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Abstract: f(Ricci) gravity is a special kind of higher curvature gravity whose bulk Lagrangian density is the trace of

a matrix-valued function of the Ricci tensor. It is shown that under some mild constraints, f (Ricci) gravity admits

Einstein manifolds as exact vacuum solutions, and can be ghost-free and tachyon-free around maximally symmetric

Einstein vacua. It is also shown that the entropy for spherically symmetric black holes in f (Ricci) gravity calculated

via the Wald method and the boundary Noether charge approach are in good agreement.
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1 Introduction

Even after more than a hundred years of intensive
studies, Einstein's general theory of relativity (GR) re-
mains the most important theory of gravity. The success
of GR as the best candidate theory for gravity stems from
the fact that it agrees with most observational tests, and is
the simplest model among all metric-based geometric the-
ories of gravity. However, GR is not without its own
problems. To name a few, the unavoidable development
of singularities signifies the failure of GR at later times,
the non-renormalizability of the canonical quantization of
GR indicates its failure in the early age of the Universe,
and even at the present age of the Universe GR fails to
explain its accelerated expansion without resorting to the
yet feature-unknown dark energy. Some of the problems
of GR may be overcame by introducing higher curvature
terms in the action. For instance, the renormalizability
can be significantly improved and the accelerated expan-
sion of the Universe may be explained without introdu-
cing the concept of dark energy.

A large number of higher curvature gravity models
have been proposed in literature, each inheriting one fea-
ture of GR or another. To select a good alternative for GR
among these models, several criteria must be considered.
First, the alternative model must also be in agreement
with the observational tests as is GR. Second, it must re-
solve at least some of the problems that GR has been con-
fronted to. Last but not the least, the alternative model
must not introduce novel problems which GR did not have.
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The observational tests of GR may be subdivided in
two categories. The first consists of tests on the kinemat-
ic level. Most of the well known observational tests be-
long to this category, including, but not limited to, the de-
flection of light, perihelion recession, the time delay of
radar signals and the frame dragging effect, etc. These are
actually tests of the metric (Schwarzschild metric in the
case of light deflection, perihelion recession and time
delay of radar signals, Kerr metric in the case of frame
dragging effect), rather than the gravitational model, and
it is a simple fact that Schwarzschild and Kerr metrics are
among the universal solutions to all metric-based theor-
ies of gravity. The second category involves dynamical
effects. Only a few observational tests were performed at
this level. The direct observation of gravitational waves
and the accelerated expansion of the Universe are in this
category. However, gravitational waves have only been
observed in the far field, which should be considered as a
test of the weak field limit only, and it has been men-
tioned above that GR fails to explain the accelerated ex-
pansion of the Universe without introducing dark energy.

Among the various higher curvature modifications of
GR, the Lanczos-Lovelock gravity [1, 2] and f(R) grav-
ity [3—6] are probably the two best known and intens-
ively studied models. The Lanczos-Lovelock gravity
modifies GR in such a way that the action is supplemen-
ted by a series of higher order topological densities, so
that in 4-dimensions it falls back to GR without any
modification. f(R) gravity, on the other hand, inherits the
fact that the Lagrangian density of GR consists purely of
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Ricci scalars, among which GR is the simplest choice.
We can regard GR from a different angle, where its Lag-
rangian density contains only the metric and the Ricci
tensor. From this point of view, it is natural to extend GR
into a more general f (Ricci) gravity, of which our pro-
posal of the Ricci polynomial gravity [7] is a special ex-
ample.

In this paper, we extend the study of the Ricci polyno-
mial gravity to a more general f (Ricci) gravity, where
f(x) is an analytic function subject to only a few mild
constraints which guarantee its perturbative behavior
around certain Einstein vacua. To be more specific, we
analyze the perturbative spectrum of f (Ricci) gravity,
identifying the ghost-free and tachyon-free conditions
around all allowed Einstein vacua. We also calculate the
AdS black hole entropy using the boundary Noether
charge technique proposed by Majhi and Padmanabhan
[8, 9], which is referred to as the MP approach (see also
[10, 11] for the use of of the same method in the case of
f(R) and conformal gravity), since the black hole entropy
plays an indispensable role in understanding the holo-
graphic properties of the black hole spacetime, and in ex-
ploring the microscopic degrees of freedom of the black
hole themselves [12—18]. Our calculation shows that the
black hole entropy arising from the holographic calcula-
tions agrees with the Wald geometric entropy[19].

The paper is organized as follows. In Sec.2, we intro-
duce the basics of f'(Ricci) gravity. The bulk and bound-
ary actions, the equation of motion and the conditions un-
der which an Einstein manifold can be a vacuum solution
are given explicitly. Sec. 3 is devoted to the perturbative
analysis of the model, with emphasis on the ghost-free
and tachyon-free conditions around various maximally
symmetric Einstein vacua. Sec. 4 goes beyond the per-
turbative regime and concentrates on the calculation of
the entropy of spherically symmetric black holes using
the Wald method and the MP approach. The paper is then
concluded in Sec. 5.

2 The model: equation of motion and vacu-
um solutions

To begin with, let us write down the bulk action of f
(Ricci) gravity in n dimensions:
1
T~ d" R Vs Suv
167G fM X8 f Ry 8y)

1
= “ HY 1
167G j/\‘/( d x\/Eg f}lV’ (1)

where fy = guofy, fi' = f(X)ly-pe is the natural continu-
ation of f(x), an analytic function of the single real vari-
able x, to the case of matrix-valued variable, and, of
course, g, is the metric of the spacetime M with Ricci

Tk =

curvature R,,, and g represents the absolute value of
det(g,v). When f(x) is a polynomial function, the above
action reduces to the Ricci polynomial gravity studied in
[7]. Given a coordinate system, and assuming that at cer-
tain event in the spacetime all components of the Ricci
tensor are small enough, we can understand the tensorial
expression fi in terms of the Taylor expansion of f(x),
ie.

7= 3 O, @)

k=0
where
(ROY, = Ry R Ry

It is evident that the tensorial monomials (R®)" are
not all independent from expressions of the form
(RUDY (RUDYL - (RUD YR30 (where 0 < j, < k for
a=1,---pand j +---+ j, <k) when k is large enough, be-
cause the Schouten identity

My vy v RV —
SUMRY R =0

holds identically for k > n. This implies that the expan-
ded form (2) of f!' can be presented in other forms.
However, to keep the action simple, we prefer that each
term in the expanded form of f = f(R,,.gu) = f; consists
of a single trace rather than of a product of multiple
traces. This consideration makes the analysis of our mod-
el much simpler than the cases studied in [20, 21] and in
[22]. Note also that the works [20, 21] studied only the
cases in three dimensions. In a generic dimension, f
(Ricci) gravity was considered in [23], but the subject
there was mainly frame-mapping and the calculation of
holographic entanglement entropy, which does not over-
lap with what we are doing in this paper.

The process of calculating the first variation of the ac-
tion is a little bit involved. However, the result can be ar-
ranged in the following simple form:

1
Olpulk = —f d'x \/E(Hwég*“’ + V”B'u)
M

167G
1
o | [ aevEHades [ a g,
1 67I'G M M

)

where

1 ! 1 4 1 yolon
H;zv = _Efgﬂ"-'-f(y”R‘,)(T-'_EDf/-lV - va(/lfv’)p"'zvpvo'f P 8uvs
)
! OV ! WV / o 1 4 (o
B =f"F 6Fﬁv —f P"&FVP +V,f ﬁ(sgp - EV”]TOO_(SgP
1
- _ng_VVf’ﬂVégPU', (%)

2

gm-1y 1s the absolute value of the determinant of the in-
duced metric on the spacetime boundary oM, n, is the
unit outer-pointing normal covector of dM, and f* is
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defined in the spirit of f;' with f(x) replaced by f'(x). In
Eq. (3), the term involving n,$B* cannot be simply
dropped by imposing the fixed boundary condition
6guvlom = 0 because the first two terms on the right hand
side of Eq. (5) contain derivatives of 6g,, rather than 6g,,
itself. To get rid of this redundant term, some boundary
action must be introduced. One way to achieve this is to
adopt the method introduced in [24], which works for any
higher curvature gravity with the Lagrangian density
composed of the Riemann tensor and the metric. Schem-
atically, one introduces two auxiliary fields, ¢, and
Yuvpo » to rearrange the bulk action into a form which is
linear in the Riemann tensor,

Touik = j/\w d"x \/g [f(¢uvpo-»g/1v) - wﬂvpa((ﬁuvpo - Ruvpo-)] P

(6)
where f(¢vpo»&uv) 18 Nothing else but f(R,,,g,,) with all
occurrences of the Riemann tensor R, replaced by
duvpo- Then, following a systematic variation process, one
finds that the only source of boundary action comes from
the variation of R, Finally, the boundary action can be
written as

1
Indry = —— d"'x Ve Lp. 7
bdry 167TG ﬁM X g( I)LB ( )
where the boundary Lagrangian density L is given by
Ly = Ky =2 nnf Ky + "'y, K, ®)

wherein K,,, = V,n, is the extrinsic curvature tensor and K
is the trace of K,,,.

It is common knowledge that the choice of a bound-
ary action is not unique: two different boundary actions
that differ only in some terms vanishing on the boundary
will equally well make the variational problem self con-
sistent. In our case, instead of Eq. (6), we can make the
bulk action linear in the Ricci tensor rather than in the
Riemann tensor by writing

Ibulk = L d"x \/g [f(¢;1v’ gyv) - wﬂv(‘ﬁyv - ,uv)] . (9)

Then, a similar procedure yields the boundary action (7)
with Lg replaced by

Ly =n,(fT},— f'T5). (10)

With the aid of either Eq. (8) or Eq. (10), we can
make the variational problem of our model consistent,
and hence it follows that the equation of motion of the
model is simply

H,, =0. (11)
Recalling the form (4) of H),, and assuming that the equa-
tion of motion admits an Einstein metric obeying

Ry = x8uv (12)
as an exact solution, where the constant y is related to the

. . 2N .
cosmological constant A via y = " it follows from Eq.
n—

(11) that y is a solution of the following algebraic equa-
tion:

XF'00 = 5.£00 = 0. (13)

Let us stress that this is an algebraic equation for y
and not a differential equation for f(y), because f(x) is
prescribed when defining the model. However, if one
happens to chose the function f(x) proportional to x*/? ,
then the above equation is identically satisfied for any
value of y. In the particular case of n =4 this equals to
f(x)~x%, and the corresponding model is simply the
Ricci squared gravity with bulk Lagrangian density
Lo R?. For a generic choice of f(x), Eq. (13) is the ne-
cessary and sufficient condition in order that the Einstein
manifolds (12) can be the exact solutions of our model,
and the allowed values of y may not be unique. This fact
has already become evident in the earlier study [7] of the
Ricci polynomial gravity.

3 Perturbative properties around Einstein
vacua

In this section we analyze the perturbative properties
of f (Ricci) gravity around the background Einstein met-
ric g, satisfying the equation R,,(g) = xg,,. The metric
with fluctuation may be denoted by g,, = g,y + v, where
hyy is a small deviation from the background metric. It is
customary to denote V, 1" =A,, where V, is the covari-
ant derivative compatible with g,,. We also denote the

traceless part of hy,, by hu =h, ——hg,, where
n
h=g"hyy.
Up to the linear term in /,,, the perturbed equation of
motion reads

1
6Hpv == [znf(/\/) +X2f”()()] hyv

1 1

+ Egyvf’(X) xh+ EgpaAtho]
1

) f 00+ f 0] ALk,

4 1
+f (X)[EV”V(HALhV)p X VPV |

1 1/ 1
- Ef 08uv EVP V"Ath(,+XVPV(’hp(,]
] 1! 1
= 5700|508y +xThyy | =0, (14)
where
Aphyy = 0Ohyy +V,V,h=2[V(,A,) + R'(”th)p —R7hye]. (15)

The operator A is known as the Lichnerowicz operator.
We are particularly interested in the perturbative be-
havior around maximally symmetric vacua, because the
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linearized equation of motion can be further simplified
using the following properties which any maximally sym-
metric vacuum must obey:

R =ny.
(16)

In such backgrounds, the action of the Lichnerowicz
operator on A, is simplified to

X
R,uvpo’ = nTl[gﬂpgva' _g,ua'gvp]v Rﬂv =X8uv>

2ny

2x
1 ——guwh— — 1huv-

ALty = Ol + 9, 5h =2V Ay +
In the following, two sub—cases with y =0 and x#0
are considered.

3.1 Minkowski background with y =0

The Minkowski spacetime corresponds to the choice
x =0. According to Eq. (13), the Einstein manifold with
x =0 is the exact vacuum solution of f (Ricci) gravity if
and only if f(0) = 0. Therefore, for the Minkowski back-
ground, the linearized equation of motion can be greatly
simplified:

1.,
6Hyy == 1f"(0) | &%y + 1 (0% h = 0 Ap) — 00,0,k

1
~200,Ay) + 20,09 A,)| - 57'0)
X | Oy = M@= Ap) + Budyh = 204,A | (17)

To further analyze the perturbative spectrum of the
model, we consider two different cases, f”(0)=0 and
f7(0) #0. When f”(0) =0, the linearized equation of mo-
tion becomes the same as the linearized standard Einstein
equation (we assume that f’(0) # 0 in this case), which,
after choosing the transverse traceless gauge, describes a
massless spin-2 field. The fluctuation around the
Minkowski vacuum is tachyon-free, and the ghost-free
condition reads f’(0) >0. On the other hand, if we set
f7(0)#0 and choose the gauge fixing condition
A= }laﬂh, the linearized equation of motion becomes

6Hyy = —% £ O] 0@ =m)hyy + (0 - 8,0,) (0 - m3) ]
(18)
where

m? = _2f’(0)’ il = 2(n-2) f(0) '

J(0) n 70
In this case, if f/(0) =0, we have m1 = m2 0, and hence
hy, and h respectively correspond to a massless spin-2
and a massless spin-0 mode after we impose the ghost-
free condition f”’(0)>0. If, however, f’(0)+0, then
either m? or m3 is negative, and the corresponding mode
is exactly what is referred to as the tachyon mode.
Thus, we conclude that for the Minkowski

back-

1) The terminology "ghost" in [7] should be the tachyon.

ground, the ghost-free and tachyon-free condition is
either f’(0)=0 with f(0)>0 , or f”(0)>0 with
/f'(0) = 0. Note that in the special case of the Ricci poly-
nomial gravity [7], we have fixed the coefficient in front
of the first order term in the Lagrangian density to be
unity, which implies f’(0) = 1. Therefore, the latter tachy-
on-free condition f”/(0) # 0 with f/(0) = 0 was not seen in

(71",
3.2 (A)dS background

Maximally symmetric background with y # 0 is either
de Sitter (dS) or anti-de Sitter (AdS). In this subsection
we consider the perturbative spectrum around these two
types of backgrounds.

In the (A)dS background, we can choose the gauge
fixing condition A, = V& , and making use of Eq. (13) to
change all occurrences of f’(y) into multiples of f(y), Eq.
(14) becomes

6Hyy =— — f”(/\()[ A=
n 1 2 o1
+[2(n_ 50 o m]hy
nfo) 1,
* [_1 > Tatt
n+3 .
~ dnm it WgwOh
o, f,,()()]v -
n(n-3) 3 2 o _
+ [ o 0= S oo]gwh =0. (19
We again proceed by considering two choices,
f"0)=0and f"(x)#0.
When f”(y) =0, Eq. (19) can be simplified to
— EMDI’L;‘V
3
+ 5209, 20 b =0
(20)
Taking the trace by contraction with g, we get
=D on=o, @n
i.e. h=0. Thus, Eq. (19) becomes
_ MW, X
oty =10 [ 2 1]hw-o 22)

from which we can say that &, is a massless spin-2 mode
in the (A)dS background if we impose the ghost-free con-
dition {2 > 0,

When f”(y) #0, we can separate Eq. (19) into the
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traceless and trace parts, i.e.
6Hyy = 6HY) +6H') =0, (23)

where

L, 2 2x 7
=L o 25 - 25—

P
with
)
m% =0, m% = _nX;'(:Y(X)’ (25)
and
1., |1 )
SHLY == 21" () [r-lgwu —V,Vy||o+ (;f%{) +4X)] h
Lo, (n-2f0n) 4
R G S I
(26)
Taking the trace of the above equation, we get
SH® = —g xf”0)(@-m)h =0, @7
where
2, (m=2)f(x) 4x
=—_-= 28
"0 n (28)

Now, because h,, and & are essentially independent,
Eq. (23) implies both 6H,(11V) =0 and 6HL2V) =0. It follows
from the first of these two conditions that BW consists of
two traceless spin-2 modes, one of which is massless and
the other is either massive or a tachyon mode. The condi-
tion that Bﬂv does not contain a tachyon mode is m% >0,
or explicitly

ACO NP

XJ" 00
The second condition, 6va) =0, looks more complicated.
According to Eq. (27), the last term in Eq. (26) can be
dropped. Then the remaining terms in Eq. (26) imply that
h is subject to some extra constraints in addition to the

wave-like Eq (27), unless the following condition is satis-
fied,

(29)

2 _
msz =

(n=2f00) 4y _ _( nf(x)
Xm0

in which case Eq. (26) can be rewritten in a completely
factorized form, i.e.

+ 4/\() , 30)

(o-m3)n. (31)

1 1
2 77
6H/(1v) = _Zf (X) [Eguvl:‘ - V(/1Vv) +X8uv

Eq. (30) can be simplified into
oo 2
100 n’
Now, since the condition that 4 does not correspond to a
scalar tachyon is

(32)

(n=-2)f() 4
xf" () n

2
my = >0,

which gives

_nn=2)_f0)
4 xfw’

we have from Eq. (29) that y <0 and
J)
00
FO)
1700
clude that for f”’(y) # 0, the model cannot be tachyon-free
around maximally symmetric Einstein vacua with y # 0.

In other words, f (Ricci) gravity can only be ghost-free
and tachyon-free around maximally symmetric Einstein

vacua when f”(y) =0 and f0 > 0. Let us recall that the

condition f”’(y) =0 is identical to the tachyon-free condi-
tion presented in [7] for the special case of the Ricci poly-
nomial gravity.

(33)

> 0. (34)

However, Eq. (32) requires < 0. Therefore, we con-

4 Black hole entropy

It is clear from Sec. 2 that provided the condition (13)
is satisfied, an Einstein manifold obeying Eq. (12) is a va-
cuum solution of our model. In this section, we are partic-
ularly interested in the spherically symmetric black hole
solutions and concentrate on the calculation of black hole
entropy for such solutions. Unlike the standard GR, the
commonly acknowledged form of the black hole entropy
associated with higher curvature gravity is not the Beken-
stein-Hawking entropy, but rather the Wald geometric en-
tropy. We will show that the Wald entropy is identical to
the holographic entropy calculated using the MP ap-
proach.

For any higher curvature gravity with bulk action

Ibulk = fdnx \/EL(g/_leyvprr)’

the Wald entropy associated with a spherically symmet-
ric black hole solution of the form (here we take a co-
ordinate system x* = (x0,x',--- 2" = (t,r, x%,--- X" 1))
~ 1 S
ds* = —=f(Nd* + =—dr* + P Q;;dx'dx’,  (i,j=2,---,n—1)
f(r)
(35)

can be evaluated via the following formula:

S Wald = _27den72x VE(n-2) SR o
By

€aB€ys, (36)

where Q;; is the metric on a (n-2)-dimensional unit
sphere and gg-2) = Idet(r,fQ,»j)l, where r;, is the radius of
the black hole event horizon, and €, is given via
€1 = —€1p = 1. Note that the integration in the above for-
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mula is over the compact spacial section of the horizon
hypersurface, a sphere with radius ry,.

1
In our case, L = T6rG f(Ruy. 8uv). Therefore, the Wald
7T
entropy (36) becomes

1 _
S Wald =— 3G d"%x Vg2

€EqBEyS
6Ra/ﬁy6 >

1 OR Eo
= — [ gn2 o fP g T e es. (37
G xXV8n-—2 /"8 (5Raﬁy56 pEys-  (37)
Using the identity [25]
6Ralblcldl 1 b ccd 1 ¢ odb 1 d c¢bc
SRuped = E(ég.blécld, - §5Z.b15cld, - 552.1;1 ad,
1 1

05t 0, = 500, 01 = 5006, 014 )
and the explicit form of €,3, we can reduce the expres-
sion for the Wald entropy into the final result

A / !
S wald = %( o+ f i)r—m,’ (39%)
where
A= [ vgie, (39)

is the area of the event horizon. It is trivial to verify that
for the standard GR, the above result reduces to the Bek-
enstein-Hawking entropy S = i

Let us now consider the black hole entropy from a
holographic point of view. There are several methods to
pursue the holographic calculation of black hole entropy.
The earliest attempt was made by Brown and Henneaux
[12], who successfully calculated the asymptotic Viras-
oro symmetry for three dimensional AdS spacetime by
assuming some mild boundary conditions. Their work
was further extended by Strominger [13, 14] and Carlip
[15, 16] to the case of black hole spacetimes, and using
the Cardy formula [17], they were able to calculate the
entropy of various black holes. In this approach, the bulk
action must be used. Alternatively, the MP approach
makes use only of the boundary action, and the process of
obtaining the black hole entropy is much simpler. There-
fore, we adopt the MP approach in the following calcula-
tion.

The MP approach is applicable to any metric-based
geometric theory of gravity. The key ingredient in this
approach is the boundary Noether charge associated with
the asymptotic diffeomorphism x* — x* + &(x), where the
spacetime boundary dM is taken to be the near-horizon
hypersurface. For the generic boundary action of the form
(7), the boundary Noether charge can be evaluated via

01 =5 f VhdE,, I, (40)

where

dz,, = d”_zx(n},my —myh,)

is the area element of the constant-time slice ¥ of the
near-horizon hypersurface dM, n, and m, are respect-
ively the unit outer-pointing spacelike normal covector
and the unit future pointing timelike normal covector of
¥, h is the determinant of the induced metric on ¥ (which
reduces to g(,—2) described above in the near-horizon lim-
it), and

1
P8 =156

is known as the Noether potential [8—11]. Note that n,, is
identical to the unit normal covector that appeared in the
boundary action. In the following, we take the boundary
Lagrangian density (8) as the working example, and leave
it to the reader to check that the alternative boundary
Lagrangian density (10) works equally well.

Using the local Rindler coordinate p = r —ry,, the met-
ric (35) can be rewritten as

Lplen” - &'n] (41)

N 1 -
ds? = —f(r, + p)d* + 7 dp? +r2Qdx‘dx/.  (42)

(rn+p)
In this spacetime, the unit normal vectors of the black
hole event horizon can be chosen as

n =(0, \JF),0,- ,0),
1

7o

and the generator & of the boundary diffeomorphism is

mt = ,0,0,---,0/, (43)

g=T-—L 5T, &=-porT, (44)
fru+p)
where T = T(t,p) is an arbitrary function. We can expand
T in terms of a set of basis functions

T = Zame, (45)

where the basis functions T,, satisfy the Diff(S') algebra.
A standard choice is

T, = é exp [im(at+ g(p) + p- x)], (46)

where « is a constant, p is an integer, and g(p) is a regu-
lar function on the horizon. Clearly, we must have
a;, = a_y in order to make 7 real.

With the above prescription, the boundary Noether
charge can be expressed as

1 n—. 2 7 1
0l¢]= @f‘d 2x V8(n-2) [ft+f§] |p—>O(KT_§61‘T)

(47)

in the near horizon limit p — 0. The commutator between
the two charges is then given by
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1 - ’ ’
162G fdn 2-x \/g(n—Z) [f ;+f ‘LP)] |p—>0

1
X [K(T] ath — T2(9,T1 ) - 5 (T] 6t2T2 - TQO,ZT])

[Q[&11, 01&:1] =

1
o (6,7167T —0,T20,2T1)],

(48)
A .
where « = > Denoting by Q,, the mode correspond-
ing to T,,, we have
1 1t 1P KA
O = 1= [ £+ I3]0 Omo- (49)
. .4 C
[Om, Onl = —1(m—n) Q)4 —1m E6m+n,0, (50)
where 4 is given in Eq. (39), and
_ 3 1t 10 aA
C= g 1 1)l 50) 6D

Note that the commutator (50) is actually the famous Vi-
rasoro algebra with the generator Q, shifted by a con-
stant, where the central charge C is given by Eq. (51).
This observation implies that the well-known Cardy for-
mula is applicable in the present case. Finally, using the
Cardy formula, the entropy of the black hole is evaluated

to be
CQO A ’ /
S=27T1/—6 =%[f§+fﬁ]|p_)0. (52)

This result is in exact agreement with the Wald entropy
(39).

Before concluding, it may be interesting to make a
comparison between the black hole entropy for f (Ricci)
gravity and f(R) gravity for the same f(x) and the same
black hole metric. To be more specific, we consider the
Tangherlini-(A)dS black hole solution

oM 2 oM 2\
d? =—[1- 22 X g2 (1= 22 X ) 42
3 n-1 3 n-1

+2Q; jdxidx-/ ,
(53)
which obviously obeys (12). For this solution, the corres-

ponding entropy in f (Ricci) gravity, i.e. Eq. (38) or (52),
reduces to

A,
S fRicei) = Ef ). (54)

In comparison, the same black hole solution in f(R) grav-
ity has the entropy [11]

A A
Srw) = Ef’(R) = Ef’(n/\/l (55)

5 Conclusions

f (Ricci) gravity is an extension of the Ricci polyno-
mial gravity proposed in [7]. Besides similar results as in
[7], we actually obtain several results beyond the Ricci
polynomial gravity. First, our analysis of the Einstein
metric solutions, perturbative modes and surface terms
are so generic that they allow to study more complicated
models such as f(x) =e*, which can not be written as a
polynomial function, and to study the total effects
brought by the infinite higher curvature terms. Second,
we distinguish manifestly in this paper between the two
similar but different physical concepts, "tachyon" and
"ghost", while the "ghost-free" conditions in [7] are in
fact "tachyon-free" conditions. Third, we find all tachy-
on-free and ghost-free conditions for the perturbative
modes in (A)dS space, some of which were not found in
[7], and the present results look more compact and eleg-
ant. Finally, beyond the perturbative regime, we calcu-
lated the entropy of spherically symmetric black hole
solutions using the Wald entropy formula and the MP ap-
proach, and the results are in good agreement. A similar
analysis was performed for the BTZ black hole solutions
for £ (Ricci) gravity in three-dimensions [26]. We expect
that £ (Ricci) gravity may become a competitive gravita-
tional model in future studies.

We would like to thank Bin Wu for helpful discus-
sions and also Wenli Yang and Zhanying Yang for hospit-
ality at the Institute of Modern Physics, Northwest Uni-
versity during the completion of this work.
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