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Abstract: In order to use high-precision realistic nucleon-nucleon (NN) potentials in relativistic many-body prob-
lems, new versions of the charge-dependent Bonn (CD-Bonn) NN potential are constructed with pseudovector pion-
nucleon coupling, instead of pseudoscalar coupling used in the original CD-Bonn potential as given by Machleidt” .
To describe precisely the charge dependence in the NN scattering data, two effective scalar mesons are introduced,
whose coupling constants with nucleons are independently determined for each partial wave and for the total angular
momentum J < 4. The coupling constants between the vector and pseudovector mesons and a nucleon are identical in
all channels. Three revised CD-Bonn potentials with the pseudovector pion-nucleon coupling (pvCD-Bonn) are gen-
erated by fitting the Nijmegen PWA phase shift data and the deuteron binding energy with different pion-nucleon
coupling strengths. The potentials reproduce the phase shifts in the spin-single channels and the low-energy NN scat-
tering parameters very well, but result in significantly different mixing parameters in the spin-triplet channels. The D-
state probabilities for the deuteron range from 4.22% to 6.05%, demonstrating that the potentials contain different
components of the tensor force, which is useful when considering the role of the tensor force in nuclear few- and

many-body systems.
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1 Introduction

The nucleon-nucleon (NN) interaction is an essential
physical phenomenon for interpreting the world of nucle-
ar physics, which determines how protons and neutrons
are composed in a complex quantum system. It is re-
garded as a residual of the strong interaction in the low
energy regime, where the quantum chromodynamics
(QCD) theory cannot be solved perturbatively. Therefore,
the VN interaction is usually described by the meson ex-
change model first proposed by Yukawa [1]. In 1960s,
heavier bosons were included in this scheme to deal with
the intermediate- and short-range NN interactions. Gener-
ally speaking, there are two kinds of nuclear interactions.
The first kind is based on the free NN scattering data,
such as the differential cross-sections and polarization,
and is called the realistic NN interaction, while the other
is based on the properties of finite nuclei and infinite nuc-
lear matter [2-7]. The latter is called the effective NN in-
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teraction in terms of nuclear medium effects.

A reasonable model of the NN force should not only
describe the interaction behavior of nucleons, i.c., the
strong repulsion at short range, the large attraction at in-
termediate range, and the small tail at long range, but also
satisfy several basic symmetries, such as the rotational in-
variance in space, translational invariance and space re-
flection invariance. Therefore, the NN forces were ini-
tially constructed in the coordinate space in terms of the
angular momentum operators, which fulfill the symmetry
requirements, such as the Hamada-Johnston potential [§8]
and Reid68 potential [9] in the non-relativistic frame-
work. On the other hand, the one-boson-exchange (OBE)
potentials were based on the development of quantum
field theory, where the nucleons interact with each other
by exchanging several mesons whose masses are below 1
GeV [10]. With important achievements of the OBE po-
tentials, more degrees of freedom, like the multi-meson
exchange and A isobar, were introduced, which led to the

* Supported by National Natural Science Foundation of China (11775119, 11405116, 11675083)

1) E-mail: hujinniu@nankai.edu.cn
2) Machleidt, Phys. Rev. C, 63: 024001 (2001)

©2019 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese

Academy of Sciences and IOP Publishing Ltd

114107-1



Chinese Physics C Vol. 43, No. 11 (2019) 114107

full Bonn models [11, 12].

In 1990s, the effects of charge independence break-
ing (CIB) and charge symmetry breaking (CSB) were in-
troduced in the nuclear force based on detailed analyses
of thousands of NN scattering data. High precision NN
forces were constructed, such as the Reid93, Nijmegen
93, Nijmegen I, Nijmegen II, and AV18 potentials [13,
14]. The chiral perturbation theory was also applied for
deriving the NN interaction, first proposed by Weinberg
[15-17], and chiral NN potentials have been built up to
the fifth-order expansion [18-28]. In 2000, a covariant
charge-dependent OBE (CD-Bonn) potential was pro-
posed by Machleidt as a very high precision NN interac-
tion, which describes the NN scattering data very well,
with y?/datum ~ 1 [29]. The w, p, 7 mesons and two scal-
ar mesons o and o, were included in the CD-Bonn po-
tential, which is widely applied to study the properties of
nuclear systems, from light nuclei to heavy nuclei and in-
finite nuclear matter.

The pion, the first meson discovered, largely determ-
ines the behavior of the NN interaction in the long-range
region. As a Goldstone boson, it also describes one of the
crucial features of the QCD theory, its chiral symmetry.
However, the coupling between the pion and a nucleon
has two possible sources, namely the pseudoscalar (PS)
and pseudovector (PV) coupling. In fact, the on-shell
amplitudes of one-pion exchange with PS and PV 7NN
couplings are identical. Caia et al. also examined the dif-
ferences between the PS and PV couplings of the pion
and n meson in the NN potentials in terms of two kinds of
scattering equations, 1i.e. Lippmann-Schwinger and
Thompson equations [30]. It was found that the differ-
ences of phase shifts and binding properties between the
PS and PV couplings in a two-nucleon system are very
small in these two approaches. The largest difference ap-
pears in the mixing parameter ¢, in the J=1 channel,
which is strongly related to the strength of the tensor
component of the NN interaction. Therefore, the D-state
probability, quadrupole moment and asymptotic S-state
amplitude of the deuteron show few differences between
the PS and PV couplings.

On the other hand, in the calculations of pion-nucle-
on scattering, the unitarity and analytic continuation of
7N to nr = NN etc., the PV coupling was preferred [31,
32]. In the chiral perturbation theory, the coupling
between the pion and a nucleon was also taken as of the
PV type in the low energy region to analyze the pion
electroproduction and photoproduction [33, 34]. Further-
more, when the NN potentials with PS coupling were
used in the relativistic nuclear many-body problems, a
spurious strong attraction was generated due to the strong
coupling to negative energy states, which is absent in the
non-relativistic framework. The PV coupling suppresses
the coupling to antinucleons, since its matrix element

between the nucleon and antinucleon vanishes for the on-
shell scattering [35]. As a result, PV couplings were ad-
opted in the Bonn A, B, and C potentials, which were
successfully used with the relativistic Bruckner-Hartree-
Fock method, and led to relatively reasonable saturation
properties of nuclear matter [36].

In this work, we develop a revised version of the CD-
Bonn potential with PV coupling for pions, which can be
applied in the relativistic nuclear many-body problems.
The theoretical framework of the CD-Bonn potential is
kept, but we use the PV coupling instead of the PS coup-
ling between pions and nucleons. At the present stage, the
coupling constants and the cut-off momenta for the form
factors for various mesons are determined by fitting the
phase shifts from Nijmegen PWA. The paper is arranged
as follows: in Sec. 2, the necessary formulas for the OBE
potential and NN scattering are presented. In Sec. 3, the
CD-Bonn potentials with PV coupling are shown, and the
properties of the two-nucleon scattering and binding
states using these potentials are presented. A summary
and outlook are given in Sec. 4.

2 The CD-Bonn potentials with pseudovector
pion-nucleon coupling

In the conventional OBE potential, there are six
mesons whose masses are below 1 GeV, ie. the
o, w, p, T, 1, 6 mesons [11, 12]. In the CD-Bonn poten-
tial, two heavier mesons, § and n were not considered
[29]. Furthermore, to better simulate the broad contribu-
tion from the 27 +mp exchange between two nucleons in
the intermediate range, two scalar mesons o and o, were
included. The Lagrangians which describe the meson-
nucleon couplings in the CD-Bonn potential are given as:

Lony =~ ”, (1
Lowy =~V Ve, )

Lonn =gy -
- fv”pwvw 10,8 - 0,871, 3)

for the o, w, and p mesons. Here, ¢ denotes the nucleon
field and ¢ represents the meson field. The tensor coup-
ling between the w meson and nucleon is neglected due to
its small strength. To apply the CD-Bonn potential to a
study of the nuclear many-body system in the relativistic
framework, the pseudovector (PV) coupling between the
pion and nucleon is taken in this work,

L=~ gy, @

where the coupling constant f; is related to the pseudo-
scalar (PS) coupling constant g, by the on-shell-equival-
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ent relation [36]

& _ Jfx
Mi+My  my
Here, M, and M, are the masses of the two nucleons, and
my is the pion mass.
The contribution of each meson « to the NN interac-
tion is expressed analytically by the scattering amplitude
from the quantum field theory [12],

®)

Y, ’ - ’ C P - ’
iVo(q', @) = 01 (¢ T u1(9) 57— (=g )T3ur(=q),  (6)
k* +mj

where ¢’ and ¢ are the relative momenta of the two nucle-
ons in the in- and out-scattering states in the center-of-
mass (CM) framework, and k=g¢'—¢q. The vertex
I'? (i = 1,2) and the meson propagator P, /(k*+m3) can be
directly generated from the Lagrangians in Egs. (1) and
(4). u(q) is the Dirac spinor of the nucleon. The static ap-
proximation is adopted in the denominator of the meson
propagator to obtain an energy independent NN potential.
The explicit expressions for the mesons involved are
shown in the Appendix.

In addition, a form factor F,(k?) is introduced to treat
the finite size of the nucleon. There are many choices for
F(k?), like the monopole form, dipole form, exponential
form, etc. In the CD-Bonn potential, the monopole form
factor is adopted at each vertex between the meson and
nucleon,

A2 —m?
Foll?) = 55—, 7

where m, is the mass of the meson and A, the corres-
ponding cut-off momentum.

The Bethe-Salpeter (BS) equation is used to describe
the NN scattering in the relativistic framework. However,
it is very difficult to solve this four-dimensional integral
equation. A three-dimensional reduction is necessary to
get numerical results. There are many schemes to do such
a reduction, such as the Blankenbecler-Sugar (BbS)
choice [37], Thompson choice [38], Kadyshevsky choice
[39] etc. The BbS choice was taken in the original CD-
Bonn potential. The Bonn A, B, C potentials adopted the
Thompson choice. It must be emphasized that our goal is
to obtain a revised CD-Bonn potential with PV coupling
and to compare it with the old version. Therefore, the
BbS choice is used in this work.

When the BbS choice is taken in the propagator part,
the BS equation in the two-nucleon CM frame is reduced
to [29],

M? _
Er Pk ric T(k,q),

®)
After taking minimal relativity and the form factors, the
complete interaction is constructed as

T ’ Y ’ d3k {7 ’
T(q,q)—V(q,q)+fW Viq', k)

, M_ M
Vighp= Y, TRl SVeld 5 O
All Mesons
where E = \/¢>+M?, Ex = Vk>+M?and E’ = /q"> + M?
are the initial, intermediate and final energies, respect-
ively. The scattering equation for the two-nucleon sys-
tem is then given as a three-dimensional BbS equation

’ ’ d3k ’

6.0 =@+ [ 5V T(k,q).
(2m)

(10)
This equation has a similar form as the Lippmann-
Schwinger equation. The phase shifts for NN scattering
can be obtained from the on-shell 7-matrix. The mathem-
atical details are presented in the Appendix.

q* - k> +ie

3 Results and discussion
3.1 Pion effects in the CD-Bonn potentials

The on-shell matrix elements for the one-pion-ex-
change (OPE) potentials with the PS and PV couplings
are identical, while their off-shell behavior is completely
different, especially in the high momentum region. The
half-on-shell matrix elements for the OPE potential
V(g,q') with PS and PV couplings in the 3S1->D; channel
and fixed on-shell momenta ¢’ =300 MeV and ¢’ = 600
MeV, are shown in Fig. 1 (a) and Fig. 1 (b). The cut-off
momentum A, = 1720 MeV and the pion-nucleon coup-
ling constant g2/4r = 13.6 are used. The matrix elements
for the OPE potential in the 3S;-D; channel are gener-
ated by its tensor component. It is found that in the high-
er momentum region the PV coupling gives a higher at-
tractive contribution than the PS coupling, while they
have similar strength for on-shell momenta.

The PV coupling constant f; is related to the PS
coupling constant g,, as shown in Eq. (5). Traditionally,
the 7N coupling constants are expressed as g, for both the
PS coupling and PV coupling. To consider the charge
symmetry breaking effect, g, for the neutron-neutron

O T 1T T I’IGOOI
& q'=300MeV _~-7% =600 Mey -
S 7T ~_.-"
’ -
8 r s L
= —2F ,/' + =
g0\ t
S -3¢ - T—--ps E
> r (a) ¥ _ PV (b)
b ST T e b L
%.0 0.5 1.0 15 20 05 1.0 15 2.0
q [GeV] q [GeV]
Fig. 1. (color online) The half-on-shell matrix elements for

the OPE potential in the 3S-*D; coupled channel. In panel
(a), the on-shell point is at ¢’ =300 MeV, and in panel (b) it
is at ¢’ = 600 MeV. The dashed line represents the PS coup-
ling, while the solid curve denotes the PV coupling.
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(nn), proton-proton (pp), and neutron-proton (np) sys-
tems should be distinguished. Its value for the np and nn
systems can be expressed by g.(pp) with the following
relations [29],

g2np) _(My+M, > ¢(pp)
4 2M, 4z

) _( M\ 82(pp) an
4r M, 4

In this work, the coupling constants and the cut-off
momenta of the w and p mesons are directly taken from
the original CD-Bonn potential with PS coupling in all
channels. The effect of the tensor force in a nuclear

many-body system is a very hot topic in recent research.
The strength of the OPE potential determines directly the
magnitude of the tensor force in the NN interaction.
Therefore, we choose three pion-nucleon coupling con-
stants to produce different tensor components, following
the idea of the Bonn A, B, C potentials [36]. The corres-
ponding coupling constants and cut-off momenta are lis-
ted in Table 1. To reduce the uncertainties of the coup-
ling constants as much as possible, there is a constraint
between g, and A, in free space, 7,2 (k> = 0) - g2/4n = 13.42.
For convenience, these three potentials with PV coupling
are called the pvCD-Bonn A, B, C potentials in the fol-
lowing discussion.

Table 1. The coupling constants and cut-off momenta for the pion and w, p mesons for the pvCD-Bonn A, B, C potentials.
A B C
my IMeV > - p 2
8a/4n fal8&a Ad/GeV 8a/An fal&a Aa/GeV 8al4m fal8a Aa/GeV
79 (139.57) 13.9 1.12 13.7 1.50 13.6 1.72
7£(134.98) 13.9 1.12 13.7 1.50 13.6 1.72
0°.p* (770) 0.84 6.1 1.31 0.84 6.1 1.31 0.84 6.1 1.31
w(782) 20 1.50 20 1.50 20 1.50

The form factor can considerably suppress the OPE
potential in the high momentum region. In Fig. 2 (a), the
product of g2/4r and F2(k*), which can be regarded as
the effective coupling constant, for the pyCD-Bonn A, B,
C potentials is given as a function of momentum. Due to
the influence of the form factors, the effective coupling
constants decrease rapidly with momentum. The N
coupling constant for pvCD-Bonn A is the largest.
However, its pion contribution is the smallest of the three
pvCD-Bonn potentials due to its minimum cut-off mo-
mentum. Its magnitude at £ = 1000 MeV is nearly half of
that for the pvCD-Bonn C potential.

In Fig. 2 (b), the local OPE potentials for pvCD-Bonn
A, B, C in the isospin-singlet and spin-triplet channels, i.
e. T=0, S =1, are plotted in coordinate space. To show
the influence of the form factor, the free OPE potential is
also shown for comparison. The form factor mainly plays
a role in the high momentum region. Correspondingly, it
exhibits the cut-off effect at short range in coordinate
space. When the relative distance between two nucleons
is larger than 1.5 fm, the OPE potentials with and without
the form factor are almost identical. In the short-range re-
gion, the form factor changes the OPE potentials signific-
antly.
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Fig. 2.

(color online) The effective NN coupling strengths of the pvCD-Bonn A, B, C potentials as function of the transferred mo-

mentum (a), and the corresponding isospin-singlet and spin-triplet OPE potentials in coordinate space (b).
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3.2 Phase shifts for NN scattering with the pvCD-Bonn

potentials

To describe the CSB of the NN interaction precisely,
the coupling constants and cut-off momenta of the o-; and
o mesons are fitted to reproduce the phase shifts for NN

OOBE — ONM

X (12)

scattering analyzed by the Nijmegen group in 1993, i.e.
Nijmegen PWA [13], for each partial wave with J < 4 fol-
lowing the scheme of Machleidt [29]. The NN laboratory
energy is up to 300 MeV. The BbS equation is solved by
the matrix inversion method [40] by discretizing the
Gauss-Laguerre quadrature. Free parameters are searched
for by the numerical minimization Fortran program
MINUIT.

The fitting function is defined as

, 1 N 2
N Z( Snm ) ’

where dopg is the phase shift predicted by the pvCD-
Bonn A, B, C potentials, and 6nv are the data from
Nijmegen PWA. Consequently, y* used in this work only
reflects the deviation of phase shifts between the theoret-
ical calculations and Nijmegen PWA. The fitting ener-
gies cover the NN laboratory energy range 0—350 MeV.
We take Epp=1,5, 10, 25, 50, 100, 150, 200, 250, 300,
350 MeV in each channel. The Nijmegen PWA data are
obtained from http://nn-online.org.

As shown in the original CD-Bonn potential, in the
isospin T = 1 channel, the pp,nn and np interactions are
not independent due to CSB and CIB. If one of these
three interactions is determined, the other two channels
are fixed. Therefore, we first fit the pp interaction, whose
scattering data have been measured most accurately. The
Coulomb interaction is included in the pp scattering as a
long-range potential. The asymptotic wave functions are
related to the regular and irregular Coulomb functions.

The details are shown in the Appendix of Ref. [29].

With different strengths of OPE potentials, the pvCD-
Bonn A, B, C interactions are obtained. The phase shifts
for each partial wave with the total angular momentum
J <3 and the mixing parameter &, are shown in Fig. 3.
The fitted data from Nijmegen PWA are shown as solid
triangles, the phase shifts for the CD-Bonn potential with
PS coupling are presented as open circles, and those for
the latest chiral N'LO potential with A =500 MeV by En-
tem et al., [27] are given as crosses. It is found that all
data from Nijmegen PWA can be described very well and
are consistent among the three potentials. There are slight
differences among the pvCD-Bonn A, B, C potentials for
the phase shifts in the 3F, channel and the mixing para-
meter &, at high Ey,. The *F, and 3P, channels couple
due to the tensor operator. The mixing parameter &, rep-
resents the strength of the NN tensor interaction for J = 2.
Therefore, these differences are easily understood as due
to different tensor components in the pvCD-Bonn A, B, C
interactions. The phase shifts and mixing parameters gen-
erated by the pvCD-Bonn C interaction are consistent
with those from Nijmegen PWA and the CD-Bonn poten-
tial for each partial wave, where the amplitudes of the
OPE potential are largest. Actually, similar results were
obtained for the Bonn A, B, C potentials. Furthermore, it
can be seen that the phase shifts in the *F, channel for the
chiral potential clearly deviate from the others. This is be-
cause the phase shifts in the 3F, channel should be cor-
rectly described only by the sixth-order expansion of the
chiral potential [28].

The nn interactions were generated based on the pp
interactions by interchanging the proton mass with the
neutron mass, and fitting the coupling constants of the o
and o, mesons to the CSB phase shift differences arising
from the nucleon mass splitting, OBE and the two-boson
exchange given by Machleidt in Ref. [29]. The phase

: 0 20 2.0
60 ——A A Nijmegen_]
—-B O CD-Bonn 10 15 15
§ a0k % 7 C x XEFT
S ] 10 1.0
= 20 1 4 20
© ]
So 5 05
0 -4 =30
. . 0 0.0
15 T T 0 Op T T .
10 - 1f :
o -1r 3 E
2 D, 3 i F3 ]
o - [ ]
0 5 . -2F .
_3 + 4
[ p
. 0 -4 —3lnnn L ST
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
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Fig. 3.  (color online) The pp phase shifts and mixing parameters as function of laboratory energy, Ejp (J <3). The triangles, open

circles, and crosses represent the phase shifts from Nijmegen PWA, the CD-Bonn potential and the chiral N‘LO potential by Entem

et al., respectively.
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shifts and mixing parameters for the nn interactions for
the pvCD-Bonn A, B, C potentials are shown in Fig. 4.
There are no phase shift data for nn scattering in Nijme-
gen PWA. Therefore, the phase shifts and mixing para-
meters for the pvCD-Bonn A, B, C potentials are only
compared with the results for the CD-Bonn potential with
PS coupling and the latest N°LO chiral potential. They
are slightly different for the coupled channels, the 3F,-
3P, waves and mixing parameter &,, but are very similar
to the pp case.

For the np (T = 1) potentials, an analogous procedure
was followed. The proton mass was replaced by the aver-
age mass, M= /M, M, . Furthermore, in the OPE poten-
tial, the positive and negative pions were also included in
the exchange between the two nucleons, whose masses
are slightly different from the 7° mass. The coupling con-
stants of 0| and o, for the np potentials were determined
by adjusting the CIB phase shift differences arising from

the pp and np potentials, nucleon mass splitting, OPE,
two-boson exchange, irreducible 7y exchange, and the
Coulomb force. The phase shifts and mixing parameters
for np (T = 1) and each partial wave for J < 3 are presen-
ted as function of laboratory kinetic energy in Fig. 5. The
differences between the phase shifts and mixing paramet-
ers for the pvCD-Bonn A, B, C potentials in the *F,
channel and &, still exist.

For the np potential, there is another possibility in the
T =0 channel. The corresponding coupling constants of
the oy and o, mesons are directly adjusted to reproduce
the phase shifts from Nijmegen PWA. The phase shifts
and mixing parameters for the pvCD-Bonn A, B, C po-
tentials are plotted in Fig. 6. The data from Nijmegen
PWA and the results for the CD-Bonn potentials are also
shown. The strongest tensor component in the NN poten-
tial is in the coupled channels 3S; and 3*D;. The mixing
parameter g; is very sensitive to the strength of the OPE
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Fig. 4.
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(color online) The nn phase shifts and mixing parameters for the pvCD-Bonn A, B, C potentials and partial waves (J < 3). The

open circles and crosses denote the results for the CD-Bonn potential and the chiral N'LO potential by Entem et al., respectively.
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and crosses represent the phase shifts from Nijmegen PWA, the CD-Bonn potential, and the chiral N'LO potential by Entem et al.,

respectively.
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Fig. 6.

(color online) The np (T = 0) phase shifts and mixing parameters for different partial waves (J < 3). The triangles, open circles

and crosses represent the phase shifts from Nijmegen PWA, the CD-Bonn potential, and the chiral N'LO potential by Entem et al.,

respectively.

potential. The values obtained for the pvCD-Bonn C po-
tential completely reproduce the results from Nijmegen
PWA and for the CD-Bonn potential, while the paramet-
er ¢ for the pvCD-Bonn A and B potentials is signific-
antly different from the data. The phase shifts for the oth-
er partial waves for the pvCD-Bonn A, B, C potentials
are almost identical, and describe the Nijmegen PWA
data very well.

As an example, the coupling constants and masses of
the o; and 0, mesons for the pp, nn and np components
of the pvCD-Bonn C potential are listed up to the total
angular momentum J =4 in Table 2. Both cut-off mo-
menta of the o; and o, mesons are taken as A, ,, = 2500
MeV. The blank denotes that there is no meson contribu-
tion. The detailed values of the phase shifts for the pp, nn,
np scattering are tabulated in Tables 3-6. For all channels

Table 2. Parameters of 0| and o for pvCD-Bonn C. Blanks indicate that the corresponding parameters are zero. The meson masses are in units of
MeV.
85, /41 85, /471 8%, /4n 82, /41 8%, /4n 82, /4n
My Mgy
pp np nn

IS0 5.17 4.00 487 10.40 5.19 3.92 470 1225
3py 432 38.04 432 27.08 434 36.15 500 1225
'p 1.43 73.51 400 1225
3p, 2.29 70.04 2.26 69.76 2.29 73.00 424 1225
3D, 2.56 12.43 452 793
38, 2.29 1.42 452 793
'D, 2.20 202.55 221 201.53 225 198.42 400 1225
3D, 0.67 59.26 350 1225
3F, 1.80 31.65 1.68 35.54 1.78 3232 424 793
3p, 3.29 29.33 3.28 29.48 3.29 29.32 452 1225
1F3 0.90 400
3F3 2.70 45.81 2.82 43.50 2.70 45.81 452 793
3G; 1.68 350
3D; 1.52 350
1G4 3.90 3.90 3.90 452
3Gy 3.90 452
3H, 3.36 3.36 3.36 452
3F, 3.80 3.80 3.80 452
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Table 3.  pp phase shifts for different partial waves, predicted by pvCD-Bonn C.

Tja/MeV 180 3Py 3p 'D, 3p, & 3F, 3F3 1Gy 3F,
1 32.77 0.13 —0.08 0.00 0.01 0.00 0.00 —-0.00 0.00 0.00
5 54.85 1.59 —0.90 0.04 0.22 —0.05 0.00 —0.01 0.00 0.00
10 55.22 3.75 -2.05 0.17 0.66 —-0.20 0.01 —-0.03 0.00 0.00
25 48.69 8.68 —4.90 0.70 2.50 —0.82 0.11 —0.23 0.04 0.02
50 38.94 11.72 —-8.30 1.70 5.83 -1.73 0.34 —-0.69 0.15 0.12

100 24.95 9.62 —-13.31 3.74 10.94 —2.75 0.83 -1.49 0.41 0.51

150 14.76 4.72 —17.49 5.62 13.95 -3.02 1.20 -2.05 0.68 1.05

200 6.59 —-0.51 —21.26 7.23 15.66 -2.90 1.41 —2.41 0.94 1.64

250 —-0.30 =5.61 —24.73 8.55 16.62 -2.57 1.44 —2.65 1.21 221

300 -6.27 —-10.49 —27.93 9.60 17.11 -2.13 1.29 -2.81 1.48 271
Table 4. nn phase shifts for different partial waves, predicted by pvCD-Bonn C.

Ta/MeV 'So ’Py ’Py 'D, P, &2 F °F3 'Gy °Fy
1 57.40 0.21 —0.12 0.00 0.02 0.00 0.00 —-0.00 0.00 0.00
5 60.91 1.86 —-1.04 0.05 0.27 —-0.06 0.00 —-0.01 0.00 0.00
10 57.76 4.11 —2.24 0.18 0.76 -0.22 0.01 —-0.04 0.00 0.00
25 49.07 8.98 -5.13 0.74 2.71 —-0.85 0.11 —-0.24 0.04 0.02
50 38.64 11.73 —8.54 1.77 6.14 -1.76 0.35 —0.70 0.16 0.12

100 24.40 9.45 —13.55 3.86 11.29 -2.75 0.84 —-1.51 0.42 0.52

150 14.13 4.51 -17.74 5.78 14.30 -3.00 1.20 —2.06 0.68 1.07

200 5.94 —0.78 -21.50 7.41 15.99 -2.86 1.39 —2.42 0.95 1.70

250 —0.95 —5.88 —24.96 8.73 16.93 -2.51 1.39 —2.65 1.23 2.24

300 —6.93 -10.69 —28.14 9.77 17.40 —2.06 1.21 —2.80 1.50 2.74
Table 5. np (T = 1) phase shifts for different partial waves, predicted by pvCD-Bonn C.

Tia/MeV 1Sy Py P D, ) &2 3F, 3F3 1G4 3F4
1 62.10 0.18 -0.11 0.00 0.02 0.00 0.00 —-0.00 0.00 0.00
5 63.69 1.62 —0.93 0.04 0.26 —0.05 0.00 —-0.00 0.00 0.00
10 60.03 3.64 —2.05 0.16 0.72 —-0.18 0.01 —-0.03 0.00 0.00
25 50.95 8.14 —4.85 0.68 2.58 —0.76 0.09 —-0.20 0.03 0.02
50 40.45 10.76 —8.25 1.71 5.89 —-1.65 0.31 —0.62 0.13 0.11

100 26.32 8.54 —-13.33 3.83 10.94 —2.66 0.76 -1.38 0.38 0.48
150 16.22 3.67 —17.58 5.77 13.92 -2.95 1.11 -1.91 0.66 1.01
200 8.18 -1.57 -21.40 7.42 15.63 —2.84 1.31 -2.27 0.93 1.60
250 1.44 —6.65 —2491 8.76 16.59 -2.52 1.33 -2.51 1.21 2.16
300 —4.41 —11.43 —28.14 9.82 17.08 -2.09 1.18 —2.68 1.49 2.65

whose total angular momenta are larger than J =4, only
one scalar meson is considered. Its mass and coupling
constant are m, = 452 MeV, g2 /4rx =2.3 for pvCD-Bonn
B, C, and m, = 470 MeV, g2 /4r = 4.3 for pvCD-Bonn A,
following Ref. [29]. The coupling constants and phase
shifts for the pvCD-Bonn A and B potentials are shown
in detail in Appendix A. Finally, y? for the pvCD-Bonn

A, B, C potentials are respectively 3.55x 1073, 1.85x 1073
and 2.24x10™* for the pp interaction, and 8.06x 1072,
1.03x 1072 and 2.65 x 10~ for the np(T = 0) interaction.
The tensor force in the OBE potential is generated not
only by the pion but also by the p and w mesons. In Fig. 7,
the half-on-shell matrix elements for the pion, w and p
mesons for the pvCD-Bonn A, B, C potentials in the
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Table 6. np (T = 0) phase shifts for different partial waves, predicted by pvCD-Bonn C.

Tia/MeV 'p 35 £l 3p, 3p, o 3D, & 3F, 3G,
1 -0.19 147.76 0.10 -0.01 0.01 0.00 0.00 0.00 0.00 0.00
5 -1.50 118.19 0.67 -0.18 0.22 -0.01 0.00 0.01 0.00 0.00
10 -3.08 102.61 1.15 —0.68 0.85 -0.07 0.01 0.08 0.00 0.01
25 —6.42 80.58 1.76 -2.80 3.73 -0.42 0.07 0.55 -0.05 0.17
50 -9.81 62.66 2.04 —6.43 8.98 -1.10 0.38 1.61 -0.26 0.72

100 -14.43 43.02 233 -12.24 17.22 -2.12 1.48 3.48 -0.93 2.16
150 -18.23 30.51 2.67 -16.47 22.08 -2.80 2.69 483 ~1.74 3.63
200 -21.60 21.09 3.09 -19.67 24.54 -3.39 3.69 5.76 -2.56 5.01
250 —24.60 13.46 3.55 -22.15 25.47 -3.99 441 6.39 -3.35 6.26
300 —27.28 6.99 4.02 —24.11 25.47 —4.65 4.82 6.82 -4.07 7.38
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Fig. 7.
at ¢’ =265 MeV.

coupled channels 3§ -*D; and 3P,-*F, are plotted for the
on-shell momentum ¢’ = 265 MeV. The pion provides the
largest attractive contribution in the 3§-*D; channel,
while the tensor component of the p meson is repulsive.
The w meson also gives slight attraction. In the 3P,-*F,
channel, the situations for the pion and p meson are op-
posite. The w meson still provides a slightly attractive
contribution.

3.3 The low-energy scattering parameters and the deu-

teron

Once the NN potentials are determined, they can be
immediately applied to obtain the lower energy NN scat-
tering parameters, such as the scattering length, effective
range, and the binding properties of the deuteron, which
have been accurately measured. At low laboratory en-
ergy, the anti-tangent values of the phase shifts can be ex-
panded as function of momentum. The coefficients of the
first two terms are defined as the scattering length a and
the effective range r. Their values for the 'Sy and 35,

0.0 05 1.0 15 2000 05 1.0 15 2000 05 1.0 15 2.0
q [GeV]
(color onlinr) The off-shell 3§ -3D; (panel above) and 3P,-*F, (panel behind) potentials. The half-on-shell momentum is fixed

q [GeV]

channels of pp, nn, and np scattering for the pvCD-Bonn
A, B, C potentials are given in Table 7. The correspond-
ing experimental results are also shown for comparison. It
can be seen that the theoretical calculations for these po-
tentials with PV pion-nucleon coupling are consistent

Table 7.
length a and the effective range 7 (in units of fm). The Coulomb ef-

The low-energy NN scattering parameters: the scattering

fects are excluded in these data.

A B C experiment references

ay, -17.325 -17.292 -17.255

o 2.820 2.813 2.809
anp  —23711  —23.757 —23.734 —23.74+0.02 [41]
Tnp  2.649 2.649 2.646 2.77+0.05 [41]

a 5.432 5.417 5.417 5.419+0.007 [41]

Tt 1.773 1.753 1.757 1.753+0.008 [41]
anp —18.806  —18.744  —18.741 —18.9+0.4 [42, 43]
Tnn 2.795 2.786 2.784 2.75+0.11 [44]
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with the experiment results.

The deuteron is the only bound state of the np system.
It was found that to describe reasonably its quadrupole
moment, the deuteron wave functions should be a com-
bination of the S and D states. The solution for the deuter-
on bound state corresponds to a pole in the scattering
equation. Therefore, the deuteron wave functions can be
obtained from the scattering equation by introducing the
experimental value of the deuteron binding energy,
B, =2.224575 MeV [40]. From the wave function, the ra-
tio of the D/S states n, the asymptotic S-state normaliza-
tion constant Ag, the root-mean-square radius of the deu-
teron ry, the quadrupole moment Q,, and the D-state
probability Pp, as predicted by the pvCD-Bonn A, B, C
potentials, are listed in Table 8. Apart from the D-state
probability, the other quantities can be measured or ex-
tracted from the experiments. Although these three poten-
tials have different tensor components, they provide sim-
ilar description of the properties of the deuteron, and are
consistent with the experimental data or the empirical
values. It should be noted that the quadruple moment for
the pvCD-Bonn C potential, Q, = 0.273 fm’ is closer to
the experimental data than for the CD-Bonn potential
with PS coupling, Q,=0.270 fm”. Furthermore, the
pvCD-Bonn C potential has the strongest tensor compon-
ent with P, = 6.06%, as shown in Fig. 7. In Ref. [30],
Caia et al. mentioned that Pp, is 0.4%-0.5% higher for PV
coupling than for PS coupling. In this work, Pp for the

pvCD-Bonn C potential is much larger than for the ori-
ginal CD-Bonn potential (4.85%). Pp is strongly related
to the tensor force, to which the pion and w, p mesons
contribute in the CD-Bonn potential. To compare the dif-
ference between the PV and PS couplings, the coupling
constants and the cutoffs for the pvCD-Bonn C potential
and the original CD-Bonn potential are taken in this work
to have the same value, while these parameters were used
in the work of Caia et al. to fit the phase shifts. Therefore,
the differences of Pp for the pvCD-Bonn C potential and
the original CD-Bonn potential are completely due to the
PV and PS couplings.

In Fig. 8, the wave functions of the deuteron in the S-
state, u(r) , and D-state, w(r), for the pvCD-Bonn A, B, C
potentials are shown in coordinate space. These wave
functions were obtained first in the momentum represent-
ation of the Lippmann-Schwinger equation. They were
transformed into the coordinate space by Fourier trans-
formation. For the S-state, the wave functions for the
three potentials are almost identical. There are significant
differences in the wave functions of the D-state in the in-
termediate range, between | —2 fm. This is just the inter-
action range of the tensor force. The wave function of the
pvCD-Bonn C potential has the largest amplitude in the
D-state, which produces the strongest D-state probability.

The deuteron wave functions squared in the mo-
mentum space for the L =0 and [, = 2 states are shown in
Fig. 9 for our three potentials. They are very important

Table 8. The predicted deuteron properties for the pvCD-Bonn A, B, C potentials. 7 is the D/S ratio, A is the asymptotic S-state normalization in fm32,

rq is the deuteron radius in fm, Qy is the quadrupole momentum in fm’ , and Pp is the D-state probability.

A B C experiment references
7 0.0246 0.0250 0.0253 0.0256(4) [45]
Ag 0.8895 0.8860 0.8871 0.8883(44) [46]
rad 1.965 1.967 1.967 1.971(6) [47]
Ou 0.261 0.269 0.273 0.2859(3) [48]
Pp 4.22% 5.45% 6.05%
i I = pvCD-Bonn A 1
-~ [ (@ r (b) —: pvCD-Bonn B ]
? | | ===+ pvCD-Bonn C |
e 04 = -
= ‘ D
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Fig. 8.

(color online) The predicted normalized deuteron wave functions in the configuration space for pvCD-Bonn A, B, C.
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for calculating the electromagnetic form factors of the
deuteron [49]. There is a rapid decrease of [y(k)|* in the S-
state around k =2 fim”', due to the strong repulsion of the
NN interaction at short distances, which changes the sign
of the deuteron wave function. Actually, the behavior of
the deuteron wave functions is similar to the other realist-
ic NN interactions [49, 50]. In the region of small mo-
menta, the wave functions for the pvCD-Bonn A, B, C
potentials are very similar, while there are clear differ-
ences for high momenta, which correspond to the short-
range NN interactions.

Generally speaking, the pvCD-Bonn C potential per-
fectly describes the phase shifts from Nijmegen PWA and
generates the best properties of the deuteron. Its D-state
probability is higher than for the CD-Bonn potential and
the latest N'LO chiral potentials, whose Pp are all around
4%. Actually, the NN potentials with PV coupling usu-
ally generate a larger Pp, which was shown for the Bonn
A, B, C potentials in the work by Caia et al. [30].

4 Summary and outlook

Based on the high-precision CD-Bonn potential, three
revised NN potentials were proposed, called the pvCD-
Bonn A, B, C potentials, where the pion-nucleon coup-
ling was taken as pseudovector instead of the original
pseudoscalar. Besides the pion, the w, p and two scalar
mesons o and o, are also included in these potentials.
To describe more precisely the charge symmetry break-

Appendix A

The coupling constants and masses of o} and o, mesons for
partial waves up to J =4 and the pvCD-Bonn A and pvCD-Bonn B

(color online) The predicted deuteron wave function squared for the S- and D-states in the momentum space for pvCD-Bonn

ing and charge independence breaking in the phase shifts
from Nijmegen PWA, the coupling constants of the o
and o, mesons were fitted independently for each partial
wave. The strengths of the one-pion-exchange compon-
entin the pvCD-Bonn A, B, C potentials are distin-
guished by different cut-off momenta.

The phase shifts from the three potentials in the non-
coupled channels are consistent with Nijmegen PWA.
The only differences appear in the mixing parameters of
the coupled channels due to different tensor components.
The pvCD-Bonn C potential describes very well all phase
shifts from Nijmegen PWA in all channels up to J =4,
which include the strongest pion components. The poten-
tials generate similar properties of the deuteron, such as
the D/S-state ratio, root-mean-square radius and the
quadrupole moment, while the D-state probabilities for
the pvCD-Bonn A, B, C potentials are different, and are
respectively 4.22%, 5.45%, 6.05%.

The original CD-Bonn potential has been applied to
many aspects of nuclear physics and has obtained great
achievements. However, it is very difficult to use in the
relativistic framework due to the pseudoscalar pion-nuc-
leon coupling, which generates a large attractive contri-
bution in the nucleon-antinucleon excitation. Therefore,
three charge-dependent one-boson-exchange potentials
were proposed in this work with pion-nucleon
pseudovector coupling. They could be widely used for
calculating various nuclear many-body problems in the
relativistic framework, and for investigating the relativist-
ic and tensor force effects.

potentials are listed in Tables A1 and A2. The corresponding phase
shifts for pp, nn, and np are given in Tables A3—-A10.
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Table Al. Parameters of 0| and o adopted in pvCD-Bonn A potential. Blanks indicate the corresponding parameters taken as zero. Meson masses in
unit MeV.

g%, /4 g%, /4 g%, /4 g%, /4w g%, /4 g%, /4n
m{,-l I’l’la—2
pp np nn

1S 5.17 2.13 4.65 435 5.19 2.10 470 793
3Py 6.37 8.53 6.38 7.98 6.39 8.52 560 793
P, 0.64 11.16 350 793
3p 0.93 10.123 0.93 9.84 0.93 10.12 350 793
3D,
384 2.20 9.89 452 793
D, 0.93 32.19 0.94 32.00 0.93 32.35 350 793
3D, 1.27 15.22 452 793
3F, 0.40 59.78 0.53 45.06 0.39 60.69 350 793
3p, 0.93 14.69 0.92 14.76 0.93 14.69 350 793
1F3 0.99 350
3F3 1.74 36.28 1.68 38.02 1.77 36.5 400 793
3G; 2.51 400
3Ds 1.6 1.8 400 793
1G4 4.7 49 47 470
3Gy 2.6 470
3H, 45 45 4.5 470
3Fy 45 45 4.5 470

Table A2. Parameters of o1 and o adopted in pvCD-Bonn B potential. Blanks indicate the corresponding parameters taken as zero. Meson masses in
unit MeV.

85, /41 85, /471 8%, /4n 82, /41 8%, /4n 82, /4n
My Mgy
pp np nn

180 5.19 5.30 4.89 11.54 5.20 5.58 470 1225
3P, 5.07 43.42 5.06 34.10 5.09 42.87 520 1225
'p 0.74 89.73 350 1225
3p, 2.36 52.46 2.42 40.79 2.38 52.09 424 1225
3D, 1.88 1.30 452 793
381 1.83 6.74 452 793
'D, 2.19 208.07 2.20 206.78 223 32.35 400 1225
3D, 1.45 21.33 424 1225
3F, 1.87 23.97 1.86 24.09 1.86 23.79 424 793
3p, 3.28 30.14 3.26 30.45 3.29 30.08 452 1225
1ps 0.90 350
3F3 3.01 40.82 2.96 41.32 3.02 40.90 452 793
3G; 0.90 350
3D; 0.80 5.54 350 793
Gy 3.83 3.85 3.83 452
3G, 3.60 470
3H, 3.74 3.78 3.74 452
3F, 3.74 3.78 3.74 452
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Table A3. pp phase shifts in different partial waves, predicted by pvCD-Bonn A.

Tja/MeV 180 3Py 3p 'D, 3p, & 3F, 3F3 1Gy 3F,
1 32.82 0.14 -0.08 0.00 0.02 0.00 0.00 -0.00 0.00 0.00
5 54.84 1.60 -0.90 0.04 0.24 -0.05 0.00 -0.01 0.00 0.00
10 55.18 3.78 -2.04 0.17 0.71 -0.21 0.01 -0.03 0.00 0.00
25 48.63 8.70 —4.89 0.71 2.62 -0.83 0.11 -0.23 0.04 0.02
50 38.89 11.71 -8.29 1.72 5.93 -1.76 0.35 -0.69 0.15 0.12

100 24.93 9.61 -13.34 3.74 10.89 -2.74 0.82 -1.49 0.42 0.50
150 14.78 4.73 -17.53 5.62 13.89 -2.95 1.16 -2.04 0.68 1.03
200 6.65 —0.49 -21.27 7.25 15.67 -2.74 1.36 -2.43 0.94 1.63
250 -0.20 -5.60 —24.68 8.58 16.70 -2.31 1.40 -2.72 1.21 221
300 —6.12 -10.50 -27.82 9.59 17.20 -1.77 1.29 -2.96 1.48 2.74

Table A4. nn phase shifts in different partial waves, predicted by pvCD-Bonn A.

Ta/MeV 'So ’Py ’Py 'D, P, &2 F °F3 'Gy °Fy
1 57.45 0.21 —0.12 0.00 0.03 0.00 0.00 —-0.00 0.00 0.00
5 60.89 1.87 —1.04 0.05 0.30 —0.06 0.00 —-0.01 0.00 0.00
10 57.71 4.14 —2.24 0.19 0.82 —0.22 0.02 —-0.04 0.00 0.00
25 49.01 9.00 =5.12 0.75 2.84 —0.86 0.11 —0.24 0.04 0.02
50 38.59 11.71 —8.54 1.78 6.23 -1.79 0.35 —-0.71 0.16 0.12

100 24.38 9.43 —-13.61 3.83 11.23 —2.75 0.82 —-1.50 0.42 0.51
150 14.15 4.51 —17.82 5.75 14.23 -2.93 1.17 -2.05 0.69 1.06
200 6.00 —0.76 —21.57 7.40 15.99 -2.70 1.36 —2.43 0.95 1.66
250 —0.84 -5.87 —24.99 8.75 16.98 —2.25 1.40 —2.71 1.22 2.25
300 —6.78 —-10.70 —28.14 9.77 17.47 —-1.70 1.29 —2.95 1.49 2.78

Table A5. np (T = 1) phase shifts in different partial waves, predicted by pvCD-Bonn A.

Tia/MeV ISo 3P 3P 'D, 3P, &2 3F, 3F; LG, 3F4
1 62.07 0.18 -0.11 0.00 0.02 0.00 0.00 —0.00 0.00 0.00
5 63.67 1.63 —-0.93 0.04 0.28 —-0.05 0.00 —-0.00 0.00 0.00
10 60.03 3.66 —2.04 0.16 0.77 —-0.19 0.01 —0.03 0.00 0.00
25 50.98 8.14 —4.82 0.70 2.68 -0.77 0.09 —-0.20 0.03 0.02
50 40.52 10.73 —8.22 1.73 5.94 -1.67 0.32 —0.62 0.14 0.10

100 26.43 8.51 -13.33 3.83 10.82 —2.64 0.77 -1.38 0.39 0.47
150 16.34 3.66 -17.59 5.77 13.79 —2.86 1.10 -1.91 0.66 1.00
200 8.32 -1.56 —21.38 7.44 15.56 -2.65 1.27 -2.27 0.94 1.59
250 1.58 —6.64 —24.84 8.78 16.59 -2.22 1.26 -2.51 1.22 2.17
300 —4.26 —11.43 —28.01 9.79 17.11 —1.68 1.09 —2.68 1.50 2.69
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Table A6. np (T = 0) phase shifts in different partial waves, predicted by pvCD-Bonn A.

Tia/MeV 'p 38, £l 3D, 3D, 'R, 3D, & 3F, 3Gy
1 —-0.19 147.69 0.10 —-0.01 0.01 0.00 0.00 0.00 0.00 0.00
5 -1.53 118.00 0.59 —0.18 0.23 —0.01 0.00 0.01 0.00 0.00
10 —-3.13 102.36 0.96 —-0.67 0.86 —-0.07 0.01 0.08 0.00 0.01
25 —6.51 80.23 1.24 -2.77 3.76 —0.42 0.06 0.56 —0.05 0.17
50 -9.92 62.20 0.98 —6.38 9.00 —-1.12 0.34 1.64 -0.26 0.73

100 -14.49 42.50 0.17 —12.11 17.21 -2.17 1.45 3.56 —0.94 2.20
150 —-18.23 29.99 —0.55 -16.22 22.09 —2.87 2.70 4.94 -1.75 3.67
200 —21.56 20.63 -1.19 -19.22 24.55 —3.44 3.72 5.89 —2.54 5.02
250 —24.60 13.08 -1.76 —21.43 25.44 —4.02 4.40 6.54 —-3.26 6.23
300 —27.40 6.73 -2.29 —23.07 25.34 —4.65 4.75 6.98 —3.88 7.29

Table A7. pp phase shifts in different partial waves, predicted by pvCD-Bonn B.

Ta/MeV 'So ’Py ’Py 'D, P, &2 F °F3 'Gy °Fy
1 32.80 0.14 -0.08 0.00 0.01 0.00 0.00 —-0.00 0.00 0.00

5 54.85 1.59 —0.90 0.04 0.22 —0.05 0.00 —0.01 0.00 0.00
10 55.21 3.76 —2.05 0.17 0.66 -0.20 0.01 —0.03 0.00 0.00
25 48.67 8.69 —4.91 0.70 2.51 —0.82 0.11 —0.23 0.04 0.02
50 38.92 11.72 —8.30 1.71 5.83 -1.74 0.35 —0.69 0.15 0.12
100 24.94 9.62 —-13.30 3.74 10.95 —2.75 0.83 -1.50 0.41 0.50
150 14.77 4.73 —17.49 5.62 13.97 -3.01 1.19 —2.05 0.68 1.04
200 6.62 —-0.50 —21.28 7.23 15.69 —2.86 1.39 —2.40 0.94 1.63
250 -0.25 —5.60 —24.77 8.55 16.65 -2.50 1.39 —2.64 1.21 2.19
300 —-6.20 -10.49 —28.01 9.60 17.15 —2.03 1.22 —2.81 1.47 2.68

Table A8. nn phase shifts in different partial waves, predicted by pvCD-Bonn B.

Tia/MeV ISo 3P 3P 'D, 3P, &2 3F, 3F; LG, 3F4
1 57.40 0.21 —-0.12 0.00 0.02 0.00 0.00 —0.00 0.00 0.00

5 60.90 1.86 -1.04 0.05 0.27 -0.06 0.00 —0.01 0.00 0.00
10 57.75 4.12 —2.24 0.18 0.76 -0.22 0.01 —0.04 0.00 0.00
25 49.06 8.98 -5.13 0.74 2.72 —0.85 0.11 —-0.24 0.04 0.02
50 38.66 11.72 —8.53 1.77 6.14 -1.78 0.35 —0.71 0.16 0.12
100 24.44 9.44 -13.53 3.86 11.30 -2.76 0.84 -1.52 0.42 0.52
150 14.21 4.51 -17.73 5.78 14.31 -2.99 1.20 —2.06 0.69 1.06
200 6.05 -0.77 —21.52 7.40 16.00 —2.82 1.39 —2.42 0.95 1.65
250 —0.80 —5.88 —25.02 8.73 16.93 —2.44 1.39 —2.65 1.22 222
300 —6.75 —-10.69 —28.26 9.78 17.40 -1.96 1.21 —2.81 1.49 2.71
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Table A9. np (T = 1) phase shifts in different partial waves, predicted by pvCD-Bonn B.
Tja/MeV 180 3Py 3p 'D, 3p, & 3F, 3F3 1Gy 3F,
1 62.10 0.18 —0.11 0.00 0.02 0.00 0.00 —0.00 0.00 0.00
5 63.68 1.62 —-0.93 0.04 0.25 —-0.05 0.00 —0.00 0.00 0.00
10 60.02 3.64 —2.04 0.16 0.72 -0.19 0.01 —0.03 0.00 0.00
25 50.94 8.14 —4.83 0.69 2.57 —-0.76 0.09 —-0.20 0.03 0.02
50 40.44 10.75 -8.19 1.72 5.86 —1.66 0.31 —0.62 0.14 0.11
100 26.33 8.53 —13.24 3.83 10.89 —2.66 0.77 -1.38 0.39 0.48
150 16.26 3.67 -17.51 5.77 13.87 -2.93 1.12 -1.92 0.66 1.01
200 8.25 -1.56 —21.38 7.42 15.59 —2.80 1.30 —2.27 0.94 1.59
250 1.53 —6.64 —24.95 8.76 16.56 —2.45 1.29 —2.51 1.22 2.15
300 —4.28 —11.43 —28.27 9.82 17.07 -1.99 1.10 —2.68 1.50 2.65
Table A10. np (T = 0) phase shifts in different partial waves, predicted by pvCD-Bonn B.
Tia/MeV 'p, 381 £l 3D 3D, U 3D; &3 3F; 3G,
1 —-0.19 147.76 0.10 —-0.01 0.01 0.00 0.00 0.00 0.00 0.00
5 -1.50 118.21 0.64 —-0.18 0.22 —-0.01 0.00 0.01 0.00 0.00
10 -3.07 102.65 1.08 —0.68 0.85 —-0.07 0.01 0.08 0.00 0.01
25 —6.38 80.65 1.57 -2.80 3.73 -0.42 0.07 0.56 —-0.05 0.17
50 -9.75 62.72 1.65 —6.43 8.97 -1.11 0.38 1.62 —-0.26 0.72
100 -14.41 43.04 1.54 -12.24 17.22 -2.13 1.48 3.51 —-0.93 2.18
150 —18.24 30.45 1.50 —16.47 22.12 -2.82 2.69 4.86 -1.74 3.65
200 —21.58 20.96 1.54 -19.67 24.58 -3.40 3.69 5.79 -2.56 5.02
250 —24.50 13.25 1.63 —22.15 25.48 -3.99 4.40 6.42 -3.45 6.27
300 -27.07 6.71 1.74 —24.11 25.38 —4.65 4.80 6.85 —4.07 7.38
Appendix B
The BbS equation in this work was solved in the LSJ basis. ) R 1
Therefore, the matrix elements for the pvCD-Bonn potentials are Vold'.) = —g(rﬁ(q')u(q)mﬁ(—q’)u(—q)
expressed in the LSJ basis. There are many references where the L WW o1q o1-q o2 q T2
one-boson-exchange (OBE) potentials in the LS/ basis are formu- =8 (1 “Tww )(1 “Tww )
lated in detail, such as Refs. [11, 12, 29]. From the quantum field 1
theory, the OBE potentials are derived from the free nucleon scat- x R+md ®2)
tering amplitudes as shown in Eq. (6), where the Dirac spinor is ob-
;aulr;ei by solving the free Dirac equation, and is normalized by V) = —%{ﬁ(q’)ysyku(q)mﬁ(—q’)frku(—q)
up. = | LHE % )u), B1) —’% ZVA‘; [(E’—E+2M)‘T;l;,q’ —(E—E’+2M)U-;‘;q}
where 1= i%) is the spin wave function. Here, the anti-nucleon de- X|(E"'~E+2M) U;;/q, —(E-E' +2M) 0-;;‘1]
gree of freedom is neglected. The exact expressions for the o 1
meson, pion with pseudovector coupling, and w meson can be ex- X K +md ®3)

panded in terms of the Dirac spinor as
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Vold'.9) = g2i(q’ W) ol 4)yuu(=q)
-2 5 [(H";ﬁ o
e [
xﬁ, (B4)

where the wave functions of the spin and isospin operators are
omitted, and W’ = E’+M and W = E + M. The expression for the p
meson is more complicated than for the other mesons due to the

tensor coupling:

Vo(q'.q) =ii(q") [gpyu + ﬁ(h)’ k- ku)] u(‘l)ﬁ

(= q)[gp7“+ (7"7 k- k“)]u( 9 (B3)

where y* = (y°,y) is the conventional gamma matrix, and k* = (0, k)
is the relative four-momentum of the two interacting nucleons. The
matrix element for the p meson (15) is divided into 3 parts,
V= Vi + Vi + Vi The vector-vector coupling part is

Vilq'.q) = gi(q )y“u(q) u( 4)yuu(=9),

which is identical to the w meson potential (B2). The vector-tensor
coupling is

V(g q) = g"f" [ (g Yy @i(—q )Py - k=K yu(-q)
+i1(q )y - k= Ju(@ia(—q 1y u(- q)]ﬁ. (B6)
The tensor-tensor coupling is written as,
i ’ _ fﬂz — 7 k
Vulg', @) = e g ) vy - —ku)u(q)m
a(—q )y - k—k)u(-q). (B7)

The full pvCD-Bonn potentials (9) are the sum of all meson
contributions. In the above expressions, the spin structure of the
Dirac spinor is strongly dependent on the spin wave functions of
the in- and out- scattering states. The expectation values of the spin
structure are calculated with the spin wave function. To simplify
the computational process, the helicity representation is adopted,
where the spin is quantized along the direction of initial and final
momenta, |1). In principle, there are 16 terms for (2] }|V(q’, g)l41 12),
since each helicity A4 can be 1/2 or —1/2. Due to parity conserva-
tion and time-reversal invariance in the scattering of two identical
fermions, only six matrix elements are independent:

Vi@ ) =+ +IV (¢ .l ++),
Vi) =+ +IV (g .l =),
Vi(q'.) =+=IV(q .l +-),
Vi) =(+ =1V .l =),
Vi(q'.q) =+ +IV/ (¢ .l + -,
Vo (d' ) =+=IV(q .l ++), (BS)

where the momentum angle dependence is integrated by

MBIV (¢ gl a) = f dﬂdﬁl,Ml,/{,2<A;A§|V<q',q)wz>. (B9)

The total angular momentum J is conserved in two-nucleon scatter-

ing. dﬁl—lz vy denotes the reduced rotation matrices, which are
20170

expressed as,

dé():P/’
Py +JtP
(+0d!, %Wj,
(1-nd!,, =2,
singd{, = —sin6dy = J—il(tP/—Pj_l), (B10)

where 7 = cos = §’ - ¢ and P,(r) are the Legendre polynomials.
In the center-of-mass frame, the helicity states for the nucleon
with momenta ¢ and ¢’ can be constructed by

|+>:((‘)), |—>:(?),

0 0 0 0
after scattering : (4| = (cos E,sin 5), (-] = (— sin E’COS 5), (B11)

before scattering :

1 1
where + represents A = +5 and - represents A = -3 The correspond-

ing helicity states for momenta —g and —¢’ are similarly shown to

be,
m=(1)  P=(o)

. .0 6 6 .0
after scattering : (+|_(—s1n5,cos§), (—I_(cosi,smi). (B12)

before scattering :

With the expressions for the reduced rotation matrices and helicity
states, the integrals in Eq. (B9) contain the following seven types:

1

Pyt

1‘}”:[ dr 40 - = 0ra) (B13a)
-1 g+ =2 qtvmg q'q

1 Y 210
V= FRLEl0) (B13b)
29q )1 z-t
11 JtPy+Py_
- - M, (B13c)
S 2¢7q J+1 7—t
yPr=P
(J%) J—Py- 1’ (B13d)
2qq J+
1 2P
@ = f dr—2 (B13¢)
7 T 2qq z—t’
11 JR2P;+1P;_
55): _ Pl N (B13f)
2q'q J+1 J_y z—t
2
g PP
(]6) EPy—tP1 (B13g)
qu J+

The first equation in (B13a) can be worked out as the Legendre
polynomial of the second kind

P
0/ =1 f a2, B14)

t

222
%. The coupled channels in the BbS equation
99

are expressed more easily with the following linear combinations
of matrix elements in Eq. (B8). For spin-singlet (S = 0) channel, it
is

where z=
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Oyl =vi-v]. (B15)
The uncoupled spin-triplet (S = 1, L = J) channel is given as
vl=vi-v], (B16)
while the coupled spin-triplet (S = 1) channels have
2yl =vi+vy,
Myl =vi+ vy,
Sy v,
86yT =pv]. (B17)
Therefore, the contribution of the o meson to the NN potentials
in the helicity basis can be written as
VI ) =CoFLTY + LD,
Vi) =Co(FQTY + FOIP),
VI ) =CoFP 1Y + FPID),
VI ) =Co(FPTY + FPIP),
VI ) =CaFSTY,
VI )= Va.q)- (B18)

where the coefficient for the o meson is

M Mg 1
=4 =4/=2 ) Bl
Co E' N E 47 2nM2 (BI9)

FO = +EE), FV = ¢'q and F¥ = M(E' + E).
The NN interaction matrix elements in the helicity basis for the

pseudovector coupling of the pion are

OV,{ :C}'}V(F(O) 1O L (D I(l))

pvat g pvet g
0) 70 1 2
Vi == CRERIY + Flod )
1) 40 0) 4(1
BV =CR il + Fyxl )

1) 40 2) 4(2
BV == Y FpRl) + Fad )

BVl =Cl F 1Y
v =P FSI. (B20)

with the coefficient

M? f2M2 7T
cl = e > (B21)
E'E\ am? | 22M
and
E’—E2
FO —EE-M+EE+3m) E—E
4M2
2
w_ ., ., (E-E)
Fr'=—q AR K yvoant
E-E
FO =_(E'+E)? o (B22)

Similarly, the matrix elements for the w meson in the helicity basis
are

Ov! =C,QE'E-M)IY,

W) =Co(E'EIY +4'qIP),

2y) =Co2q' gl + M 1Y),
v =Culq gl +E'EIY),
Sv) =-CuMEI},
oy) =—Cc,ME'I). (B23)

with the coefficient

2 2
There are two couplings between the p meson and nucleon, the
vector coupling and the tensor coupling. Therefore, three compon-
ents are generated in the matrix elements for the NN interaction of
the p meson. The first one is obtained for the vector-vector coup-
ling, and has a similar form as for the w meson in Eq. (B23), ex-
cept that the coefficient is replaced by

2
& D [ M2
Cww = 4r aM? N EE’ (B25)

The second component comes from the vector-tensor coupling:
V= CuMiq”? +aH1 -2/ g1,
Wi = CuM(~(q” + I +24'ql ),
V= CuM6q'qly =3 + 1)),
vl = CuMQq' ql? — (¢ + DI,
Syl = CulE' ¢ +3E4HI,

V) = CulEq? +3E' )1, (B26)
with
2 2 M2
c, = Sl 1T A=, (B27)
axM, 22m> N EE’

where M, is the proton mass, taken as the scaling mass in the
tensor coupling between the p meson and nucleon. The last contri-
bution is from the tensor-tensor coupling:

OV =Cu{(q”? + IBE E+ M)
+lg? +q? = 2GE'E+ Mg gl - 2471},
Wi =Cu{l44”¢* + (¢ + ¢\ E'E- MY
+2AE'E+ MM gl - (q% +q* +4E'E)g'qIP - 24" 4717},
2vi =C {14M* =34 + gD)g gl
+169"°q* - (¢ + ") E'E+3MH)I"
+2E'E+M*)q gl P},
Vi =Cu{~(q"? + @ +4E' E)g gl - 24" 1)
+ 44”7 + (g + @ )E'E- MY
+2(E'E+M*)q' g1},
BV =CuM((E'(q” +4*) + EGq”> - g1
-2(E'+E)q qI}}.

66V[Jt :CnM{[E'(q/2+q2)+E(3q2 _q/Z)]I(]3)

-2E+E)qg I},
with
2 oan [m2
Cu= \ = B28
"7 4xM2 8xM? N EE’ (B28)

Furthermore, another representation, |LSJ), is more conveni-
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ently applied to the studies of NN scattering and nuclear matter,
where L,S denote the orbital angular momentum and spin. J is the
total angular momentum. In the |LS J) basis, the matrix elements are
denoted as V/5 =(L’SJ|VILS J), which can be obtained by a unitary
transformation of those obtained in the helicity basis in (B16)—
(B17). In the spin-singlet (S =0, L=J) and the uncoupled spin-
triplet (S =1, L=J) channels, the matrix elements in the helicity
basis and in |LS J) are identical,
JO_0y/J
iy 2
=
The potentials in the |LSJ) basis in the coupled spin-triplet
(S = 1) channels are combined by

1
J1 — 12y,J 34v,J
VJ_U_I_ZJH[J v+ I+ DMy

+ I+ DOV V)

1
J1 12y,J 34y,
Vl+1]+]=—21+1[(1+1) v/ Py

—NIT+DEVI 507,
1
J1 12y,J _34y,J
Vi =55 [VIG+ DV )
=PV L+ D)%V,
1
J1 12y,0 _34y,J
Vil =577 [T+ DOV =)

+(J+ 1V - 8o,

References

1 H. Yukawa, Proc. Phys. Math. Soc. Jpn., 17: 48 (1935)
2 M. Bender and P. -H. Heenen, Rev. Mod. Phys., 75: 121 (2003)
3 J. R. Stone and P. -G. Reinhard, Prog. Part. Nucl. Phys., 58: 587
(2007)
4 P.Ring, Prog. Part. Nucl. Phys., 37: 193 (1996)
5 D. Vretenar, A. V. Afanasjev, G. A. Lalazissis et al, Phys. Rep.,
409: 101 (2005)
6 J. Meng, H. Toki, S. G. Zhou et al, Prog. Part. Nucl. Phys., 57:
470 (2006)
7 T. Niksi¢, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys., 66:
519 (2011)
8 T. Hamada and I. D. Johnston, Nucl. Phys., 34: 382 (1962)
9 R.V.Reid, Ann. Phys. (NY), 50: 411 (1968)
10 K. Erkelenz, Phys. Rep., 13: 191 (1974)
11 R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep., 149: 1
(1987)
12 R. Machleidt, Adv. Nucl. Phys., 19: 189 (1989)
13 V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen et al, Phys.
Rev. C, 49: 2950 (1994)
14 R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C,
51: 38 (1995)
15 S. Weinberg, Phys. Lett. B, 251: 288 (1990)
16 S. Weinberg, Nuclear Phys. B, 363: 3 (1991)
17 S. Weinberg, Phys. Lett. B, 295: 114 (1992)
18 C. Ordoiiez, L. Ray, and U. van Kolck, Phys. Rev. Lett., 72: 1982
(1994)
19 C. Ordoiiez, L. Ray, and U. van Kolck, Phys. Rev. C, 53: 2086
(1996)
20 E. Epelbaum, W. Glockle, and U.-G. Meifiner, Nucl. Phys. A,
637: 107 (1998)
21 E. Epelbaum, W. Glockle, and U.-G. Meifiner, Nucl. Phys. A,
671: 295 (2000)
22 D. R. Entem and R. Machleidt, Phys. Rev. C, 68: 041001(R)
(2003)
23 E. Epelbaum, W. Glockle, and U.-G. Meifiner, Nucl. Phys. A,
747: 362 (2005)
24 D. R. Entem, N. Kaiser, R. Machleidt et al, Phys. Rev. C, 91:

25

26

27

28

29
30

31
32

33
34

35

36
37
38
39
40
41
)
43
44

45
46

47
48

49
50

114107-18

014002 (2015)

E. Epelbaum, H. Krebs, and U.-G. MeiBner, Eur. Phys. J. A, 51:
53 (2015)

E. Epelbaum, H. Krebs, and U.-G. MeifBner, Phys. Rev. Lett.,
115: 122301 (2015)

D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C, 96:
024004 (2017)

P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A, 54: 76
(2018)

R. Machleidt, Phys. Rev. C, 63: 024001 (2001)

G. Caia, J. W. Durso, Ch. Elster et al, Phys. Rev. C, 66: 044006
(2002)

M. Lacombe et al, Phys. Rev. D, 12: 1495 (1975)

A. D. Jackson, D. O. Riska, and B. Verwest, Nucl. Phys. A, 249:
397 (1975)

S. K. D. Drechsel and L. Tiator, J. Phys. G, 18: 449 (1992)

S. K. D. Drechsel, O. Hanstein, and L. Tiator, Nucl. Phys. A, 645:
145 (1999)

C. Fuchs, T. Waindzoch, A. Faessler et al, Phys. Rev. C, 58: 2022
(1998)

R. Brockmann and R. Machleidt, Phys. Rev. C, 42: 1965 (1990)
R. Blankenbecler and R. Sugar, Phys. Rev., 142: 1051 (1966)

R. H. Thompson, Phys. Rev. D, 1: 110 (1970)

V. G. Kadyshevsky, Nucl. Phys. B, 6: 125 (1968)

M. Haftel and F. Tabakin, Nucl. Phys. A, 158: 1 (1970)

. L. Houk, Phys. Rev. C, 3: 1886 (1971)

R. Howell et al, Phys. Lett. B, 444: 252 (1998)

E. Gonzalez Trotter et al, Phys. Rev. Lett., 83: 3788 (1999)

9

L

—

. A. Miller, M. K. Netfkens, and I. Slaus, Phys. Rep., 194: 1
990)

. Rodning and L. D. Knutson, Phys. Rev. C, 41: 898 (1990)
. W. Kermode, S. Klarsfeld, D. W. L. Sprung et al, J. Phys. G,
9: 57 (1983)
J. Martorell, D. W. L. Sprung, and D. C. Zheng, Phys. Rev. C, 51:
1127 (1995)
D. M. Bishop and L. M. Cheung, Phys. Rev. A, 20: 381 (1979)
R. Gilman and F. Gross, J. Phys. G, 28: R37 (2002)
S. K. Bogner and R. J. Furnstahl, Phys. Lett. B, 632: 501 (2006)

Zz2AQoo

£


http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/0029-5582(62)90228-6
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1016/0370-1573(74)90008-8
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1140/epja/i2015-15053-8
http://dx.doi.org/10.1103/PhysRevLett.115.122301
http://dx.doi.org/10.1103/PhysRevC.96.024004
http://dx.doi.org/10.1140/epja/i2018-12530-6
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.66.044006
http://dx.doi.org/10.1103/PhysRevD.12.1495
http://dx.doi.org/10.1016/0375-9474(75)90666-1
http://dx.doi.org/10.1088/0954-3899/18/3/004
http://dx.doi.org/10.1016/S0375-9474(98)00572-7
http://dx.doi.org/10.1103/PhysRevC.58.2022
http://dx.doi.org/10.1103/PhysRevC.42.1965
http://dx.doi.org/10.1103/PhysRev.142.1051
http://dx.doi.org/10.1103/PhysRevD.1.110
http://dx.doi.org/10.1016/0550-3213(68)90274-5
http://dx.doi.org/10.1016/0375-9474(70)90047-3
http://dx.doi.org/10.1103/PhysRevC.3.1886
http://dx.doi.org/10.1016/S0370-2693(98)01386-0
http://dx.doi.org/10.1103/PhysRevLett.83.3788
http://dx.doi.org/10.1016/0370-1573(90)90102-8
http://dx.doi.org/10.1103/PhysRevC.41.898
http://dx.doi.org/10.1088/0305-4616/9/1/010
http://dx.doi.org/10.1103/PhysRevC.51.1127
http://dx.doi.org/10.1103/PhysRevA.20.381
http://dx.doi.org/10.1088/0954-3899/28/4/201
http://dx.doi.org/10.1016/j.physletb.2005.10.094
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/0029-5582(62)90228-6
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1016/0370-1573(74)90008-8
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1140/epja/i2015-15053-8
http://dx.doi.org/10.1103/PhysRevLett.115.122301
http://dx.doi.org/10.1103/PhysRevC.96.024004
http://dx.doi.org/10.1140/epja/i2018-12530-6
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.66.044006
http://dx.doi.org/10.1103/PhysRevD.12.1495
http://dx.doi.org/10.1016/0375-9474(75)90666-1
http://dx.doi.org/10.1088/0954-3899/18/3/004
http://dx.doi.org/10.1016/S0375-9474(98)00572-7
http://dx.doi.org/10.1103/PhysRevC.58.2022
http://dx.doi.org/10.1103/PhysRevC.42.1965
http://dx.doi.org/10.1103/PhysRev.142.1051
http://dx.doi.org/10.1103/PhysRevD.1.110
http://dx.doi.org/10.1016/0550-3213(68)90274-5
http://dx.doi.org/10.1016/0375-9474(70)90047-3
http://dx.doi.org/10.1103/PhysRevC.3.1886
http://dx.doi.org/10.1016/S0370-2693(98)01386-0
http://dx.doi.org/10.1103/PhysRevLett.83.3788
http://dx.doi.org/10.1016/0370-1573(90)90102-8
http://dx.doi.org/10.1103/PhysRevC.41.898
http://dx.doi.org/10.1088/0305-4616/9/1/010
http://dx.doi.org/10.1103/PhysRevC.51.1127
http://dx.doi.org/10.1103/PhysRevA.20.381
http://dx.doi.org/10.1088/0954-3899/28/4/201
http://dx.doi.org/10.1016/j.physletb.2005.10.094
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/0029-5582(62)90228-6
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1016/0370-1573(74)90008-8
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/0029-5582(62)90228-6
http://dx.doi.org/10.1016/0003-4916(68)90126-7
http://dx.doi.org/10.1016/0370-1573(74)90008-8
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1103/PhysRevLett.72.1982
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevC.91.014002
http://dx.doi.org/10.1140/epja/i2015-15053-8
http://dx.doi.org/10.1103/PhysRevLett.115.122301
http://dx.doi.org/10.1103/PhysRevC.96.024004
http://dx.doi.org/10.1140/epja/i2018-12530-6
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.66.044006
http://dx.doi.org/10.1103/PhysRevD.12.1495
http://dx.doi.org/10.1016/0375-9474(75)90666-1
http://dx.doi.org/10.1088/0954-3899/18/3/004
http://dx.doi.org/10.1016/S0375-9474(98)00572-7
http://dx.doi.org/10.1103/PhysRevC.58.2022
http://dx.doi.org/10.1103/PhysRevC.42.1965
http://dx.doi.org/10.1103/PhysRev.142.1051
http://dx.doi.org/10.1103/PhysRevD.1.110
http://dx.doi.org/10.1016/0550-3213(68)90274-5
http://dx.doi.org/10.1016/0375-9474(70)90047-3
http://dx.doi.org/10.1103/PhysRevC.3.1886
http://dx.doi.org/10.1016/S0370-2693(98)01386-0
http://dx.doi.org/10.1103/PhysRevLett.83.3788
http://dx.doi.org/10.1016/0370-1573(90)90102-8
http://dx.doi.org/10.1103/PhysRevC.41.898
http://dx.doi.org/10.1088/0305-4616/9/1/010
http://dx.doi.org/10.1103/PhysRevC.51.1127
http://dx.doi.org/10.1103/PhysRevA.20.381
http://dx.doi.org/10.1088/0954-3899/28/4/201
http://dx.doi.org/10.1016/j.physletb.2005.10.094
http://dx.doi.org/10.1140/epja/i2015-15053-8
http://dx.doi.org/10.1103/PhysRevLett.115.122301
http://dx.doi.org/10.1103/PhysRevC.96.024004
http://dx.doi.org/10.1140/epja/i2018-12530-6
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.66.044006
http://dx.doi.org/10.1103/PhysRevD.12.1495
http://dx.doi.org/10.1016/0375-9474(75)90666-1
http://dx.doi.org/10.1088/0954-3899/18/3/004
http://dx.doi.org/10.1016/S0375-9474(98)00572-7
http://dx.doi.org/10.1103/PhysRevC.58.2022
http://dx.doi.org/10.1103/PhysRevC.42.1965
http://dx.doi.org/10.1103/PhysRev.142.1051
http://dx.doi.org/10.1103/PhysRevD.1.110
http://dx.doi.org/10.1016/0550-3213(68)90274-5
http://dx.doi.org/10.1016/0375-9474(70)90047-3
http://dx.doi.org/10.1103/PhysRevC.3.1886
http://dx.doi.org/10.1016/S0370-2693(98)01386-0
http://dx.doi.org/10.1103/PhysRevLett.83.3788
http://dx.doi.org/10.1016/0370-1573(90)90102-8
http://dx.doi.org/10.1103/PhysRevC.41.898
http://dx.doi.org/10.1088/0305-4616/9/1/010
http://dx.doi.org/10.1103/PhysRevC.51.1127
http://dx.doi.org/10.1103/PhysRevA.20.381
http://dx.doi.org/10.1088/0954-3899/28/4/201
http://dx.doi.org/10.1016/j.physletb.2005.10.094

