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Effects of σ∗ and φ on the proto-neutron star PSR J0348+0432 *
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Abstract: The influence of σ∗ and φ on the proto-neutron star (PNS) PSR J0348+0432 is described by the

relativistic mean field theory (RMFT) through choosing effective coupling constants. We use an entropy per baryon

S = 1 to describe the thermal effects on PSR J0348+0432 in this work and compare this PNS with and without

σ∗, φ. These effects include the particle number distribution, mass-radius relation, moment of inertia and surface

gravitational redshift. The PNS PSR J0348+0432 with σ∗ and φ has more nucleons and will push forward the

threshold for the appearance of the hyperons. The mass-radius relations are (2.010M¯, 12.6520 km) with σ∗ and

φ and (2.010M¯, 12.6170 km) without σ∗ and φ. The moments of inertia corresponding to PNS PSR J0348+0432

are (2.010M¯, 1.510×10
45 g·cm2) and (2.010M¯, 1.559×10

45 g·cm2) respectively, and the surface gravitational

redshifts are (2.010M¯, 0.3747) and (2.010M¯, 0.3701) respectively. With the help of these calculations, we study

the restriction of σ∗ and φ on the interactions between baryons in the PNS core.
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1 Introduction

Neutron stars are compact stars, and exist under ex-
treme physical conditions. Recently, the gravitational
wave event GW170817 was detected from a binary neu-
tron star inspiral, making neutron stars a hot research
topic [1, 2]. It is meaningful to study them theoret-
ically with various methods. In particular, a mass of
1.97±0.04M¯ for the massive neutron star PSR J1614-
2230 was obtained using the Shapiro delay method by
Demorest et al in 2010 [3], and a mass of 2.01±0.04M¯

was measured for PSR J0348+0432 by a combination of
radio timing and precise spectroscopy of the white dwarf
companion by Antoniadis et al in 2013 [4]. So far, these
are the only two massive neutron stars with mass ex-
ceeding 2M¯ to be observed. A stiffer equation of state
is then needed to support the maximum mass of the neu-
tron star. Some theoretical calculations and analytical
approaches have been identified to support these obser-
vations [5–8].

Relativistic mean field theory (RMFT) has been used
to describe neutron stars in many studies [9, 10], con-
sidering the baryon-baryon interaction through the ex-
change of σ,ρ,ω mesons. However, if we consider an
additional interaction which couples strongly to strange
baryons, the σ∗ and φ mesons should be included

[11, 12].
Many studies have discussed neutron stars based on

zero temperature [13–15]. For example, the work by
Xian-Feng Zhao [16] discusses the effect of σ∗ and φ

on the surface gravitational redshift of PSR J0348+0432
and gives a meaningful result. However, the result was
obtained for zero temperature. A cold neutron star is a
kind of evolutionary outcome of a PNS, which is formed
after an enormous supernova. So the properties and
structure of a PNS should be considered, but little at-
tention has been paid to this topic.

In this paper, we investigate the influence of σ∗ and
φ mesons on the massive neutron star PSR J0348+0432
at finite entropy using RMFT. The paper is organized as
follows. In Section 2, we give the complete form of rela-
tivistic mean field of hadron interactions at finite entropy
including the σ∗ and φ mesons. In Section 3, details are
given of the selection of hyperon coupling constants. In
Section 4, some calculation results of the effect of σ∗

and φ mesons on the massive PNS PSR J0348+0432 are
given. In Section 5, a summary is presented.

2 Basics of relativistic mean field theory

in proto-neutron stars

RMFT is an effective field theory dealing with
hadron-hadron interactions [15–20]. The interactions
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proceed by exchanging σ,ω,ρ mesons, where σ is a scalar
meson, ω is a vector meson and ρ is the vector-isospin
meson. The Lagrangian density is described by [21]:

L0 =
∑

B

ΨB(iγµ∂
µ−mB+gσBσ−gωBγµω

µ

−
1

2
gρBγµτ ·ρ
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1

2
(∂µσ∂

µσ−m2
σσ

2)

−
1

4
ωµνω
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1

2
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µ−
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4
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ρρµ·ρ

µ

−
1

3
g2σ
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1

4
g3σ

4+
∑

l=e,µ

Ψl(iγµ∂
µ−ml)Ψl. (1)

In this work, an additional scalar meson σ∗ and an
additional vector meson φ are considered. We need to
know their interaction with hyperons, which can be de-
scribed by the Lagrangian density L′ [22]

L′ =
∑

B

ΨB(gσ∗Bσ
∗−gφBγµφ

µ)ΨB

+
1

2
(∂µσ
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σ∗σ
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1

4
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1

2
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µ, (2)

where B, l denote the octet baryons and leptons respec-
tively. The total Lagrangian density is expressed by
L=L0+L

′.
According to statistical thermodynamics:

lnZB,l =
∑

B,l

2JB,l+1

2π2

∫ ∞

0

k2dk{ln[1+e−(εB,l(k)−µB,l)/T ]

+
V

T
<L>, (3)

where J and µ are the spin quantum number and the
chemical potential. Z = Tr{exp[−(Ĥ−µN̂)/T ]} is the
grand partition function. The energy density, pressure
and particle population density are related to it as:

ε =
T 2

V

∂ lnZ

∂T
+µn, (4)

P =
T

V
lnZ, (5)

n =
T

V

∂ lnZ

∂µ
. (6)

The entropy per baryon of proto-neutron star matter
can be expressed as SB=PB+εB−

∑
i=Bµiρi for baryons

and Sl=Pl+εl−
∑

i=lµiρi for leptons [5, 23].
The additional conditions of a neutron star system

are charge neutrality and chemical potential equilibrium,
which are as follows:

∑

B,l

2JB,l+1

2π2
qB,l

∫ ∞

0

k2nB,l(k)dk=0, (7)

µi=biµn−qiµe, (8)

where ni(k)= 1/(1+exp[(εi(k)−µi)/T ])(i =B,l) denotes
the Fermi distribution function.

Therefore, the energy density and pressure of a proto-
neutron star under RMFT are as follows:
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where m∗=mB−gσBσ−gσ∗Bσ
∗ denotes the effective mass

of baryons.
The mass and the radius of a neutron star can be

calculated by the Tolman- Oppenheimer-Volkoff equa-

tion [24]:

dp

dr
=−

(p+ε)(M+4πr3p)

r(r−2M)
, (11)

084105-2



Chinese Physics C Vol. 42, No. 8 (2018) 084105

M(r)=4π

∫ r

0

εr2dr. (12)

The moment of inertia of a neutron star is expressed
as follows: [5, 25]:

I≡
J

Ω
=
8π

3
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0
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Ω
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J and Ω denote the angular momentum and the angular
velocity respectively, and ν(r) is expressed as:

ν(r) = −G
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)
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We simply define ω̃(r)≡ ω̄(r)/Ω which satisfies the
differential equation (15) as well as the boundary condi-
tions (16-17):

d
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(
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+4r3
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ω̃(r)=0, (15)
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Here,

j(r)=

{
e−ν(r)

√
1−2GM(r)/r r6R,

1 r>R.
(18)

The surface gravitational redshift of a star satisfies
the relation [26, 27]:

z=

(
1−

2GM

c2R

)−1/2
−1. (19)

3 Coupling parameters

The RMFT model is based on the coupling constants
of nucleons and hyperons. The nucleon coupling con-
stants can be determined in the vicinity of the saturation
properties of nuclear matter [28], and the hyperon cou-
pling constants can be calculated by the hyper-nuclear
potential well depth. In this work, we select the cou-
pling parameter sets GL85 and GL97 listed in Table 1
and Table 2 [22].

Table 1. The GL85 coupling parameter sets.

m/MeV mσ/MeV mω/MeV mρ/MeV gσ gω gρ

939 500 782 770 7.9955 9.1698 9.7163

g2/fm−1 g3 ρ0/fm−3 (B/A)/MeV K/MeV asym/MeV m∗/m

10.07 29.262 0.145 15.95 285 36.8 0.77

Table 2. The GL97 coupling parameter sets.

m/MeV mσ/MeV mω/MeV mρ/MeV gσ gω gρ

939 500 782 770 7.9835 8.7 8.5411

g2/fm−1 g3 ρ0/fm−3 (B/A)/MeV K/MeV asym/MeV m∗/m

20.966 -9.835 0.153 16.3 240 32.5 0.78

We define the ratios: xσH = gσH/gσ = xσ,xωH =
gωH/gω=xω,xρH=gρH/gρ=xρ, where H represents hy-
perons (Λ,Σ and Ξ). The relation of xσ and xω must
strictly satisfy the equation: [29]:

UNH=xω(gω/mω)
2ρ0−xσ(m−m

∗), (20)

We select the values of hyper-nuclear potential well
depth as UNΛ =−30 MeV, UNΣ =+30 MeV and UNΞ =−15
MeV respectively. [30–35]:

Reference [36] points out that the value of xω should
be restricted in the range from 1/3 to 1. In this work,
we select xσ=0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. For each
xσ, xω will be obtained according to the hypernuclear
potential depth in nuclear matter UN

H , as shown in Fig. 1

and Fig. 2. The calculations indicate that xω should be
restricted to a narrow area depicted by the grid.

From the SU(6) symmetry, we can obtain the values
of xρΛ,xρΣ and xσΞ: [37]

xρΛ=0, xρΣ=2, xσΞ=1. (21)

The hyperon-hyperon parameters through exchang-
ing the strange scalar meson (σ∗) and strange vector
meson (φ) can be selected as follows.

For the vector meson φ, according to the quark model
relationships, the coupling parameters yield 2gφΛ =

2gφΣ=gφΞ=−
2
√
2
3
gω.

For the scalar meson σ∗, we can use the σ∗(975) me-
son mass which has been observed, but see purely phe-
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nomenologically that it couples with hyperons so as to
satisfy the potential well depths U (Ξ)

Σ ≈ U (Ξ)Λ ≈ U (Ξ)Ξ ≈
2U (Λ)Λ ≈2U (Λ)Σ =40 MeV. This yields gσ∗Λ/gσ=gσ∗Σ/gσ=
0.69, gσ∗Ξ/gσ=1.25 [12].

Fig. 1. The relation of xσ and xω according to the
the hypernuclear potential depth in nuclear mat-
ter U

N
H with GL97.

Fig. 2. The relation of xσ and xω according to the
the hypernuclear potential depth in nuclear mat-
ter U

N
H with GL85.

4 Discussion

4.1 Mass and radius

Now, we calculate the mass of a protoneutron star
without considering σ∗ and φ. The neutrino effect may
allow specification of the star characteristics in the inte-
rior, and the work by X. L. Mu et al. has given an inter-
esting discussion of the contribution of neutrinos [38]. In
this work, we do not consider the neutrino concentration,
and select the entropy per baryon only to emphasize the
thermal effect. In this work we select the entropy per
baryon to be 1. Figure 1 gives that xω is 0.77 to 1.0,

so we select the extreme value of xω=1.0. The max-
imum mass calculated is 1.9624M¯, which cannot de-
scribe the PSR J0348+0348, whose mass is 2.0100M¯.
So, the GL97 parameter set may not give a perfect de-
scription of maximum protoneutron stars. Similarly,
Fig. 2 gives that xω is in the range 0.76 to 1, and we use
the same method to select the value of xω with GL85.
For xω=1.0, 0.9, 0.8, and 0.76, the maximum mass is
2.1076M¯, 2.0507M¯, 1.9691M¯, and 1.9294M¯, respec-
tively. Clearly, xω in the range between 0.8 and 0.9 can
give the mass of 2.0100M¯. First, we select xω=0.85 and
get a maximum mass of 2.0126M¯, which is bigger than
2.01M¯. We select xω=0.84 and get a maximum mass
of 2.0041M¯, which is smaller than 2.01M¯. Then, we
select xω=0.845 and get a maximum mass of 2.0086M¯.
So we can restrict the value of xω to between 0.845 and
0.85. For xω=0.846, 0.847, 0.848, and 0.849, the maxi-
mum masses are 2.0092M¯, 2.0100M¯, 2.0112M¯, and
2.0118M¯, respectively. The calculations are shown in
Fig. 3 and Table 3. We finally get the hyperon cou-
pling constants xωΞ=xωΣ=xωΛ=0.847, corresponding to
xσΞ=0.670, xσΣ=0.462, xσΛ=0.740, and xρΛ=0, xρΣ=2,
xσΞ=1, from which we get that the maximum mass of a
PNS is 2.0100M¯ without considering σ∗ and φ.

Fig. 3. Maximum neutron star mass of PNS as a
function of radius for different xω without consid-
ering σ∗ and φ.

Table 3. Maximum masses for different values of
xω, without σ

∗ and φ.

xω Mmax xω Mmax xω Mmax

1.0 2.1076M¯ 0.845 2.0086M¯

0.9 2.0507M¯ 0.85 2.0126M¯ 0.846 2.0092M¯

0.8 1.9691M¯ 0.84 2.0041M¯ 0.847 2.0100M¯

0.76 1.9294M¯ 0.848 2.0112M¯

0.849 2.0018M¯

When the σ∗ and φ mesons are taken into account,
our aim is also to get the maximum mass of a PNS cor-
responding to PSR J0348+0432. We select the value
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of xω=1.0, 0.9, 0.8, and 0.76 according to Fig. 2. The
maximum mass is 2.0998M¯, 2.0449M¯, 1.9376M¯, and
1.8919M¯ respectively and xω between 0.8 and 0.9 can
give the mass of 2.01M¯ by the same method above.
First, we select xω=0.85 and get the maximum mass
1.9881M¯, which is smaller than 2.0100M¯. Then,
we select xω=0.86, 0.87, 0.88, and 0.89, and get the
maximum masses 1.9975M¯, 2.0067M¯, 2.0156M¯, and
2.0242M¯, respectively. On the basis of these results,
we select the value of xω=0.875, which gives a maxi-
mum mass of 2.0112M¯ and is bigger than 2.0100M¯.
So it is clear that we can restrict the value of xω to be-
tween 0.87 and 0.875. For xω=0.874, 0.873, 0.872, and
0.871, the maximum masses are 2.0100M¯, 2.0093M¯,
2.0085M¯, and 2.0076M¯, respectively. The calcula-
tions are shown in Fig. 4 and Table 4. We finally get
the hyperon coupling constants xωΞ=xωΣ=xωΛ=0.874,
corresponding to xσΞ=0.689,xσΣ=0.481, xσΛ=0.759, and
xρΛ=0, xρΣ=2,xσΞ=1, from which we get that the max-
imum mass of a PNS is 2.0100M¯ with σ∗ and φ taken
into consideration.

As a result, we get two sets of hyperon coupling con-
stants to describe the PNS PSR J0348+0432 by GL85
with and without considering σ∗ and φ. They are
shown in Table 5. Figure 3 shows that the PNS PSR
J0348+0432 has its radius at 12.617 km without the σ∗

and φ. When the σ∗ and φ are taken into account, the
radius is 12.652 km, as shown by Fig. 4, which is bigger
than the radius without considering σ∗ and φ.

Fig. 4. Maximum neutron star mass of PNS as a
function of radius for different xω with σ∗ and φ
taken into consideration.

Table 4. Maximum masses for different values of
xω, with σ

∗ and φ.

xω Mmax xω Mmax xω Mmax

1.0 2.0098M¯ 0.85 1.9881M¯ 0.871 2.0076M¯

0.9 2.0449M¯ 0.86 1.9975M¯ 0.872 2.0085M¯

0.8 1.9376M¯ 0.87 2.0067M¯ 0.873 2.0093M¯

0.76 1.8919M¯ 0.88 2.0156M¯ 0.874 2.0100M¯

0.89 2.0242M¯ 0.875 2.0112M¯

Table 5. Two sets of hyperon coupling constants describing the PNS PSR J0348+0432. CASE1 is the case without
σ∗ and φ and CASE2 is that with σ∗ and φ.

xωΞ xωΣ xωΛ xσΞ xσΣ xσΛ xρΞ xρΣ xρΛ

CASE1 0.847 0.847 0.847 0.670 0.462 0.740 1 2 0

CASE2 0.874 0.874 0.874 0.689 0.481 0.759 1 2 0

These results show that σ∗ and φ lead to increased ra-
dius, so the radius of the massive PNS PSR J0348+0432
with σ∗ and φ considered is bigger than that without σ∗

and φ considered. However, the difference is small.

4.2 Composition

Now we illustrate the particle (leptons, nucleons and
hyperons) distributions of PNS PSR J0348+0432 for the
case discussed in the text. Neutron star matter is not
purely neutrons, as was first proposed. In the surface
part of the star, nucleons are the dominant species, but
in the inner part they are by no means dominant. Due
to the uncertainty about the inner constitution, differ-
ent hypothetical models will give different matter com-
positions. In this work, we consider the hyperons and

the relative populations of various particles in PNS PSR
J0348+0432 as described in Fig. 5. In this work, we se-
lect the GL85 parameter set, which give the nuclear sat-
uration density at 0.145 fm−3(ρ0). In the neutron star
interior the nucleons will convert to hyperons when the
density exceeds the nuclear saturation density through
the strong interaction. We can see the first hyperon to
appear in the hadronic matter is Λ at 0.248 fm−3(1.71ρ0),
no matter whether or not the σ∗ and φ are considered.
The next hyperon is Σ−, appearing almost simultane-
ously around 0.399 fm−3 in both cases. However, the
density at which Σ0 appears is about 0.661 fm−3 with
σ∗ and φ, and 0.721 fm−3 without σ∗ and φ. The Σ+

appears at about 0.670 fm−3 with σ∗ and φ, and at 0.681
fm−3 without σ∗ and φ. For the hyperon Ξ, the density
at which it appears is about 1.140 fm−3 with σ∗ and φ,
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and 1.360 fm−3 without σ∗ and φ. With σ∗ and φ, the
Ξ0 appears at about 1.440 fm−3, but without σ∗ and φ,
the Ξ0 appears at a higher density which is not depicted
in the figure.

Fig. 5. Population of various particles in PNS PSR
J0348+0432 with and without considering σ∗ and
φ.

Fig. 6. Population of nucleon and hyperon as
a function of baryon density in PNS PSR
J0348+0432 with and without considering σ∗ and
φ.

These results show that in the context of considering
σ∗ and φ in PNS PSR J0348+0432, the threshold for
the appearance of the hyperons will be pushed forward
compared to that without considering σ∗ and φ.

The population of nucleons (n,p) and hyperons
(Λ,Σ,Ξ) as a function of baryon density is shown in
Fig. 6. It clearly shows that when the hyperons ap-
pear, the number of nucleons decreases. The num-
ber of hyperons exceeds the number of nucleons at
1.199 fm−3(8.27ρ0) without σ

∗ and φ included. We call
this density the transition density, where the hyperons

start to play an important role in the neutron star in-
terior, and therefore the canonical neutron star converts
to a hyperon star. When we consider σ∗ and φ in the
PNS PSR J0348+0432, the transition density appears at
1.211 fm−3(8.35ρ0).

The field strengths of various mesons are shown in
Fig. 7. Here, when considering σ∗ and φ in PNS PSR
J0348+0432, ω gives the stronger field strength while σ
and ρ give the weaker field strength. We also distinctly
see from Fig. 7 that the field strength of σ∗ is larger
than the field strength of φ, and both increase with the
baryon density. In RMFT, the scalar mesons σ and σ∗

provide attraction, and the vector mesons ω and φ pro-
vides repulsion. When considering σ∗ and φ, because
the attraction provided by σ∗ is larger than the repul-
sion provided by φ, it leads to a stiffer equation of state.

Fig. 7. Field strengths of various mesons in PNS
PSR J0348+0432 with and without considering
σ∗ and φ.

4.3 Moment of inertia and surface gravitational

redshift

With the equations of state obtained by solving the
TOV equation, we have got the mass and radius shown
in Fig. 3 and Fig. 4. With Eqs. (13-19), the moment of
inertia and surface gravitational redshift can be found.

The profile of moment of inertia in a massive PNS
for the two cases is shown in Fig. 8. We get a moment
of inertia of the PNS corresponding to PSR J0348+0432
of 1.559×1045g·cm2 with σ∗ and φ, and 1.510×1045g·cm2

without σ∗ and φ. This indicates that including σ∗ and φ
in the PNS PSR J0348+0432 will increase the moment of
inertia, explained by the bigger radius calculated above.

Likewise, the profile of surface gravitational redshift
in a massive PNS for the two cases is shown in Fig. 9.
We find that the gravitational redshift of the PNS corre-
sponding to PSR J0348+0432 is 0.3701 when considering
σ∗ and φ, and 0.3747 without considering σ∗ and φ. This
result tells us that σ∗ and φ in PNS PSR J0348+0432
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Fig. 8. The moment of inertia as a function of
mass with and without considering σ∗ and φ.
The shaded line corresponds to the PNS PSR
J0348+0432.

Fig. 9. The surface gravitational redshift as a func-
tion of mass with and without considering σ∗ and
φ. The shaded line corresponds to the PNS PSR
J0348+0432.

Table 6. The properties of PNS PSR J0348+0432
with and without considering σ∗ and φ. CASE1
considers σ∗ and φ, and CASE2 does not. R is
the radius, I is the moment of inertia, and Z in-
dicates surface gravitational redshift.

Mmax(M¯) R/km I/(g· cm3) Z

CASE1 2.010 12.6520 1.559×1045 0.3701

CASE2 2.010 12.6170 1.510×1045 0.3747

will decrease the gravitational redshift. This is explained
by the bigger radius giving smaller gravitational redshift,
by the formula above.

All of these results are summarised in Table 6.

5 Summary

This paper discusses the influence of σ∗ and φ on
the PNS PSR J0348+0432 in the framework of RMFT.
We restrict the value of xω to a narrow range in the nu-
cleon coupling sets GL85 and GL97, and we also exclude
the possibility that GL97 could describe the PNS PSR
J0348+0432. In the context of the GL85 set, we give
two sets of hyperon coupling constants to describe the
PNS PSR J0348+0432 with and without considering σ∗

and φ. We use an entropy per baryon of S=1 to empha-
size the thermal effect on PSR J0348+0432 in this work,
and study the different effects with and without consider-
ing σ∗ and φ. These effects include the particle number
distribution, the mass-radius relation, the moment of in-
ertia and surface gravitational redshift. We find that
the PNS PSR J0348+0432 with σ∗ and φ will push for-
ward the threshold for the appearance of hyperons. We
find the mass-radius relations to be (2.010M¯, 12.6520
km) and (2.010M¯, 12.6170 km) corresponding to the
PNS PSR J0348+0432 with and without considering σ∗

and φ, respectively. It means that the σ∗ and φ are in
favor of increasing radius. The moment of inertia cor-
responding to the PNS PSR J0348+0432 are (2.010M¯,
1.510×1045g·cm2) and (2.010M¯, 1.559×10

45g·cm2) re-
spectively, the surface gravitational redshift correspond-
ing to the PNS PSR J0348+0432 are (2.010M¯, 0.3747)
and (2.010M¯, 0.3701) respectively. These calculations
tell us that for σ∗ and φ in the PNS PSR J0348+0432,
the redshift will decrease while the moment of inertia will
increase, but there is no discernible difference between
the changes. These conclusions indicate that the σ∗ and
φ have very little influence on PNS PSR J0348+0432,
which means that the restriction of σ∗ and φ on the in-
teractions between baryons plays only a minor role in the
PNS core.

The calculations and conclusions described above for
a proto-neutron star of 2.01M¯ could also be extrap-
olated to study other proto-neutron stars whose mass
exceeds 2M¯.
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