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Fermion scattering by a class of Bardeen black holes”
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Abstract: In this study, the scattering of fermions by a class of Bardeen black holes is investigated. After obtaining

the scattering modes by solving the Dirac equation in this geometry, we use the partial wave method to derive an ana-

lytical expression for the phase shifts that enter into the definitions of partial amplitudes that define the scattering

cross sections and induced polarization. It is shown that, similar to Schwarzschild and Reissner-Nordstrom black

holes, the phenomena of glory and spiral scattering are present.
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1 Introduction

The existence of black holes is theoretically well mo-
tivated in general relativity (GR) and other modified the-
ories of gravity. Thus far, black holes have not been dir-
ectly detected or observed. However, plenty of indirect
evidence indicate that such objects exist in nature. As
shown by Penrose and Hawking [1], the occurrence of
singularities is inevitable in GR. This raises many issues
such as the black hole information paradox [2-4] or the
more recently discovered paradox. of black hole's "fire-
walls" [5-9]. These paradoxes emerge because of the in-
compatibility between the quantum theory and GR. It is
widely believed that in the quantum theory of gravity, the
singularities contained in black holes will be removed.
However, even in the early stages of the investigations on
singularities [10, 11] in GR, several black hole models,
which could avoid the occurrence of a singularity, have
been proposed. These black holes are called "regular," be-
cause they are singularity-free.

The first proposal of a regular black hole solution was
made by Bardeen in Ref. [12], and since then many other
models of spherically symmetric regular black holes have
been presented in literature [13-21]. In Ref. [22] the au-
thors showed that the Bardeen black hole model can be
physically interpreted as the gravitational field produced
by a nonlinear magnetic monopole. Later, this interpreta-
tion was extended to also include nonlinear electric
charges so that regular black holes models can have a
nonlinear electromagnetic field as a source. More re-
cently, in Ref. [23] the authors extended the Bardeen
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solution to an entire class of Bardeen-like black holes that
can or cannot be regular.

In this study, the scattering of fermions (spin 1/2) by a
Bardeen regular black hole and by a Bardeen-class of
black holes (as constructed in [23]) is investigated. We
use the partial wave method to obtain analytical expres-
sions for the phase shifts that enter into the definition of
partial amplitudes, defining the scattering cross sections
and the induced polarization. To the best of our know-
ledge, this is the first study that reports analytical phase
shifts for 1/2-spin wave scattering by regular black holes.
The absorption of fermions by Bardeen black holes was
numerically investigated in [24], while in Refs. [25-28],
the case of massless scalar scattering by regular black
holes was also treated numerically. Studies dedicated to
fermion scattering by other types of spherically symmet-
ric black holes can be found as examples in Refs. [29-43].

Both Bardeen regular black holes and the Bardeen-
class type of black holes possess nonlinear magnetic
(monopole) charges [22, 23]. This implies the existence
of an electromagnetic potential of the form A = Q,, cos6d¢,
with Q,, the total magnetic charge. In this work, we neg-
lect the interaction between this potential and the charge
of the fermion and only focus on the scattering due to the
"pure" gravitational interaction between the fermion and
the black hole. However, even in this approximation, the
black hole magnetic monopole charge will still influence
the scattering patterns through the presence of Q,, into the
metric function and into the resulting scattering modes of
the radial Dirac equation.

The remainder of the paper is structured as follows. In
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Section 2, the Bardeen-class of black holes is presented
very briefly. Section 3 begins with a very short review of
the Dirac equation in spherically symmetric black hole
geometries, and then it discusses the search for scattering
modes in the Bardeen spacetime. Finally, the main result
of the paper is presented, namely the form of the analytic-
al phase shifts resultant from applying the partial wave
method on the scattering modes derived earlier. Section 4
presents a graphical analysis of the induced polarization
and the scattering cross sections in which the presence of
a backward "glory" and "spiral scattering" (orbiting) os-
cillations are shown to be present. The main conclusions
and some final remarks are presented in Section 5.

2 A class of Bardeen-like black holes

In Ref. [23], a class of spherically symmetric and
asymptotically flat Bardenn-like black holes depending
on two-parameters was constructed with the following
line element

d 2
ds® =h(r)de* - Frr) ~ 2 (d6” +sin” 6dg?).,
2M;  2MP RS
TN
These black holes have a singularity if the parameter Mj,
hereinafter, referred to as the "Schwarzschild mass," has a
nonzero value. Otherwise, if M, =0, regular black holes
are obtained and the Bardeen black hole corresponds to
the particular choice M, =0 and y = 3. The term M can be
interpreted as the mass of the nonlinear magnetic mono-
pole. Moreover, the sum

Mapm =M+ M 2

constitutes the ADM mass of the black hole obtained
from the asymptotic form of the metric function A(»). The
parameter Q in Eq. (1) is related to the magnetic mono-
pole charge Q,,; Q0 =20% /M.

As shown in Ref. [23], the Lagrangian density, for
which Eq. (1) is a solution of the coupled Einstein-Max-
well filed equations, is given by

~ 4,)/ (a,FﬂVFyV)SM

T @ (1+ \JaF, Fo)lo

where a has the dimensions of length squared, and y is a
dimensionless constant. In the weak field limit, a vector
field, which is slightly stronger when compared with a
Maxwell field, is obtained.

h(r) =1 -

(€)

3 Dirac fermions and scattering cross sections

3.1 Dirac equation. Preliminaries

The Dirac equation:

iy Doty —my =0 “4
The following explicit form can be obtained from the Dir-
ac equation [44]

. a 1 B 1, .
(17 e’;ﬁﬂ—m)w+%\/—__g8ﬂ( V-géy)y lﬂ—z{y ,Sf.}wabgb :(;)),

where g = det(g,,) and the covariant derivative is defined
by D, =9, + %S”w"

Jws,. S = %[y“,yb ] the generators of the
SL(2,C) group, y“ are the point-independent Dirac
matrices obeying {y“,y"} = 2n and ¢, is a spin-connec-
tion

co_ v(scTA ~C
Wgh = €aey (e/lrﬂv - ev,ﬂ) (6)

l"ﬁv represents the usual Christoffel symbols. The tetrad
fields e,(x) and &“(x) are point-dependent defining (non-
holonomic) local frames and co-frames. The following
relations hold:

ea= iy, & = edn

ea(x)ep(x) = Nap, &*(x)e°(x) = 7
ds? = napidrteldx” = g, (x)dadx’. (7)

The so-called Cartesian gauge [44-46] for a spheric-
ally symmetric line element of the form of Eq. (1) is
defined by the following tetrad fields:

¢ = Vhdr

1
el = 7 sinfcos ¢dr + rcos @ cos ¢df — rsin G sin pde
h

1
e = 7 sin@sin¢dr + rcos 6sin ¢pd6 + rsin & cos ¢pdgp
h

1
A3 .
e’ = —cosfdr—rsinfdé, ®)
vh

The Dirac equation (5) can be reduced to only a radial
equation. The angular part of the Dirac equation is the
same as in the Dirac theory from flat spacetime, and its
solutions are the usual four-component angular spinors
@;, (6,¢) [47, 48]. This is because, in the Cartesian gauge
(8), the Dirac equation is manifestly covariant under rota-
tions [46]. Using this gauge, it was possible to find com-
plete analytical solutions to the Dirac equation on de Sit-
ter/anti-de Sitter spacetime [49-52] and approximate ana-
lytical solutions in black hole geometries [31-33, 53, 54],
which were later used to study different aspects of the
scattering problem in those spacetimes [31-33, 55-58].

The remaining unsolved radial part of the Dirac equa-
tion was obtained by assuming the following type of
particle-like solutions with a given energy £

W(x) :wE,j,m,K(ta r,0,9)
—iEt
([ (DD}, 0.0) + [, (ND,,,0.0))  (9)

e
" rh(r)V/4

where f; (r) are two unknown radial wave functions. As
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in Refs. [31, 53] the radial Dirac equation can be ex-
pressed in a matrix form

m VR —h(r)% += )
d «
h(r)a + P Vh(r) —m\h(r)
Fr [ S )
X( G ) } E( feur) ) 10

3.2 Scattering modes

Substituting the line element (1) in Eq. (10), we ob-
tain a system of two differential equations that has no
analytical solutions owing to the complex form of the line
element. However, because we are only interested in
finding the scattering modes, we can approximate Eq.
(10) in the asymptotic region of the Bardeen black hole
specified by the line element in Eq. (1) and find approx-
imative analytical solutions. A partial wave method was
used on the obtained solutions to compute the (elastic)

1 0 1d K
—,/1——{...}——+—
1+x2 (1+x2)? 2 dx Ja+x2)2-6

1d K

1—|-1x2 \/1_ a +6x2)2 { }

1 Voo

scattering cross section and the induced polarization that
results after the interaction of a fermion beam with the
black hole.

Let us start by introducing the new variable
X = i—l, 7= r2+ 02,
ry

where r, is the radius of the black hole horizon. The func-
tion A(r), in terms of X, is

(11)

y-1

g 2M, ] oM 1 s 1"
B re A+l oe e 1+a? (1+x2)?

(12)
where the notation ¢ = (Q/r,)*> was introduced. The radi-
al Dirac equation (10) is a system of two differential
equations for the radial wave functions f*(x) that, after
multiplying each equation by x/[r.(1+x?)] and express-
ing all'the terms as a function of x given by Eq. (11), is
equivalent to Eq. (13)

Je () =0

o [ =[f o} e+
oY Jo-ful f ~efs1)

y-1

Je ) =0

(1+x3)? 2M,
where { } -—

The system of differential equations obtained in Eq. (13)
cannot directly be solved analytically. However, an ana-
lytical solution can be obtained if a domain is restricted
far away from the black hole event horizon. A simpler
system of differential equations that has analytical solu-
tions can be obtained. By Taylor expansion with respect
to 1/x and discarding the terms of the order O(1/x?) and
higher, the system of equations, which is valid in the
asymptotic region of the black hole for the two radial
wave function, reduces to

1d
2dx

32

+ g)fg,m — e+ ) f, ()

1] M |

- e+u(1—ﬂ) fr0)=0
x| re )7

1d «\ _ .

(5 o ;)fE,K(x) +x(e— ) f (%)

1] M |

+- e—u(l —ﬂ) frdx) =0, (14)
x| re )T

We observe that if M — 0 then the ratio Mapwm N % = %
ry g

M apm

ry

1 . .
and u(l— )—> S recovering the Schwarzschild

(1+x%)? 2M 1+ x° 0 ] £ (13)
- - , =rim, € =r L.
e A+ x2)2—6 I+ X (1+x%)? H=T "

[
case discussed in Ref. [53].

To find the scattering modes for the case € > y, it is
useful to introduce new radial wave functions f*, present
in the following combination of the old wave functions

f*

Foood Tiw 1 Jex
Ex=o \Jexpu 2 +e-n
.\ i IE 1 fz
JEx= - - (15)

- += .

2 \e¥p 2+e—u
Using the above relation we can obtain the following
equations, which are satisfied by the functions ng and

Jei
d M A
[vx— + Zi(p2 (1 - ﬂ) -t - vzxz)] Tre
dx . ’
M A
—(2Kv—ie,u ADM)fE_K=0
r+ 7
d M A
[vx— - 21'(;12 (1 - ﬂ) -~ v2x2)} Ny
dx Iy ’
M A
- (2KV+ ieu ADM) fr =0, (16)
r+ ’
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where v= +/e2—u?. Eq. (16) can now be solved using
Maple or Mathematica and the analytical solutions can be
written as a combination of Whittaker functions

A 1 1
TEx=C1 Mo @+ C2 Wy (@)

A 1
Jex=5 5

: v L
a2 (s—ia)(k+i1)Cy )_ch”s(Z)

_(K+i/l)C2)lCWp,s(z)}, a7

where z = 2ivx® and the following parameters were intro-
duced

2 3
M M
s = K2+,u2(1— ADM) -, A= L. A
ry v ry
1 1 M
p: =F = —ia, az—[ez—uz(l—ﬁ)}. (18)
2 % ry

3.2.1 Pure Bardeen black hole case

As already mentioned, by choosing M; =0 and y =3
in Eq. (1) the original Bardeen black hole solution is re-
covered. This solution is a black hole with two distinct
horizons only if |Q| < 4/ V27, it has degenerate horisons if
Q0=4/V27 and for Q>4/V27 there are no horizons
present. Because the function A(7) has now a more sim-
pler form,

2M7?
V0P
one can find and write an analytical expression for the
location of the black hole outer horizon, denoted from
now on by r,. Moreover, one caneasily show that
ry = Mf(Q/M), where the function f depends only on
the ratio O/M. The existence of horizons implies the con-
straint |Q|/M < 4/+/27 [14].

Following the same steps as in section 3.2, one finds
the same scattering modes as given by Eq. (17), but with
the new parameters

h(r)=1- (19)

2 H
M ’ M
S:K2+/J2(1——) A I P it
Iy Vo
1 1 M
P =F = —ia, az—[ez—,uz(l——)]. (20)
2 % ry

We will see in section 4 that this is enough to produce a
noticeable difference in the scattering patterns.

3.3 Analytical phase shifts and scattering cross sections

In spinor wave scattering theory [48, 59] the differen-
tial scattering cross section for an unpolarized incident
beam is the sum of the squares of two scalar functions

do 5 5
T} =|f@OI +1g@)I, (21)

which only depend on the scattering angle 6:

OEDY % [+ D = 1) + 1 - 1)
=0 P
P?(cos 0),

HOEDY ﬁ |67 — %] P} (cos), (22)
=1

where p is the incident momentum, and
P)(cos), Pj(cost) are the Legendre and associated Le-
gendre polynomials, which are special cases of Legendre
functions, respectively [60].

The phase shifts §; can be computed as in Refs. [31,
32] by applying the partial wave method on the scatter-
ing modes (17). The asymptotic form of the radial wave
functions /= can be written as [31]

L .

( ;Z_ )oc “_gjzzg‘; (pr—%l+5,<+z9(r) (23)
where, 9(r) = —pr. + aIn[2p(r—r,)] represents a radially
dependent phase that is independent of any angular
quantum numbers; therefore, it does not contribute to the
scattering cross sections and may be neglected as in the
Dirac-Coulomb case [30, 48].

The resultant final form for the point-independent
phase shifts 6, is given by the following expression (see
also Appendix A)

25, _ K—id T(1+s—ia)
© T sTia T(+s+ia)

eiﬂ(l— s) , (24)

where the sign convention for « is the same as in [48],
such that x = =(j+ 1/2) and [ = |«| — (1 — sign«)/2.

Series (22) are poorly convergent as a direct con-
sequence of the singularity present at 6 =0; an infinite
number of Legendre polynomials are necessary to de-
scribe it. To make the series more convergent, the mth re-
duced series can be defined

(1=cos®)™ f(6) = »_ a" Py(cos),

120
(1-cosf)™ g(6) = Z b{"™ P} (cos6), 25)
I>1
as first proposed in [61] and more recently used in [30-
32]. The coefficients agi) and b;i) are computed using the
recurrence relations

W+1) _ ) _ +1 L

a I T 3% T Y
: 0142 o I=1
(1) _p (D) (0 (0
b = i~ oy P (26)

where  a” =[(+ D) — 1)+ - 1)]/2ip  and
b = [emf'*' —ezi‘sf] /2ip from Eq. (22). We found that us-
ing only two iterations m; =2 for the function f(6) and
one iteration m, = 1 for g(#), it is sufficient to make the
series converge without distorting the analytical results.
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4 Results and discussion

In this section, we present and discuss the main fea-
tures of fermion scattering by Bardeen regular black
holes and also by a Bardeen-class of black holes. The
analysis will focus on scattering by small or micro black
holes (with Mapy ~ 10" — 10?> Kg) because in this case
the glory and orbiting scattering phenomena are shown to
be significant.

The following parameters are used to label the fig-
ures: v= p/E is the speed of the incident fermions; EM
can be considered a dimensionless measure of the gravit-
ational coupling because (restoring the units) it forms the

& onl tity: GEM  rry ith h
imensionless quantity: &= ——-=—" with r; the
O/M=0.5 v=03
500 -
g
3
©
>
=
5100 |
=)
50+ :
04n 0.6m 0.8 T
0 (rad)
1000 ¢ OM=0.1 v=05
g
=)
)
F 100}
2
5
i)
10+
02n 04n 06m 08n T
0 (rad)
100 __
. O/M=427 v=1
AN
S 10!} N
©
= ~ —_——
I R Ve S ..
= S\ \
S Y
,EO‘D 0.1¢ EM=1 ----- X‘ \.
EM=2 — — o
00l EM=4 —— |
02=m 04n 0.6n 0.8w n
0 (rad)

Fig. 1.

Schwazschild radius and A = &/p the associated quantum

particle wavelength; and the ratios ¢=Q/M, and

g = M/M; that appear when writing the black hole hori-

zon radius as ry = M, f (ﬂg) Moreover, because in
M, M,

the asymptotic zone E = /m? + p?, one can easily show

that mM = EM V1 —v? such that the condition EM > mM
is always satisfied. In the following analysis we take
v =3 in all the plots (except those in Fig. 7) because the
same conclusions are also obtained for the cases with
v#3.

In Fig. 1, the differential scattering cross section is
presented as a function of the scattering angle for fixed
values of the ratios: O/M (left panels corresponding to

5000

c=03 y=3

g=1

1000
500

2de/dQ)

log,, (M

100 ¢
50

100 | N

2do/dQY)

10

s

log,, (M.

0.1

1000 F

100

2do/dQ)

s

10

log,, (M

0.4n 0.8 n

(color online) Plot of the differential scattering cross section as a function of the scattering angle for a regular Bardeen black

hole, Eq. (19) (left panels) and for a Bardeen-class black bole, Eq. (1) (right panels). Phenomena of glory (scattering in the back-
ward direction) and spiral scattering (oscillations in the scattering intensity) are present for both types of black holes. The value
q/My =4/ V27 corresponds to a degenerate regular Bardeen black hole (it has only one horizon). The parameter ¢ gives the ratio
q=Q/M; and g = M/M; is the ratio between the magnetic monopole mass and the "Schwarzschild mass".
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pure Bardeen case); ¢=Q/M; and g=M/M,; a fixed
value of the speed (v) of incoming fermions, while the
parameter EM (or EM; for Bardenn-class) takes different
values. From Fig. 1, it can be seen that the scattering pat-
tern takes a simple form for small values of EM.
However, as the value of EM increases, more complex
scattering patterns occur. This includes the presence of a
maximum in the backward direction (6 = ), which is also
known as "glory" scattering [62, 63] and the presence of
oscillations in the scattering intensity that give rise to or-
biting or "spiral scattering" [64, 65] (that may occur when
the particle's "classical” orbit passes the scattering center
multiple times). As the speed of the incoming fermion in-
creases, the peak in the w-direction moves toward the left,
and the maximum of the scattering intensity that occurs at
0 = for nonrelativistic fermions transforms into a min-
imum if the fermions are massless (v = 1). From the bot-
tom panels of Fig. 1, it can be seen that the magnitude of
the spiral scattering oscillations and their angular fre-
quency increase with the black hole mass.

The scattering cross section do/dQ for the Bardeen-
class black holes (1) is plotted in Fig. 2. The left panels
show the scattering patterns for Bardeen-class black holes
that have the "Schwarzschild mass" greater than the mass
of the magnetic monopoles, while the right side panels
show those with a lower mass. By comparing our analys-
is results with the Schwarzschild black hole, the scatter-
ing intensity in the backward direction (6 = xr) is higher
for the scattering by a Bardeen-class black hole. From

= EM,=1 ¢=05 v=038 y=3
100 \
G
3
)
S 10}
=
g 1o
g=05—-—
=0 (Schw.) ——
o1 85 ( ) . .
0257 05w 0.157 T
0 (rad)
5000 [
a
3
B
= 1000 ¢
e
= 500}
o
i=l
3
.5
100 L . .
04n 0.6 0.8w n
0 (rad)

Fig. 2.

Fig. 2, one can also observe that in all the plots, the value
of g increases as the number of oscillations of the scatter-
ing intensity increases. Furthermore, if we assume M; is
fixed, then the ADM-mass of the black hole increases
(which is equivalent to increasing the mass M, Eq. (2), if
M, remains constant), and as a consequence the angular
frequency of the oscillations present in the scattering in-
tensity also increase. This feature was also true for fermi-
on scattering by Schwarzschild and Reissner-Nordstrom
black holes [30-33]. Thus, the increase in the frequency
of the oscillations of the spiral scattering with the black
hole mass for any type of (spherically symmetric) black
holes is of interest.

Comparing the scattering intensity, in Fig. 3, of a
Bardeen regular black hole (blue and red curves) with
that of a Schwarzschild black hole (the black dotted
curve), we observe that the glory peak is higher for the
scattering by ‘a Schwarzschild black hole. As the ratio
O/M increases, the maximum in the backward direction
becomes lower, and the frequency of the oscillations in
the spiral scattering slightly decrease simultaneously. The
curve with Q/M = 4/ V27 corresponds to the Bardeen de-
generate case when only one horizon is present. The type
of black hole can be determined by analyzing the pat-
terns in the scattering intensity when the scattering of a
beam of fermions by a black hole can be observed and
measured. If it is a Bardeen black hole, with a known
mass, then the value of O can also be found.

In Fig. 4, we plotted the differential scattering cross

. EM,=15 q=02
1000 L "~

v=08 =3

A
. AT
R AVAVAXAVAY AT i)
. L ,"\/ ‘,\/," *,

100 ¢

—_
=]
T

log,, (M, *do/dQ)

—_

o
=

0.8 T

Zdo/dQ)
2

logm ™M
2

—_

S
o
T

0.6 0.8 m b

0 (rad)

(color online) Variation of the scattering cross section with the parameter g = M/M; for given values of EM, and v. In the top

panels, the Schwarzschild scattering (for which g = 0) is compared. The value of g increases as the spiral scattering becomes more

pronounced.
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v=0.2

v=0.75
100 |

N EM=25

10 ¢

log,, (M *do/dQ)

0.1

04n 0.6 0.8

Fig. 3.
and v are kept fixed.

2do/dQ)

s

log,, (M,

100 B\,
g 10}
©
e
)
i<l

0.1 tBardeen -----

Schw. —— Bardeen class —- —
0257 05w 075

0 (rad)
Fig. 4.

0.50 0.75=n n

0 (rad)

(color online) Scattering cross section for a regular Bardeen black hole for different values of O/M, while the parameters EM

5000

1000
500

100 [Bardeen -----
Schw.

04n 0.6 0.8 7w n
0 (rad)

Bardeen class — - —

(color online) Comparison between the fermion scattering by a Schwarzschild black hole, regular Bardeen black hole, and

Bardeen-class black hole. For the left panel Q/M = 0.2, ¢ = 0.2, and g = 0.5 were used, while for the right panel /M = 0.4, ¢ = 0.1,

and g=0.2.

. do . .
section — as a function of the scattering angle 6 for a

Schwarzschild black hole (blue-solid lines), regular
Bardeen black hole (black dotted lines) and Bardeen-class
black hole (red dash-dotted lines).

An incident unpolarized beam of massive fermions
becomes partially polarized after it gets scattered by the
black hole. The induced polarization degree can be com-
puted using the following formula [30, 59]

3__J&-fs,
If1> +1gl
where 7 is a unit vector in a direction orthogonal to the
plane of scattering.

In Fig. 5, the dependence of the polarization on the
scattering angle is plotted for given values of the para-
meters EM, v, g, and Q/M. It has a pronounced oscillat-
ory behavior. From the top panels in Fig. 5, one can ob-
serve that if the parameter EM increases, then the fre-
quency of the oscillations present in the polarization in-
creases as well. Now, if we assume that the energy of the
fermion is fixed, then, the oscillations present in the po-
larization are more pronounced for black holes with high-
er masses. Compared with the Schwarzschild polariza-
tion (see bottom panels in Fig. 5) the Bardeen and
Bardeen-class black hole polarizations exhibit a slightly
less oscillatory behavior. The oscillations present in the
polarization can be observed as a consequence of the os-

@7

cillations present in the glory and spiral scattering.

The alignment of the scattered fermions with the for-
ward on-axis direction can be visualized using the polar
plots representations of the polarization degree as shown
in Fig. 6. One can observe the Mott polarization in the
direction orthogonal to the scattering plane, a phenomena
that has been reported before in literature for Schwarz-
schild [30, 31] and Reissner-Nordstrom [32] black holes.

In Fig. 7, the differential scattering cross section is
plotted for a Bardeen-class black hole with different val-
ues of the parameter y. Note that the scattering pattern
maintains the same profile shape, and the difference
between the values of do-/dQ (computed using different
values of y) is very small. Moreover, from our analysis
results, it can be seen that, for most cases, this difference
is even smaller than for the examples presented in Fig. 7.
This can be attributed to the difference between the black
hole horizon radii r. obtained for different values of y
(while all the other parameters are kept constant) is very
small.

5 Conclusions

We studied the scattering of fermions by a class of
Bardeen black holes that also include the original
Bardeen regular black hole solution. A partial wave meth-
od was used on a set of scattering modes that were ob-
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(color online) Partial polarization # as a function of the scattering angle 6. Top left panel: typical Bardeen black hole (19) with

O/M = 0.4 for incoming fermions with speed v = 0.8 in units of ¢; Top right panel: Bardeen-class black hole (1) with g = M/M; =0.2
for incoming fermions with speed v=0.4 in units of c; Bottom left panel: comparing Schwarzschild and pure Bardeen black hole po-
larizations for fixed EM = 1 and v = 0.3; Bottom right panel: comparing Schwarzschild and Bardeen-class black hole polarizations

for fixed EM;=1.5,g=Q/M;=0.2 and v=0.5.
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270
Fig. 6.

270

(color online) Polar plots of pure Bardeen (left panel) and Bardeen-class (right panel) polarization #(6) for 0 < 6 < 2z showing

the alignment of the scattered fermion's spin with a given direction. The Mott polarization (polarization in the direction orthogonal to

the scattering plane) can also be observed.

tained by solving the Dirac equation in the asymptotic re-
gion of these black hole geometries. TO the best of our
knowledge, for the first time, time analytical phase shifts
for fermion scattering by Bardeen regular black holes
were obtained. The phenomena of glory (scattering in the
backward direction) and spiral scattering (oscillations in
the scattering intensity) were also discussed. We also saw
that an incident unpolarized beam could become partially
polarized after interaction with a black hole.

In Figs. 1-6, other than the parameters EM (that can

be associated with a measure of the gravitational coup-
ling) and v (speed of the fermion) we also used the ratios
O/M, q=Q/M,, and g=M/M; to label the figures. The
departure of the scattering pattern from the Schwarz-
schild case was significant as O/M and g increased. For
the original Bardeen regular black hole, Q/M =4/+27
was the maximum allowed value, and it corresponds to
the degenerate case when the two horizons coincide. If
the magnetic charge Q — 0, then M — 0 and ¢ — 0, and
the scattering by a Schwarzschild black hole can be re-
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covered [31].

The glory and spiral scattering become significant for
values of the parameter EM~1 or greater (in geometrical
units with G=h=c=1) because the associated
wavelength for these values of the incident fermions is of
the same order of magnitude as the black hole horizon ra-
dius; thus, diffraction patterns occur. Another feature,

Appendix A

The aim of this Appendix is to briefly present how the phase
shifts (24) are obtained.

The asymptotic representation of the Whittaker function p for
large values of |z| is given by the following equation [60]

My, (2) ~71(—(1 20 e%zz”((l fo@E! ))

r %+,u—/<)

T +2u) 1

e—izzK

ei(%+,u—»()zz
(l +u+ )
[(7+u+x

(1+0:™) (A1)
valid for -1z <phz < 3x.

To obtain the phase shifts (24), the condition C, =0 must be
imposed on Eq. (17) in order to obtain the correct Newtonian phase
shifts for large values of angular momenta. As an observation, this
condition also selects the spinors that are regular in x = 0 owing to
the regularity of the function M,, ,(2ivx?)= Qiva®) 1+ 002)].

which was also shown to be present for fermion scatter-
ing by Schwarzschild [30, 31] and Reissner-Nordstrom
black holes [32], is that as the total mass of the black hole
increases, the oscillations present in the scattering intens-
ity'become more frequent, that is, spiral scattering is sig-
nificantly enhanced with an increase in black hole mass.

More arguments for letting C, =0 can be found in Appendix C of
our previous paper [31].

Using Eq. (28) on the f*(x) functions and by observing that for
f* the dominant term is the first one in (28), while for - the
second term is dominant, then one obtains the following asymptot-
ic expressions

N 1. T@s+1)
F =G e e

R —i i

e—i[vx2 +rs+a ln(2vx2)]

ilvaZ+aIn2va?)]
I'2s+1)
I'(l+s—ia)
X (A2)
The last step is to compute the argument of the trigonometric
functions (23) as %arg(;—t) from which the expression for €% will

result.
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