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Abstract: The dependence of implications from observations on cosmological models is an intractable problem not

only in cosmology, but also in astrophysics. Gaussian processes (GPs), a powerful nonlinear interpolating tool

without assuming a model or parametrization, have been widely used to directly reconstruct functions from observa-

tional data (e.g., expansion rate and distance measurements) for cosmography. However, the fidelity of this recon-

structing method has never been checked. In this study, we test the fidelity of GPs for cosmography by mocking ob-

servational data sets comprising different number of events with various uncertainty levels. These factors are of great

importance for the fidelity of reconstruction. That is, for the expansion rate measurements, GPs are valid for recon-

structing the functions of the Hubble parameter versus redshift when the number of observed events is as many as

256 and the uncertainty of the data is ~ 3%. Moreover, the distance-redshift relation reconstructed from the observa-

tions of the upcoming Dark Energy Survey type Ia supernovae is credible.
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1 Introduction

Cosmic accelerating expansion is a-major discovery.
Numerous dynamical mechanisms have been proposed to
explain this phenomenon; however, its nature is not un-
derstood yet. There are many theories that attempt to ac-
count for the accelerating expansion of the universe, such
as modified gravity, dark energy, orthe violation of cos-
mological principle. Modified gravity theories do not
need any exotic energy-momentum components except
the modifications of the general relativity to explain the
cosmic acceleration. The expansion of the universe can
be quantitatively studied with a variety of cosmological
observations. In this field, directly obtaining implications
from observational data, without introducing any hypo-
thesis, for the composition of the universe or prior theory
of gravity is an important issue.

Gaussian processes (GPs), which are fully Bayesian
and describe a distribution over functions, can recon-
struct a function from observational data without assum-
ing any parametrization. This algorithm was first pro-
posed to reconstruct dark energy and expansion dynam-
ics [1] and was implemented with a package in Python
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(GaPP3): Gaussian processes in Python). Later, it was
widely used in the literature for cosmography, such as re-
constructions of the dark energy equation of state [2-6],
expansion history [7-11], cosmic growth and matter per-
turbations [12-17], tests of the distance duality relation
[18-24], cosmic curvature [25-33], tests of the speed of
light [34-36], interactions between dark sectors [37, 38],
and Hubble constant from cosmic chronometers [39-42].
In these works, by using GaPP, functions of the Hubble
parameter with respect to the redshift and the distance-
redshift relation were frequently reconstructed from the
expansion rate measurements and type la supernovae
(SNe Ia) observations, respectively. Moreover, derivat-
ives and integrals of these reconstructed functions are fur-
ther obtained for other implications, such as dark energy
evolution, cosmic curvature, and tests for the speed of
light. However, the fidelity of GaPP when used for
smoothing currently available discrete expansion rate
measurements and distance observations has not been
verified yet.

In this study, we test the fidelity of GaPP for cosmo-
graphy by simulating upcoming expansion rate measure-
ments and distance observations with different number of
events and uncertainty levels. It is suggested that both
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factors, sample size and uncertainty level, are crucial to
the reliability of GaPP reconstruction. That is, for expan-
sion rate measurements, GaPP reconstruction is valid
when ~256 data points with average relative 3% uncer-
tainty level are obtained. Moreover, the distance-redshift
relation, reconstructed using GaPP, is credible when the
near-future Dark Energy Survey (DES) SNe Ia is con-
sidered.

The remainder of this paper is organized as follows.
We first briefly introduce GP in Section 2. Next, we de-
scribe the method for simulating the data of the Hubble
parameter versus redshift, H(z), and SNe la from the DES
in Section 3. Moreover, we use GP to process mock data
sets and results are also presented in Section 3. Finally, in
Section 4, we discuss obtained results and provide some
conclusions.

2 Gaussian processes

For a given set of Gaussian distributed observations
{(xi,y)li = 1,2,...,n} with X being the locations of observa-
tions, i.e. {x;}’_,, we want to reconstruct the most prob-
able underlying continuous function which describes the
data at the test input points X*. GP, which makes it pos-
sible to achieve this goal, is a distribution over functions
and thus, is a generalization of a Gaussian distribution.
For a function f formed from a GP, the value of fat x is a
Gaussian random variable with mean and variance being
u(x) and Var(x), respectively. Moreover, the value of fat x
is not independent of the value at some other points X, but
is related by a covariance function,

cov(f(x), f(X)) = k(x, %) = E[(f(x) — () (f () = u(X))]. (1)

In this case, GP is defined by the mean u(x) and covari-
ance k(x, X),

F(x0) ~ GPp(x), k(x, %)]. 2
For each x;, the value of f, i.e., f(x;), is derived from a
Gaussian distribution with mean u(x;) and variance
k(x;, x;). In addition, f(x;) correlates with f(x;) via the co-
variance function k(x;,x;).

Choosing a suitable covariance function is essential
for satisfactory reconstruction. It is common to select a
squared exponential function for the covariance function,

(=0’

|
where oy is the hyperparameter that describes the typical
change in y direction, ¢ is another hyperparameter that
characterizes the length scale and can be considered as
the distance moving in input space before the function
value changes significantly. These two hyperparameters,
in contrast to the actual parameters, do not specify the ex-
act formula of a function, but represent typical changes in
the function value. This function has the advantage that it

k(x,X) = o-f, exp [— (3)

is infinitely differentiable and therefore, is useful for re-
constructing the derivative of a smoothed function.

For Xx*, the covariance matrix is given by
[K(X*, X")];j = k(x;f‘,x;f). Then the vector f* with entries
f(x}) can be obtained from a Gaussian distribution:

ST~ NuX™), K(X", X). “4)
This distribution can be considered as a prior of f*, and
observational information is necessary to obtain the pos-
terior distribution. For uncorrelated observational data, its
covariance matrix C is diagonal with entries o;. Then the
combined distribution for observations y and f* is given
by

[ y ] ~N([ U } [ KX, X)+C KX, X% ) 5)

fr g KX X)) K(XSXY) )

Here, we are interested in the conditional distribution,
fIX* X,y ~N(f .cov(f)), (6)

because the values of y are already known, and we want
to reconstruct f*. Moreover,

f = +K(X" X)KX. X)+Cl™ (y-p) (7)
and
cov(f*) = KX", X") - K(X", X)[K(X,X) + C]'K(X.X"),
(8)

are the mean and covariance of f*, respectively. Before
using Eq. (6), to obtain the posterior distribution of the
function for the given data and prior (Eq. (4)), we have to
obtain the values of the hyperparameters o and ¢, which
can be trained by maximizing the following marginal
likelihood:

InL =Inp(y|X,o¢,0)
1
== 30w IKE.X)+CT (-1
_%1n|K(X,X)+CI—gln27r. )

This likelihood is only dependent on the observational
data {(x;,y)li=1,2,...,n} but free of the locations Xx*
where the function is to be reconstructed. Refer to Ref.
[1] for a more detailed analysis and description of the GP.
GaPP (GP in Python) is a popular package in Python to
reconstruct a function from observational data.

3 Methods and results

In this work, we simulated data sets to test the fidel-
ity of GaPP because the assumed fiducial model for simu-
lations is known. To generate simulated H(z) data sets,
three issues must be addressed: i) the number of future
data points; ii) redshift distribution of observed events in
the near future; iii) possible uncertainty levels of upcom-
ing observations. We individually expound these three as-
pects in detail in the following analysis.
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3.1 Simulated data sets and GaPP reconstructions

For the number of events in simulations, we consider
the cases with 64, 128, and 256 data points. These num-
bers are chosen because the constraining power of 64
H(z) measurements with the same quality as today is
comparable with that of current SNe Ia [43]. For red-
shifts of observed events in the near future, we assume
that they will trace the distribution of redshifts of cur-
rently available H(z) measurements compiled in [26]. The
histogram of the number of observed expansion rates is
plotted in Fig. 1. We fit the histogram with a gamma dis-
tribution, and the result is denoted by a solid red line in
this plot. For possible uncertainty levels, we first assume
that future data will provide measurements with the same
errors as the existing observations. In this case, we up-
date the approach in [43] to predict future data based on
recent measurements. The general trend of errors increas-
ing with redshift z appears as we show uncertainties on
H(z) in Fig. 2. Moreover, we observe that, besides two
outliers at z = 0.48 and z = 0.88, uncertainties o(z) are
confined in the region between the lines o, =20.50z+10.17
and o_ = 8.292z—0.53. It is expected that the mean uncer-
tainty of future observations follows the meanline of the
strip o9 = 14.71z+4.82. Then we draw a random variable
(z) from the Gaussian distribution N(o(z),£(z)) as the
error of the simulated point. Here, the parameter
&(z) = (0. —o0_)/4 is set to assure thatthe error 6(z) falls
in the region with a 95.4% probability. In'addition to the
current quality, we also consider some other smaller er-
rors for simulated H(z) data sets of relative 10%, 5%, and
3% levels [44]. In their analysis, it was found that, for ex-
tended scenarios of star formation history, H(z) can be re-
covered to 3% by selecting galaxies from the Millennium
simulation and using rest-frame criteria, which signific-
antly improves the homogeneity of the sample.

After addressing the aforementioned three issues, we
can generate a simulated H(z) point in a given fiducial
model. First, the fiducial value Hjq(z) is obtained from
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Fig. 1.  (color online) Histogram of 28 currently available
measurements of expansion rate with respect to redshift,
H(z). The solid red curve is plotted assuming a gamma dis-
tribution to match the number of observational events.
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Fig. 2. (color online) Uncertainties of 28 currently meas-
ured H(z). Solid dots and empty circles are nonoutliers and
outliers, respectively. Bounds o, and o_ are plotted as red
dashed lines. The mean uncertainty o is shown as the black
solid line.

the spatially flat ACDM model

Hia(z) = Ho VQu(1+2)3 +1-Q,, (10)

with Hy = 67.74 and Q,, = 0.31 [45]. Next, a random num-
ber satisfying the Gaussian distribution N(o(z),&(z)) is
drawn as the uncertainty 6(z). This quantity is also used
to obtain the deviation of the simulated data point from
the fiducial one, AH = Hqim(2) — Hsd(z), which is subject to
the Gaussian distribution N(0,5(z)). Finally, a mock data
point Hgm(z) = Hyq(z) + AH is generated, with its corres-
ponding uncertainty &(z).

Simulated data sets including 64, 128, and 256 points
with various levels of uncertainty are shown in Figs. 3-5.
Moreover, we use the GaPP to reconstruct the functions
of the Hubble parameter vs. redshift. The results (shaded
red regions) are presented in the corresponding figures. In
addition to these simulations and reconstructions for ex-
pansion rate measurements, we also mock distance data
set of SNe Ia based on the upcoming DES [46]. The sim-
ulated data and reconstructed distance-redshift relation
are shown in Fig. 6.

3.2 Residuals

To test the fidelity of the GaPP, we appeal to the re-
sidual of the fiducial model on which simulations are
based and the function reconstructed from the corres-
ponding mock data to characterize the deviation between
them. Results related to this quantity for both simulations
of expansion rate measurements and distance observa-
tions are presented in Figs. 7-9. In our analysis, it is al-
most certain that the GaPP is less invalid as differences of
the reconstructed function from the true model deviate
significantly from the horizontal line (Residual = 0). For
the Hubble parameter vs. redshift, as suggested in these
plots, the validity of the GaPP increases with an increase
in the number of simulated data points. On the contrary,
the uncertainty level of mock data is also crucial for the
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Fig. 3. (color online) Simulated 64 events of expansion rates with different uncertainty levels and the functions of Hubble parameter
vs. redshift (shaded red regions) reconstructed from the mock data with the GaPP.
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Fig. 4. (color online) Simulated 128 events of expansion rates with different uncertainty levels and the functions of Hubble parameter
vs. redshift (shaded red regions) reconstructed from the mock data with the GaPP.
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(color online) Simulated 256 events of expansion rates with different uncertainty levels and the functions of Hubble parameter

vs. redshift (shaded red regions) reconstructed from the mock data with the GaPP.
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Fig. 6. (color online) Simulated ~4000 distance estimations
from the upcoming DES SNe Ia observations and the dis-
tance-redshift relation (shaded red region) reconstructed
from the mock data with the GaPP.

fidelity of reconstruction. That is, the GaPP is more valid
for reconstructing data with smaller relative uncertainties.
In particular, as indicated from the upper-left panel of
Fig. 7 for the mock data including 64 points with the cur-
rent quality, the GaPP reconstruction significantly devi-
ates from the fiducial model. For the case of 128 points
with 3% relative uncertainty (the lower-right panel of Fig.
8), the reconstructed function is in good agreement with
the fiducial model. Moreover, from the lower-right panel
of Fig. 9, we find that the GaPP reconstruction is per-
fectly consistent with the fiducial scenario at 1o~ confid-
ence level when the dataset containing 256 events with a

relative 3% uncertainty is considered. For ~4000 forth-
coming distance estimations of DES SNe Ia, except for
the range z<0.2, the reconstructed distance-relation is
very close to the one in the fiducial model (as shown in
Fig. 10). This is because, according to the DES program,
there are only a small amount of SNe Ia to be observed in
the redshift range z<0.2.

4 Conclusions

In this work, we use the simulated Hubble parameter
and distance vs. redshift data sets to test the fidelity of the
GaPP for cosmography. For mock H(z) measurements,
we consider data sets including different number of
points (64, 128, and 256) with various uncertainty levels
(current quality, 10%, 5%, and 3%). As expected, using
the residual between the fiducial model for generating
mock data and the reconstructed function from it with the
GaPP to characterize the fidelity, we find that both the
sample size and precision are crucial for the reliability of
the GaPP when it is used for reconstructing the function
of the Hubble parameter with respect to the redshift from
the simulated H(z) data. On one hand, for the data set
containing 64 points with the same uncertainty as today,
significant deviation between the reconstructed function
and the fiducial model suggests that the GaPP might be
unreliable to smoothen currently available H(z) measure-
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Fig. 7. (color online) Residuals between the reconstructed functions of Hubble parameter with respect to redshift and the fiducial
model when samples including 64 simulated events with various uncertainty levels are considered.
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Fig. 8. (color online) Residuals between the reconstructed functions of Hubble parameter with respect to redshift and the fiducial
model when samples including 128 simulated events with various uncertainty levels are considered.
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(color online) Residuals between the reconstructed functions of Hubble parameter with respect to redshift and the fiducial

model when samples including 256 simulated events with various uncertainty levels are considered.
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Fig. 10.  (color online) Residual between the reconstructed
functions of distance with respect to redshift and the fidu-
cial model when the upcoming DES SN Ia including ~4000
simulated events is considered.

ments for cosmography. On the other hand, the recon-
structed function with the GaPP is extremely consistent
with the fiducial model when the data set containing 256
points with a relative 3% uncertainty is considered. It im-
plies that the GaPP reconstruction of H(z) data for cosmo-
graphy is reliable at a very high confidence level. For
simulated data of distances, we consider distance estima-
tions of SNe Ia on the basis of DES and obtain that, ex-
cept for the range z<0.2, there is no obvious deviation of
the reconstructed distance-redshift relation from the one
in the fiducial model. That is, the GaPP is almost valid
for reconstructing the function of distance vs. redshift
from DES SNe Ia observations.
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