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Possibilities of producing superheavy nuclei in multinucleon transfer
reactions based on radioactive targets”
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Abstract: The multinucleon transfer (MNT) process has been proposed as a promising approach to produce neutron-

rich superheavy nuclei (SHN). MNT reactions based on the radioactive targets *cf, *Es, and *'Fm are investig-

ated within the framework of the improved version of a dinuclear system (DNS-sysu) model. The MNT reaction

238 238

U + 77U was studied extensively as a promising candidate for producing SHN. However, based on the calculated

cross-sections, it was found that there is little possibility to produce SHN in the reaction 2y +
duction of SHN in reactions with radioactive targets is likely.

**U. In turn, the pro-

Keywords: transfer reactions, superheavy nuclei, dinuclear system model

PACS: 25.40.Hs, 25.70.-z

1 Introduction

Early calculations predicted that the nucleus 7z = 114
and N = 184 is the double magic nucleus and that it is at
the center of the island of stability [1-4]. The production
of neutron-rich superheavy nuclei (SHN) around the is-
land of stability and superheavy elements with Z > 118 is
one of the most challenging topics in nuclear physics [5, 6].

Because of the limiting number of combinations for
producing neutron-rich SHN in the stable beam-induced
fusion reactions, many approaches were proposed in re-
cent years to attain the island of stability. (i) Radioactive
beam-induced fusion reactions could be candidates for
producing neutron-rich SHN [7—-9]. In present facilities,
the intensities of radioactive beams are very low [10],
which strongly suppresses the production rates. (ii) Stable
beam-induced hot fusion reactions in charged particle
evaporation channels are also investigated as a possible
approach [11]. The disadvantage is that the Coulomb bar-
rier prevents the charged particle evaporation in the cool-
ing process. In our previous study [9], we compared the
two approaches. It is shown that the production rates in
the radioactive beam-induced reactions are comparable to
those in stable beam-induced reactions in the charged
particle evaporation channels. (iii) The multinucleon
transfer (MNT) process is also suggested for the produc-
tion of SHN [12—-14]. To elucidate the mechanism of the
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MNT process and produce SHN, the reaction u+Pu
has been investigated in many studies [15—21]. In Ref.
[14], several low-energy collisions of heavy nuclei for
producing SHN were studied based on multidimensional
Langevin equations. The production of long-lived neut-
ron-rich SHN in collisions of transuranium ions seems
likely.

Recently, Wuenschel et al. attempted to produce SHN
based on the MNT process [22]. Some promising results
were presented. However, no direct evidence indicating
that SHN are produced in the collisions of U+ P This
shown. The reason is probably that the charge number of
the target is not sufficiently high. The favorable combina-
tions are always essential for producing unknown nuclei
[23, 24]. In Ref. [25], one improved version of the DNS
model (DNS-sysu) is introduced in detail. The DNS-sysu
model can provide a reasonable description of MNT reac-
tions for producing SHN. The reactions based on the 2y
target are investigated in Ref. [25]. The production cross-
sections decrease strongly with the increasing charge
number of products, and the heavy projectiles are favor-
able for the production of trans-target nuclei. Based on
the Langevin-type approach, several **U induced MNT
reactions, including with the target ***Es, are studied in
Ref. [26]. It was shown that several actinide nuclei can be
produced with the cross-sections larger than 1 pb.

The cross-sections of produced SHN in MNT reac-
tions, based on targets with large charge number, are
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worth estimating. In this stud;l, the MNT reactions based
on radioactive targets *ct, *Es, and *’Fm are investig-
ated within the DNS-sysu model. The prospects of the ra-
dioactive projectile **Pu for producing SHN are also in-
vestigated. In Section 2, the DNS-sysu model is de-
scribed briefly. The results and discussion are presented
in Section 3. Finally, I summarize the main results in Sec-
tion 4.

dP(Z;,N1,B2,1)

dr
ZI

2 Description of the model

In Ref. [25], detailed descriptions on the DNS-sysu
model were presented. Here, the brief introductions re-
garding the model are presented. The master equation in
the DNS-sysu model can be written as [25, 27].

=" Wa iz o D1z, 5. P2y Ny, 1) = g v, 5, P21, N2, )]

+ Z W2 N, oz 5 (Dldz, v, 5, P(Z1 Ny Bo, 1) = dy, vy 5, P(Z1, N1, B2, 1)]
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B

Here, P(Z,,N1,B2,t) is the probability distribution func-
tion for the fragment 1 with proton number Z; and neut-
ron number N, at time ¢. 3; is the dynamical deformation
parameter of the DNS. Wy y 5.7 v 5,, Wz n, gz, > a0d
Wz~ giz.N, g, denote the mean transition probabilities
from the channels (Z;, N, 8,) to (Z,, N1, B2), (Z1, Ny, B2) to
(Z1, Ny, B2), and (Zi, Ny, B2) to (Z1, Ny, B,), respectively.
dz n,p, 1s the microscopic dimension (the number of
channels) corresponding to the macroscopic state (Z;, Ny,
B2) [28]. For the degrees of freedom of the charge and
neutron number, the sum is taken over all possible proton
and neutron numbers that fragment 1 may take, however
only one nucleon transfer is considered in the model
(Z,=Z1£1; N =N; £1). For B, we assume the range
—0.5~0.5. The evolution step length is 0.01. The trans-
ition probability is related to the local excitation energy
[27, 29].
The PES is defined as
U(Zy,Ny1,B2,Reont) =A(Z1,N1) + A(Z3, N2)
+ Vcont(Zl ,Nl 7ﬁ2,Rcont)

1 1
+5C1B =B +5CaB3 -, (@)

where A(Z;,N;) (i =1, 2) is mass excess of the fragment i.
Veont(Z1,N1,B2,Reont) 18 the effective nucleus-nucleus in-
teraction potential. The last two terms in the right side of
the equation are deformation energies. The detailed de-
scription of each term is provided in Ref. [25] and the ref-
erences therein.

The cross-sections of the primary products can be cal-
culated as
I
> @I+ DTep( Eem)
em. j=0

XZP(ZI,NlaﬁZsEC.n‘l.)' (3)
B>

nh?
2uE

Opr(Z1, N1, Eem) =

[
Clear signatures were observed for the formation of DNS
in heavy collision systems, such as Py + Py [30]. For
heavy systems without a potential pocket, there is no cap-
ture. I consider that the DNS is formed when incident en-
ergy is higher than the interaction potential at the contact
position. The contact positions are near the relatively flat
parts of interaction potential curves [23]. From the diffu-
sion point of view, the strength of diffusion strongly de-
pends on the interaction time, which is reflected from the
probability distribution function P(Z;,Ny,B2, Ecm.). There-
fore, it is reasonable to consider Tc,p as 1.

In the DNS-sysu model, with consideration of the de-
formation evolution, the excitation energy of primary
products can be calculated with following equation [25].
B = Zi+ N;

ZoNoT T Ay

E[P(Zi, Ni, B2, J, 1 =Tin) Ef\\g (Zis Nis B2, 1, 1= Tiny)]

%P(Zi’NiaﬁL[ = Tint)
“4)

Here, Ejg is the local excitation energy of the system
[25].

The total kinetic energy loss (TKEL) for the configur-
ation (Z;, N;, p,) calculated in the DNS-sysu model as
shown in Ref. [27] can be written as

TKEL = Egiss + Vcont(Zp,Np’ Reont) = Veont(Z1, Ny ,,82,Rc0nt2~5)
Here, Z, and N, are the charge number and neutron num-
ber of the projectile, which denotes the configuration in
the entrance channel. The detailed description of Eg can
be seen in Ref. [25].

In the cooling process, the statistical model is applied
with the Monte Carlo method [25]. In the ith de-excita-
tion step, the probability of the s event can be written as
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T(EY)
T(E;)’

where, s =n, p, @, v, and fission. E is the excitation en-
ergy before ith decay step, which can be calculated from
the equation E;, | = E7 - B;. B; is the separation energy of
particle or energy assumed by the y ray in the ith step.
Tt =Ty +Tt+T,+T,+T,. Detailed descriptions of the
decay width in each decay channel are provided in Ref.
[25] and the references therein. Here, I would like to em-
phasize that the parameters in the DNS-sysu model are
usually fixed.

Py(E}) = (6)

3 Results and discussion

248 238

MNT reactions >*U + “*Cm and **U + ***U for pro-
ducing trans-target isotopes are compared in Fig. 1. From
the available experimental data, the reaction U +**Cm
exhibits at least two orders of magnitude larger cross-sec-
tions than the ones U + “*U. The calculations in the
DNS-sysu model are also presented. According to the ex-
periments, the incident energies of E. . =800 and 892
%GV are 1213ssed i% 8calculations for the reactions U +

Cm and 7"U + 77U, respectively. Good agreement with
experimental data is noted. The main reason for the in-
crease in cross-sections in the reaction ~ U + “*Cm is

that ***Cm is heavier than **U.

The above behavior encouraged me to explore the
possibilities of producing SHN in the MNT reactions
based on radioactive targets. Figure 2 shows the calcu-
lated producted cross-sections of isotopes with
Z =100-109 in MNT reactions with the radioactive tar-

gets 249Cf, 254Es, and >'Fm. The half-lives of >‘Es and

*'Fm are hundreds of days. The two projectiles **U and

**Pu with a different charge number and neutron-proton
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Fig. 1. Yields of isotopes produced in MNT reactions U+

*Cm [31] and Py +Pu [32]. Curves show calculations

of DNS-sysu model.
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Fig. 2. (color online) Predictions of cross-sections for produced isotopes with Z = 100—109 in MNT reactions U+ ¥Es, U+
257 239 254 239, 257 238 249 238 238

Fm, " Pu+"'Es, " Pu+"" Fm,

U+ 77Cf, and 7"U + ~"U, the corresponding incident energies are 962, 970, 982, 991, 950, and
902 MeV, respectively. Circles on curves denote unknown SHN.
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ratio are applied. As expected, the produced cross-sec-
tions decrease significantly with the increasing charge
number of products for all of these reactions. The target
effects on produced cross-sections are obvious. Although

there is only one proton more in the *"Fm target in com-

parison to **Es, the production yields are much higher in
the reaction based on the *’Fm target. Bg/ comgaring the
reactions U + 249Cf, U+ 254Es, and ~*U + 57Fm, the
advantages of cross-sections in the reaction based on the
*"Fm target are gradually faded away with an increasing
transferred number of protons, which is due to the de-
crease of the yield contribution from quasi-elastic events.
Moreover, the Pu projectile can remarkably en-
hance the production yields in the neutron-deficient re-
gion, because of the high proton richness in *py.
However, to zg)groduce neutron-rich isotopes, the cross-sec-
tions in the ~ Pu induced reactions have little advantage
over those in the ~"U induced reactions. I also show the
calculated results of the reaction U + *U. Based on the
calculated cross-sections, there is little chance to produce
SHN by the U + **U reaction.
o Base:2(517 on 'Fhe calcu-lated cross-sections, the reaction
Pu + 7 'Fm is more likely to produce SHN. As shown
in Ref. [14, 25], the production cross-sections of SHN are
strongly dependent on the incident energy. Indeed, al-
though in same reaction, to produce different objective
nuclei, the optimal incident energies are usually different
[33]. Therefore, the incident energies for producing spe-
cific nuclei should be chosen carefully. Here, I only es-
timate the possibilities of producing SHN in MNT reac-
tions. The incident energy of 1.3V for each reaction is

used. In Fig. 2, the circles denote unknown SHN with
cross-sections larger than 1 pb. Several neutron-rich SHN
can be produced in the reaction **pu + *"Fm. Moreover,
to produce Mt isotopes, the calculated cross-sections of
several nuclei are above the level of pb. However, the en-
richments of radioactive targets **Es and *"Fm are very
low, and they are usually produced in the neutron capture
process. Therefore, if sufficient **Es and *’Fm can be
collected to make a target, multinucleon transfer reac-
tions will be encouraging for the production of SHN. In
turn, to produce nuclei located at the island of stability,
neutron-rich radioactive beams would be promising.

4 Conclusions

The DNS-sysu model has been developed and tested
to investigate MNT reactions with the aim of producing
SHN. Because of the significant decrease of cross-sec-
tions in produced SHN with increasing transferred pro-
tons in MNT reactions, it seems unlikely that SHN are
produced in the reaction 2y + P Further, the reac-
tions with radioactive targets 249Cf, 254Es, and *’Fm are
investigated. The production cross-sections of SHN up to

Z =109 can reach tens of pb in the reactions based on the

radioactive targets *ct, *Es, and *’Fm. From the point

of view of cross-sections, the radioactive combinations
with **Es and *'Fm targets are promising for the produc-
tion of SHN. However, further experiments should be
performed to constrain the theoretical models for better
predictions.
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