Ru 0.283 29.0 8.1 0.88 2.540

150Nd 0.283 10.4 19.8 3.24 9.307

156Gd 0.330 7.9 21.2 5.05 17.609

166Er 0.346 9.2 33.3 5.94 22.096

168Er 0.345 8.4 33.6 6.16 22.818

172Yb 0.331 4.9 37.9 6.46 22.567

182W 0.241 10.0 25.7 3.28 7.852

184W 0.234 11.3 24.1 3.03 7.034

186Os 0.207 20.4 16.3 1.74 3.587

188Os 0.193 19.9 15.1 1.57 3.044

190Os 0.184 22.1 11.7 1.32 2.459

A β γ ℑExp.
3 ℑBohr

3 ℑTotal
3

110Ru 0.283 29.0 3.88 0.783 1.858

150Nd 0.283 10.4 1.96 0.18 0.427

156Gd 0.330 7.9 1.78 0.15 0.440

166Er 0.346 9.2 2.64 0.25 0.778

168Er 0.345 8.4 2.52 0.21 0.656

172Yb 0.331 4.9 1.39 0.07 0.202

182W 0.241 10.0 1.64 0.17 0.328

184W 0.234 11.3 2.31 0.21 0.388

186Os 0.207 20.4 2.78 0.52 0.873

188Os 0.193 19.9 3.45 0.44 0.692

190Os 0.184 22.1 4.08 0.50 0.754
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from Allmond and Wood [28]. Our calculated results are
clearly in better agreement with the experimental data as
compared to the original Bohr estimation.

5    Conclusion

A detailed theoretical extension to the hydrodynamic-
al model has been presented in view of the contributions
arising from the higher order terms of the radial distribu-
tion. Such calculated MOI values are found to be in bet-
ter agreement than the original model for both axially de-
formed and triaxial nuclei. This highlights the crucial ap-
proximation involved in the irrotational picture of the li-
quid  droplet  in  terms  of  small  amplitude  vibrations  and
further supports the large amplitude vibrations at the nuc-
lear surface. Such investigations strengthen the irrotation-
al  and  collective  picture  of  even-even  deformed  nuclei.
Further improvements to this extension are in progress.

ξ∗2µ

ξ∗2µ =
R0

2R
α̇∗2µ

It  should  be  mentioned  that  the  real  value  of ,
which  is  presented  in  Section  3,  is .  This

1
2
α̇∗2µ

R = R0
R

quantity  was  approximated  by Rayleigh to  by set-
ting . Another modification can be carried out here
by expanding up to  and then treating the higher terms.

In  the  future,  we  plan  to  predict  the  values  of  the
parameters of inertia and rigidity within the hydrodynam-
ic model using a simple harmonic potential.

The results  obtained  are  compared  with  the  experi-
mental  data  as  well  as  with  Bohr's  results  and  indicate
good  agreement  with  the  experimental  data,  with  ratios
up to approximately 0.6 to sometimes 0.7.
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