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Abstract: We study reheating in some one and two field realizations of fibre inflation. We find that reheating begins

with a phase of preheating in which long wavelength fluctuation modes are excited. In two field models there is a

danger that the parametric amplification of infrared fluctuations in the second scalar field - associated with an en-

tropy mode - might induce an instability of the curvature fluctuations. We show that, at least in the models we con-

sider, the entropy mode has a sufficiently large mass to prevent this instability. Hence, from the point of view of re-

heating the models we consider are well-behaved.
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1 Introduction

The reheating phase (see e.g. [1, 2] for recent re-
views) is an integral part of any successfull inflationary
model. The inflationary phase leaves behind a state with
an exponentially suppressed density of matter particles
[3]3), and a mechanism is required which transforms the

. . 4
energy trapped in the homogeneous inflaton~ condensate
to quanta of the regular matter fields.

Initially, reheating was studied perturbatively [4-6],
but this neglects the coherent nature of the inflaton con-
densate. It was then realized [7, 8] that the reheating
phase may begin with a period of parametric resonance
instability called preheating [9-11] during which the os-
cillations of the inflaton condensate lead to exponential
increase in the number density of long wavelength fluctu-
ations of either the inflaton field itself (“self-resonance”)
or of fields which are coupled to the inflaton. The result-
ing state of matter after preheating has a non-thermal dis-
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tribution, and hence a second stage of reheating is re-
quired in order to obtain full kinetic and chemical equilib-
rium.

The equation of state of matter becomes radiation-
dominated even after an efficient preheating period. Since
the detailed predictions of any inflationary model for ob-
servations depends on the length of the period after infla-
tion before the onset of radiation-domination” itis im-
portant in any inflationary model to study the possible
presence of parametric resonance.

One might fear that the exponential increase in in-
frared matter fluctuations during preheating might lead to
an exponential increase of the cosmological fluctuations
[12—15]6). In single matter field models, however, this
does not happen since the curvature fluctuations are con-
served on super-Hubble scales, as can be shown even
beyond perturbation theory (see e.g. [16, 17]). However,
in models in which there are extra light fields in addition
to the inflaton, there is the danger than fluctuations in the
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3) Warm inflation is an exception as in this scenario matter particles are produced continuously and efficiently throughout the inflationary phase, and there is no need

for a separate period of reheating.

4) The inflaton is the scalar field whose potential energy drives the inflationary expansion.

5) The number of e-foldings before the end of inflation when fluctuations on a given physical scale today exit the Hubble radius and hence the inflationary slow-roll
parameters evaluated at that scale depend on the length of the reheating phase before the onset of radiation-domination.

6) Note that such a process would not violate causality since we are talking about modes which, although must larger than the Hubble radius {7~ at the time of re-
heating, are smaller than the horizon.
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extra fields will also experience parametric resonance of
infrared modes [18, 19]. If the fluctuations of these en-
tropy modes are coupled to the curvature fluctuations,
then the exponentially amplified entropy fluctuations
could induce exponentially enhanced curvature fluctu-
ations - on scales which are measured today, hence des-
troying the agreement between theory and observations.
Toy models in which such a dangerous amplification of
entropy modes occurs were studied in [20]. On the other
hand, it was shown that a number of string-motivated in-
flationary models such as D3-D7 brane inflation [21] and
axion monodromy inflation [22] are safe from this poten-
tial problem. Although it is not expected to have ampli-
fication of primordial curvature perturbation, it is inter-
esting to note that this amplification may suppress the
tensor-to-scalar ratio hence can be applied in some partic-
ular theories to better fit current observations. A typical
example is the two-field matter bounce curvaton scenario
[23], in which the scalar modes are amplified through a
“kinetic amplification” while the tensor modes are not,
providing a mechanism to suppress the tensor-to-scalar
ratio and new sources of non-Gaussianity.

Fibre inflation [24] is a popular model of inflation
motivated by ideas from string theory [25, 26]1). In this
paper we show that in the versions of the scenario which
we consider here, reheating begins with a period of pre-
heating (the possibility of preheating in fibre inflation
was also considered in [27], and the macro reheating
properties in [28]). On the other hand, we show that the
entropy modes are sufficiently heavy such that no effi-
cient resonance of these modes occurs during the phase of
preheating. Hence, it appears that from the point of view
of reheating constraints, the fibre inflation model is safe.

A word on our notation: we use natural units in which
the speed of light and Planck's constant are set to 1. Un-
less otherwise indicated we work in units in which the
Planck mass is also set to 1. We work in the context of a
spatially flat homogeneous and isotropic background cos-
mology given by the metric

ds? = —df? + a(r)*dx?, (1)

where ¢ is physical time, x are the comoving spatial co-
ordinates, and a(r) is the cosmological scale factor. The
Hubble expansion rate is

Hin=2 Q)

a

There are two coupling constants which appear in string
theory. The first is the string coupling constant g; which
measures the strength of the string interactions. The value
of g, is set by the expectation value of the string theory
dilaton field. The second coupling constant o’ measures

the strength of quantum effects. It is given by the square
of the string length.

2 Review of fibre inflation

Inflation driven by a scalar field has become the
paradigm of early universe cosmology (see e.g. [29] for a
review). Unless the potential of the inflaton field is finely
tuned, the energy scale at which inflation takes place cor-
responds that of particle physics Grand Unification,
which is close to the expected string scale in many setups
[30]. Hence, it is reasonable to search for realizations of
inflation in the context of string theory.

String theory is anomaly-free only in ten space-time
dimensions. Hence, to make contact with our world, six
of the spatial dimensions need to be compactified to a
small size. In this context, the effective field theory in our
four space-time dimensions will contain many scalar
fields, some of which could be candidates for the inflaton
(see e.g. [31] for a review of the connection between in-
flation and string theory).

The scalar field candidates to be the inflaton include
the separation between branes [32-35], Kahler moduli
(roughly speaking the radii of the compactified dimen-
sions) [36, 37], and axions [38, 39].

Scalar field-driven inflation usually requires the field
to be slowly rolling (technically this means that the accel-
eration term in the Klein-Gordon equation for the field is
negligible, and the kinetic energy is also negligible).
These conditions are in general hard to realize. In particu-
lar, if we want the slow-roll trajectory of the scalar field
to be a local attractor in initial condition space, then field
values greater than the Planck scale are required (see e.g.
[40] for a recent review and [41-43] for some original
works). As reviewed in [31], such large field values are
hard to obtain in a controlled way from string theory.
There are, however, a couple of interesting possibilities,
the first being axion monodromy inflation [44], the
second the Large Volume Scenario [45]. Both of these
scenarios may, in fact, lie in the string theory swampland
[26], but this is not the topic of our work.

Fibre inflation [24] is a particular realization of infla-
tion in the context of the Large Volume Scenario. It is
based on a flux compactification of Type IIB superstring
theory, with the compact manifold being a Calabi-Yau
three fold X [46, 47] with fibres. The resulting low en-
ergy theory is four space-time dimensional N =1 super-
gravity which in turn is given by a Kéihler potential K
(which determines the kinetic part of the action) and a su-
perpcz)tential W which determines the potential energy
term .

1) We are not addressing here the possibility that this model lies in the swampland and it not consistent with principles of superstring theory.
2) The Kihler potential also enters in the connection between the superpotential and the potential.
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The Kahler potential depends on the total volume V
of the threefold, on the axio-dilaton S, on a holomorphic
(3,0) form Q, on complex structure moduli U,;a =
1,---,hp1(X) and on Kéhler moduli Tyi=1,---,h;1(X).
Here the numbers 4, and & characterize the topology
of the compact space X.

The axio-dilaton field S and the complex structure
moduli are fixed by turning on fluxes (both NS-NS and
RR fluxes). At tree level the Kéahler moduli 7; are not
fixed and neither is the volume V, but the volume is de-
termined from the 7; (Note that in the string gas cosmo-
logy [48] approach to merging string theory with cosmo-
logy (see [49-51] for a review) the Kéhler moduli are
automatically fixed [52-56] by the interplay of winding
and momentum modes. The winding modes are frozen
out in the effective field theory approach). There are no
corrections to the superpotential at any finite order in g;
and o’. However, there are non-perturbative corrections
(e.g. via gaugino condensation), and they give exponen-
tial terms of the form

AW = ZAie*“LT', A3)

where A; are coefficients. The Kéhler potential obtains
perturbative corrections of the form:

AK = —21n((V+ 2;; /2], ©)

where £ is a constant proportional to the Euler number of
X.

With these corrections it is possible to generate a min-
imum of the potential corresponding to large volume. But
this depends on the geometry of X. The Calabi-Yau mani-
fold X must have a “blow-up” mode (a direction in which
the radius is large in string units) to get the minimum of
the potential to be at a large value of V. In this case, the
induced potential stabilizes the Kéhler moduli in the dir-
ections which are not large, but not the value of the
blowup mode. Note that extra structures are needed to up-
lift the AdS (anti-de-Sitter) minimum to a dS (de Sitter)
(and this might not be consistent from the point of view
of string theory).

The specific example considered in [24] has two
blowup directions which yield two light moduli fields 7,
and 3. The overall volume V is determined by the val-
ues of the blowup fields. Without string loop corrections,
the potential is flat in a direction which in field space is
roughly 7;. If we fix the total volume and 73, then in fact
the flat direction is exactly the 7, direction. In 73 direc-
tion there is a minimum of the potential, yielding a val-
ley in the potential viewed as a function of 7; and 73
which is the inflaton direction. For values of 73 larger
than the value at the minimum of the potential, the poten-
tial increases slowly. How slowly will be the key ques-

tion we ask in Section 4. String loop effects will slightly
lift the potential in 7, direction, thus allowing for infla-
tion.

As done in [24], we here consider two versions of the
fibre inflation model. In the first we fix 73 and V' at the
minima of their potentials. We then obtain a single field
inflation model given by the Lagrangian
- —%(‘9““—‘3"“)— Vi) (5)

-

1
with potential

A B anW(% ©)

V) = Vot |5 - ——— + =L | 20
() =W [72 V= T )an

1
where Vj,A, B,C and W, are constants given by the three-
fold X, and the volume V is taken to be constant.

In the second version we keep 73 fixed at the minim-
um but allow V to fluctuate away from its minimum. The
kinetic piece of the Lagrangian is then both non-canonic-
al and non-diagonal

3 (0T8T )+ 1 (a,maWV) 1 (a,;vawv
2

Lyin = _§( T% _— 5 77

), (M

and then potential is

Wi 6y
V=[ualineV)*? ps| 25+

. ( A__B_ Cr ] w2

T% (V\/T_l (VZ (VZ (8)
where ¢, 4,3, Wo,0up,A, B and C are constants which are
determined by the specific manifold X.

3 Self-resonance in the single-field model

Here we consider the model given by (5) and (6). In
order to obtain the Lagrangian of a canonically normal-
ized field we make the field redefinition (recall that we
are using units in which the Planck mass is set to 1)

¢ = §lnn. 9
Then, the Lagrangian has the canonical form
1
L=-50,0"¢-V(®). (10)

where the potential of the inflaton is

Vi) =<(VC;%/3 [(3—R)—4(1 + g)e—m/z

)

2R
+ (1 + ?)ez’“” +Re"?

(11)
where R is a small parameter, R < 1, and k = —>—.

The homogeneous mode of the inflaton satisfies the
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Klein-Gordon equation
$+3Hp+V, =0, (12)

where the subscript indicates the argument with respect to
which the derivative is taken. For large field values «¢ > 1
(but not Rexp(x¢) > 1) the inflationary slow-roll condi-
tions on the potential are satisfied. Hence, for such val-
ues of ¢ inflation can take place. Once ¢ < 1 inflation
ends and ¢ begins to oscillate about the minimum of the
potential. In the absence of cosmic expansion (i.e. setting
H =0 in the above equations), the frequency of the oscil-
lations is my. Through the nonlinear term in the evolution
equation, self-resonance (i.e. resonance of fluctuations of
the field ¢ itself) is possible. However, to check whether
this indeed takes place we need to take into account the
expansion of space.

3.1 Evolution without cosmic expansion

First we consider in more detail the evolution for
H =0. Once k¢ < 1, the slow-roll conditions break down,
and the inflaton rolls to the minimum of its potential and
begins to oscillate about it.

For small field amplitudes ¢y <1 (in Planck units,
M, = 1), the potential can be approximated as

1 1
Vapp(P) = Emi‘pz + 8g¢3’ (13)
with
C2(6+TR)K?
2 _

mg = e (14)

C>(17R +30)>
TV (4

Once the amplitude becomes small enough such that the
effects of the nonlinear terms in the equation of motion
are negligible (this always happens since the inflaton
loses energy), the oscillations become harmonic:

¢ = gocos(wr), (16)
with w =mg4. We have denoted the amplitude of the ho-
¢
0.4r
027
| 0 15 0
-02¢
—04'

Fig. 1.

mogeneous mode by ¢y.

The potential and a typical example of the evolution
of the inflaton are shown in Fig. 1. The right panel shows
the potentian and its approximated version, the left panel
shows the time evolution of ¢.

To study the self-resonance, let us consider the per-
turbation of the inflaton,

where the brackets indicate spatial averaging. To linear
order, the perturbation mode (in Fourier space) satisfies
the equation of motion

Sy + (K + V) S = 0, (18)
where we omitted the Hubble damping and set a = 1. For
a large amplitude of oscillation, one should calculate Vj,
with the complete potential (11) since the higher order in-
teractions are important in this case. As the amplitude de-
cays to be small, the approximation (13) works well. We
will consider this case in what follows. With the solution
(16) we have

& Vapp
dep?
Thus we have a Mathieu equation for the perturba-
tion mode &¢p,

8y + (K> +m + gocos(wn)) ¢ = 0. (20)

= my + gdocos(wr). (19)

Using the rescaled time coordinate 7= Jwr, we get a
standard Mathieu equation,

O¢y + [Ak —2gcos(2T)] 6k =0, (21
where
44k> + m)
Ag=— 2=
k 2
w
2
q= —g;fo. (22)
w

This equation has the following solution

g = TPk, T) + e PPk, T), (23)
V., Vapp
0.4+t
0.2}
: - : : ¢
04 —02 0.2 0.4

(color online) The evolution (with H = 0) of the homogeneous mode of the inflaton (vertical axis) as a function of time (hori-

zontal axis) during reheating is shown in the left panel. The right panel shows both the full and the approximated potential, the

dashed red line being V,p, and the blue line the full potential V.
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where Py, are periodic functions, and f is the famous
Floquet exponent. If the Floquet exponent has nonvanish-
ing real part, then there is parametric resonance of the
fluctuations [7]. In terms of physical time we can write

Myt = fit. (24)
Note that y has dimensions of energy, whereas f is di-
mensionless.

To know how large the Floquet exponent is, let us
analyze the parameters involved. After the end of infla-
tion, the field oscillates about the minimum of the poten-
tial, and the amplitude is small compared to the Planck
scale. Hence, we can regard the background system as a
harmonic oscillator. Combining the equations (16) and
(13) we have w =~my. According the reference [24], we
have

. 2
V3M,
5m§ 25)
g=— , 5
V3M,
We immediately get
4k> 10
Ak = —5 +4, g~ %0 (26)
n \V3M »

Since ¢o < M, (as discussed earlier), we can con-
clude that

- 10

q<—.
V3
From the Fig. 2, we see that the rescaled Floquet expo-
nent is smaller than 0.5. The first band is the most import-
ant one. This implies that the long wavelength modes
dominate particle production. Since the phase space of
modes grows as k>, the dominant modes are in fact the
modes with a value of k2 close to the upper end of the res-

Ag > 4, 27)

2.0
2Re[pk)/my

0.6
1.5 ‘

0.4

1.0
0.2
0.5
0
0.0
0 1 2 3 4

Fig. 2.

onance band. Note that these modes are sub-Hubble (as
can be seen by making use of the Friedmann equation),
hence justifying the particle interpretation. The Floquet
exponent for some typical values of ¢ is shown in Fig. 2.

To have an exact feeling about the efficiency of the
self-resonance, we need to compare the Floquet exponent
with the Hubble parameter H. If the former is larger than
the latter, the exponential increase in the particle number
is significant. We have

Relp] _ @ZRC[,U/(]’ (28)

H 2H my
which is larger than one. For the value of m, given by the
parameters of the model (see 14) we have H ~ 10~'m, at
the beginning of reheating, and with the maximal value of
the rescaled Floquet exponent being about 0.5, the ratio
(28) is about 5. On the other hand, since the ratio is not
significantly larger than one, it is important to extend our
analysis and include the effects of the expanding back-
ground.

3.2 Including the effects of the expanding background

Now let us include the cosmic expansion. In this case
the evolution should be described by the equation (1). For
some given initial conditions, it has a typical evolution as
in the Fig. 3 (which is obtained by numericallly solving
the evolution equation). As expected, the inflaton starts to
oscillate about the minimum of the potential with an amp-
litude smaller than the Planck scale. Hence, it can be
viewed as small perturbation about the minimum (¢), and
we can write

6¢ = ¢ —(¢). (29)
The perturbation mode (in Fourier space) satisfies the
equation of motion

2Re[py)fmy

05¢

04§

03f

02F

0.1}

A\

0.5 L. 1.5

kz/md,2

(color online) The band structure for the Floquet exponent of equations (26) and (36). On the left, the horizontal axis repres-

ents the parameter ¢, and the vertical axis is the parameter k> /mé, which represents the rescaled wavelength. The colored region is the

parameter space where Re[u,] # 0, with the color coding indicating the value of the Floquet exponent. The right panel shows the Flo-

quet exponent for values of k in the first parametric resonance band. The three curves are for ¢ =3 (blue line), g = 2.4 (red line), and
g = 1.8 (black line), which correspond to the inflaton oscillation with amplitude ® = 0.5, ® = 0.4, and @ = 0.3 respectively.
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0.5

12 16

Fig. 3.

. t(10%)

M

100000 ¢
80000 |
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20000 ¢

0 L

14 16 18 20 22

t(10%)

(color online) The evolution of the inflaton (left) and the comoving number density (right), calculated by

ng = ﬂ(% +1Xe® - %, with k = 10_3m¢. The inflaton (vertical axis) oscillates after inflation as a function of time (horizontal axis),
k

with the amplitude decaying and the periodicity being almost a constant. The field is in Planck unit and time in m

2

Sy +3HOP, + (k—2 + V¢¢)6¢k =0. (30)
a

It is convenient to eliminate the fraction term by making
use of a field transformation

Xk = a3/26¢k. (31)
In terms of X, the equation (30) becomes
= 9 , 3.\,
Xk + a—2+V¢¢—1H —EH Xk =0, (32)
where
K? 9 3.
wi(l)z ;+V¢¢—ZH2—EH. (33)

This equation was studied in detail in [11], where it
was shown that particle production occurs when the adia-
baticity condition on the time dependence of the fre-
quency is violated. This happens when the background
field ¢ takes on a local maximum (since then the Floquet
exponent takes on a local minimum), as long as the amp-
litude of the background field remains sufficiently large.

We will give an approximate treatment (see e.g. [10]
where it was shown that this analysis gives qualitatively
the same results as the rigorous treatment of [11]) and set
a(t) =1 in the fluctuation equation. The equation for the
perturbation mode then becomes

Xk + (k2 + V¢¢)Xk =0. (34)

Now we compute V4, using the approximation (13). Dur-
ing the oscillations, the background field goes like
¢(t) = O(t)cos(wr) with () ~ 4, which is shown in Fig. 3.
Note that the inflaton starts to oscillate when the amp-
litude ®(¢) is small, ®(r) <1 (in Planck units), and the
amplitude continues to decrease. The equation (34) then
becomes

Kic+ (K +m3 + g®(r)cos(wr)) Xi = 0. (35)

It is convenient to write it in terms of the new coordinate
T= %wt, since this yields the standard form of the Math-
ieu equation,

-1 :
" unit.

X\ + (A —2gcos(21)) Xk = 0,
(36)

where a prime represents the derivative with respect to 7.

As a good approximation, we can use w = my. Then we
find

41

10D(¢
Ak’:—2 > = ©

ny 1 \V3M p'
Typically, the inflaton oscillates for ®(z) < 1, hence g < 6.
We see that in this case we have narrow resonance. Since
the amplitude ®(r) decays, the parameter ¢ becomes smal-
ler and smaller, and this makes the resonance band nar-
rower. From the Fig. 2, we conclude that the cosmic ex-
pansion reduces but does not cut off the efficiency of
particle production.

37

3.3 Termination of preheating

Due to the nonlinearities in the equation of motion for
the background field, particle production will lead to cor-
rection terms. Once these correction terms become com-
parable to the mass term driving the oscillations, preheat-
ing will shut off. The leading nonlinearity comes from the
cubic term in the approximate potential and yield the cor-
rected equation of motion

. . 1
$+3Hp=—mip— e’ (38)

Each Fourier fluctuation mode 6¢; contributes to the cor-
rection term. The criteria for termination of preheating
thus becomes

my®o < g((6¢)°),

where, as before, @y is the amplitude of the background
field. The quantity ((6¢)?) is the contribution of the fluc-
tuation modes to the background. It is given by

((6¢)%) = f P klogil?,

(39

(40)
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where 6¢; are the fluctuations computed earlier.
To compute this expectation value, consider the Four-
ier expansion of the fluctuation field

5¢ = f &k free'™, (41)

where f;. is the amplitude of the fluctuation mode and e
is a random variable with normalization

(&rer) =6 (k—K). (42)

Since particle production is dominated by the first reson-
ance band, we can estimate (40) by restricting the integ-
ral to this first band and using

L

i VAR (43)
where we have assumed vacuum initial conditions for the
amplitude of the Fourier modes. Inserting (42) and (43)
into (40), we can then estimate the resulting integral by k2
(the upper cutoff value of the first resonance band) multi-
plied by the factor of increase, using the maximal value
of the Floquet exponent in the first resonance band. This
yields

((68)%) ~ ke, (44)

where uy can be taken to be the maximal value of the Flo-
quet exponent.
The termination criterium (39) then becomes

mz (DQ
2,ukt <In

(45)

*

Since the oscillation period is given by m;l and since the
maximal value of the Floquet exponent is about 0.5 for
g = 0.7, we find that the number of oscillation periods be-
fore the termination criterion is satisfied is given by the
right hand side of the above equation. Making use of
ks ~107'my and that g ~ 3m§) /M, we find that the num-
ber of oscillations is of the order 10.

A better termination criterium is to check until which
time adiabaticity violation takes place. There is adiabati-
city violation for a few oscillation times. This second
analysis confirms the conclusion that the expansion of the
universe and back-reaction do not prevent the preheating
instability.

On the other hand, the preheating phase does not con-
vert all of the energy of the initial inflaton condensate to
particles. To estimate the fraction of the energy which is
transferred during the initial stage of parametric reson-
ance we can compute the energy density in particles, using

K,
pp ~ 4 fo dkk3 e (46)

Inserting the result from (45) and using k, ~ 10~'m, we

find

N 10-2m—5’
Po 8o
which is of the order of a percent.
In conclusion, in this section we have shown that
parametric self-resonance is effective in the fibre infla-
tion model with the model parameters suggested in [24].
Note that in [27], a much larger value of the Hubble con-
stant was chosen. This choice plus small differences in
the shape of the potential lead to significant differences in
the value of the Floquet exponent. The authors of [27] ob-
tain very similar results as we do if they apply their ana-
lysis to the same form of the potential and parameter val-
ues as we use (private communication from F. Cefala). It
is also important to stress, as done in [27], that the initial
presence of the preheating instability does not imply that
this instability will drain most of the inflaton energy.

(47)

4 Two-field model

Now that we have shown that the initial stages of pre-
heating occur via parametric self-resonance of inflaton
fluctuations, we must study whether the parametric reson-
ance might lead to entropy fluctuations of other light
fields. In the fibre inflation model of [24], the Lagrangi-
an including the second light degree of freedom is given
by (see Section 2)

3 1
L =— 8—1_%8#718“71 + ma}ﬂ']a‘l(‘/

1
—— 8, VYV -V(r1,V),

Iz (48)

where the potential is

2

W, Sy
VY = eV | + 0

N ( A B N Cr ] Wg
We transform to canonically normalized fields ¢; and ¢,
which are defined by

— ea¢| +bg, ,

7 VY = bt+ed:, (50)

The  dimensionless  parameters  above  are
b= +2/(T+42),a= V2-b2, and c = /3 -b2. In terms

of ¢; and ¢, one has the standard two-field theory

1
LS (B0 a7 e) V) D

Here the potential V(¢,¢,) is
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V($1.62) =—pa W5 (In(c) +bpy + )™ + 113 W0 30

T 8pe OB | A2 2arb)-2bree:

— BW2e Gat30i=1(b+300: | Cy2 a=4b18 +(b-doe:.

(52)

The evolution of the background fields is described by
the equations

(b.i + 3H¢l + qu,, =0. (53)

The evolution of the two fields is shown in the Fig. 4.

In the following, we will show that in spite of the
presence of two relevant field directions, entropy perturb-
ations produced on super-Hubble scales during the pre-
heating phase are too small to have an important effect of
the spectrum of curvature perturbations. It turns ouit that
the basic reason for this conclusion is that the second
field is not sufficiently light compared to the Hubble ex-
pansion rate.

We will work in longitudinal gauge (see e.g. [57] for
a review of the theory of cosmological perturbations and
[58] for an introductory overview) in which the metric,
including scalar metric fluctuations, takes the form

ds? = —(1+2%)dr* + a()*(1 - 2®)8;;dx'dx’,  (54)
where W(x,t) and ®(x,7) are the fluctuating degrees of
freedom of the metric. If matter has no anisotropic stress
(which is the case for scalar field matter), then one of the

Einstein equations leads to the conclusion that the two
potentials are equal. In this case, the curvature perturba-

-0.43

-0.61

10 16.

t(10%)

tion is

H(H® + )

4nG(p+P)’

In the absence of entropy fluctuations, the curvature

perturbation R is conserved on super-Hubble scales.
More generallly, the equation of motion for R is

H H p V@
p+P nad p+P P4nGa®’
where the non-adiabatic pressure perturbation 6P, is
defined by

R = (55)

R=- (56)

P
O6Ppug = 6P — /—Odp. (57)
Recalling the definition of the total entropy perturbation
oP ¢
SEHtf—ﬁy (58)
P p
one immediately gets
P H p V@

R=—

- - . 59
p+P~  p+P P4anGa? (59)

On super-horizon scales, k < aH, the second term on
the right-hand side can be ignored. Hence, on these large
scales the evolution of the curvature perturbation is dom-
inated by the entropy perturbation,

P 20P
S~ —— os.
p+P 30(o+ P)
where §s = 6¢, cos—5¢; sind, and the variables 8 and o

¢1,0,

0__~,~/////M~**——

R~ -

(60)

: - g(10*
g s (100
6.46 |
6.42

6.38

: t(10*
10 16. 1)

Fig. 4. (color online) The inflation potential V(¢;,¢,) and the evolution of the scalar fields, with the blue line being ¢;(r) and the red
line ¢,(r). The fields are in Planck unit and ¢ is in 103M;1 unit. We see that inflation mostly happens along the ¢;. Note that we used

the parameters of SV2 in [24].
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are defined in the Appendix.

The application of the above general formulas to two
scalar field models has been studied in many references.
We follow the treatment of [59] which is summarized in
the Appendix. The two fields are expanded into adiabatic
field o and entropy field s. It is found that the entropy
field fluctuation s obeys the equation

0 2nGa?
where the subscripts on V indicate that the second deriv-
ative with respect to the entropy field is taken. The vari-
able 0 describes the angle between the original field basis
and the adiabatic/entropy field basis. We see that the ef-
fective mass of the entropy mode is given by

mZy = Vg + 367, (62)

. . (K3 . 0 K
65+3H6s+(—2+vm+392)6s: — o, (61)
a

For the two-field theory (51), we have used the nu-
merically determined background trajectory to determine
the angle 6 and the second derivative of the potential with
respect to the entropy field. In this way, we have numer-
ically evaluated the above effective mass. The results for
the evolution of the effective mass square m2; are shown
in Fig. 5.

We see that the effective mass is much larger than 37112,
so the entropy mode is heavy. Hence, we expect the en-
tropy mode to undergo damped oscillations. The top two
panels show the evolution towards the end of the period

ff

m2(107°)
10¢

|

10.8 114

Fig. 5. (color online) The evolution of the effective mass of the entropy mode and its comparison to 2. Here m

isin 103M;] unit.

t(10%)

of slow-roll inflation, the bottom two during the period of
oscillations of the inflaton field about the minimum of its
potential. The top left panel shows the evolution of the
square of the mass, the top right the ratio of this square
mass to the square of the Hubble expansion rate. The two
bottom panels show a different range on the horizontal
axis. With the scaling on the left we can track the overall
amplitude, As is apparent, the oscillations of the inflaton
lead to large amplitude peaks in the effective mass.
However, the amplitudes vary dramatically from peak to
peak, although the distance in time between the peaks ap-
pears to be nearly periodic. Basically, this is because of
the structure of the potential (53). When expanded around
the minimum for small amplitudes of oscillations, the po-
tential has a crossed mass term for ¢; and ¢, and this
breaks the harmonic nature of the oscillations. Since the
time dependence of the effective square mass is far from
periodic, there is no Floquet theory (parametric reson-
ance) instability.

Indeed, given the numerically computed mass term
we can numerically solve the entropy mode equation. The
result is shown in Fig. 6. To extract the effects of the ex-
pansion of space, we first make a transformation of vari-
ables, 65 = a’/?6s. Then the equation (79) for the entropy
mode becomes

. 59 3.
6§+(VSS+392—ZH2—§H)6§=0 (63)
mgff/H2
60
50t
40+
: t(10*
5 5 (10%)
mgff(10_3)
5 -
3 L
t(10*
10.8 10.82 {109

2

s
~ 1S in M unit and ¢
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on large scales where gradient terms are negligible. Since
the effective square mass is large compared to H2, the H2
and A terms in the equation are negligible. We have neg-
lected them in the numerical solution for 65 shown in
Fig. 6. We see that 65 oscillates with almost constant
amplitude during inflation. In the reheating process, the
amplitude has both amplification and decay. This can be
understood by looking at the evolution of the effective
mass in Fig. 5. The effective mass of the entropy mode
does not change much during inflation and this results in
a nearly constant amplitude of §5. As mentioned above,
during reheating, the effective mass has periodic narrow
peaks. Except during the narrow peak intervals, the ef-
fective mass is almost constant, and no growth of §5.
Since the peak structures are not periodic, they do not al-
low for the self-resonance for the entropy mode. Since
8s =a>/?65, considering the expansion of the universe,
we conclude that the entropy mode is suppressed.

Note that in this analysis we have assumed that the
background scalar field dominates the cosmology during
reheating. This is a good approximation at the beginning
of the reheating phase, but will no longer be good once
backreaction of the produced particles becomes import-
ant.

Since the entropy fluctuations do not grow, the in-
duced effect they have on curvature fluctuations is expec-

ted to be negligible. We can check this by solving the
equation (80) for the adiabatic mode (which gives the
curvature perturbation via R=Z2Q) given the entropy
source function which we have determined. Like in the
case of the entropy mode, we first extract the effects of
the expansion of space via the transformation Q = a=>/2Q.
This rescaled field obeys the equation

x (K s o 206 ¢*H\ 9 _, 3.\~
Q+(a—2+er—9 —87TG(3(T +T—?)—ZH —EH)Q
.3, > H .
=2(9—%9H—L—ﬁ)6§+296§.
(64)

The Evolution of the adiabatic mode is shown in
Fig. 7. The left plot shows the evolution of Q. Combin-
ing the evolution of the scale factor in Fig. 6, we see that
the adiabatic mode Q =a~*?Q does not grow. Actually,
since

H~ 3
InR = ln(fQ)— —Ina+ const, (65)
(o 2

from the plot of ln(gé) in Fig. 7 (right) we conclude that
the curvature perturbation R is a constant during inflation
and reheating.

HHH\HHHHIMHHIHHMHMmmmumm\.m.um 10" “l
A .,
—;).1 - 5 1.0 1.5 (10’

Fig. 6.

(color online) The evolution of a*/%ss and the scale factor a(r) during inflation and reheating, with # in 10°M," unit. Note that

¢ =0 is just the starting point of our numerical evolution but not of inflation, so we do not show the full 60 e-foldings.

an

501
40
30¢
20
107

: : : t(10*
5 10 15 (109

In(OH/c")

50t
40 ¢
301
207
10t

' ' ' 1(10*
5 10 15 (1o

Fig. 7. (color online) The evolution of the mode Q and ln(g Q) during inflation and reheating, with ¢ in 10° M unit.
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5 Conclusions

We have studied the reheating phase in fibre inflation,
taking the parameters used in [24]. In this model, there
are two relevant “light” degrees of freedom. They come
from the moduli fields of the model. In a first approxima-
tion, we (following [24]) have focused on the modulus
field which taken by itself can lead to inflation. We have
shown that the reheating phase in this model begins with
a phase of parametric self-resonance during which a not
negligible fraction of the inflaton energy is transferred to
low momenta quanta of the inflaton.

We then considered the effects of the second lightest
field. In order for the model to be safe, it is important to
check that there is no strong parametric resonance of the
fluctuations in this second field. Otherwise, the induced
entropy fluctuations might lead to a contribution to
curvature fluctuations which would destroy the success-
ful predictions of the model. We have shown that, al-
though the second field is light compared to the string
scale, it is sufficiently heavy compared to the Hubble
scale at the end of inflation such that super-Hubble en-
tropy fluctuations cannot grow. A similar approach on
this issue can be found in the nice work [60]. The authors

Appendix A

Here we review the analysis of entropy perturbation S and in-
duced curvature fluctuations in the case of two scalar field matter
models, following the analysis of [59].

For scalar field matter (fields with canonical kinetic terms), the
total energy density p and pressure P are given by

1.
p=) 507 +V (A1)
I
and
1.
P=) 56V, (A2)
1

where V is the potential energy function and the sum runs of the
different fields. The time derivatives and fluctuations of these func-
tions are given by

p= Z (e161+ Vo 1), (A3)
p= 21] (b1 = Vi, 1), (A4)
op = Z (d161 - 97@) + V. (AS)
5P =" (151 - §]®) -6V, (A6)

1
Using these quantities, the total entropy perturbation (58) turns to be
- 2(V+3H 5 63)6V +2V 31 (h15d1 - 70) n

35,828, (2V+3HY,43) '

numerically studied the preheating phase in chaotic infla-
tion model, with metric perturbations included. They
showed that the curvature perturbation could be ampli-
fied due to the conversion from the entropy mode, thus
the theory can be a realization of curvaton mechanism.
There is no conflict with our results since the entropy
mode considered in [60] is light enough.

Whether the entropy perturbations violate the reheat-
ing process or not depends on the effective mass of the
entropy mode. The effective mass is related to the para-
meters in equation (52) and the evolution of the inflaton,
as can be seen from Eq. (82) in appendix. They are de-
termined by string compactifications and moduli stabiliz-
ation hence are not free parameters. It is not clear how the
entropy mode mass is affected by these parameters. We
have chosen the parameters of fibre inflation suggested in
[24]. It would be interesting to scan a wider parameter
space of fibre inflation models and search for regions
where there is a parametric instability of the entropy
mode.

We thank Ryo Namba, Ziwei Wang, and Daisuke
Yoshida for helpful discussions. In particular, we thank
F. Cefala for useful communications concerning the rela-
tion of our work to that of [27].

If there is only one scalar field, then
2V, P .
S=—r (454~ $ D~ h60)
3¢(2V +3H¢?)
2V, .
=— (5P+ 3H¢5¢)- (A3)
3¢(2V +3H¢?)
In this case, the total entropy perturbation can be reduced by using
the perturbed Poisson equation (the 00 component of the Einstein
equation) and the momentum constraint (the 0 component of the
perturbed Einstein equation),
V2o
4nGa?’
The total entropy perturbation hence scales as S « Z—id) and is hence

Sp+3Hpsp =

(A9)

suppressed on super-Hubble scales. Hence, it is clear that the en-
tropy perturbations vanish on large scales for single scalar field in-
flation models.

For two field models there is a convenient field space decom-
position. The original scalar fields ¢; and ¢, can be described by
the adiabatic field along the inflationary trajectory, and the entropy
field orthogonal to the trajectory. The adiabatic field and its per-
turbation are

0 =¢1cos0+dasinh, 5o = ¢ cosf+ g, siné, (A10)
where the angle 6 is defined by
cosf = il sinf = ¢2 (A11)

Ny J# i
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The entropy field simply vanishes along the background trajectory.
The entropy perturbation is
08 = 0¢pp cos 6 — 5y sin6. (A12)

Using the density perturbation (AS5) and the momentum constraint
(0i component of the Einstein equation) one can show that

H
R=D+ —6bo,
a

v, k2 20
Sz—%(—(b)+—,6s, (A13)
6nGo? (3Ho +2V,) \ a? 36

To know how large the entropy perturbation is, and its contribu-
tion to the curvature perturbation, it is necessary to know the evolu-
tion of the entropy perturbation mode s and the adiabatic mode
éo . The evolution equations of the entropy mode and the adiabatic

mode are
. . . 6 K
Hos+|~— (= — Al4
os+3 6s+(a2+v_m+36 )63 e ( )
N . (K > 871G, (a’c?
Q+3HQ+(a—2+V,T,T—9 —a—sﬁt(T))Q
. V, H),
=20,(065) - 2(4 + 7)96&
o H (A15)
where
0=ér+ L. (A16)

H
Now we see that the effective mass of the entropy mode is

gy = Vg +36%. (A17)

The effective mass can be expressed in terms of the slow-roll para-

meters,
M v, v, v,
L Vo Ve ¢4
&y = Tp%, 7711=M12,1#, (A18)
where
Vo=V g vy, = 2V (A19)
Ay W oprogs

These are the slow-roll parameters in the original field space. In the
adiabatic and entropy field space, one has

Vo = Vg, cosf+ Vg, siné, (A20)
Vg =V, cos@—Vy, siné, (A21)
Voo = Vo, cos? g+ 2V, ¢, SINOCOS O+ Vi, 5, sin’ 6, (A22)
Vs = Vo, cos?g— 2V, 4, SINOCOSOH+ Vi, 4, sin’ 6, (A23)

Vs == V4,4, sinfcos@+ Vg, 4, (cos?6 — sin%0)
+ V,4, Sinfcosf. (A24)

One can show that

Voior Voo \_[ cosf —sind Voo Vos cosf  sinf

Voror  Versn _( sinf  cosé Ve Vs )( —sing  cosf
(A25)

Similarly, one has

mi1 ni2 \_ [ cosf —sinf Moo Nos cosf  sind
mi1 nm2 |\ sin@  cosé Nso Nss —sind cos6

(A26)
Hence the result is Vi, = 3H?n,,. For 6, we have
o= Vs _ P19 '—2{&25151 _ (A27)
o (o
Using the slow-roll equations it can be shown that
0= —Hijs. (A28)
Hence, we finally have
M2 = 3H (155 +17y). (A29)

If the effective mass of the entropy mode is too heavy (larger than
\/g H), then the fluctuations coming from the entropy mode do not

grow on large scales. Instead, they perform damped oscillations.
Now let us compare this with the quantity 3 H2,

3 1
M= SH? =3 (n il — 5) H. (A30)

This implies that if 7 +72,> } then the entropy perturbation are
suppressed on large scales, Otherwise, the entropy perturbation can
grow and give a significant contribution to the curvature perturba-
tions. However, one should note that this analysis is only applic-
able during inflation since the equation (A30) is obtained by using
the slow-roll condition. For the evolution after slow-rolling, we
should use the expression (A17) rather than (A29).
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