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Shear and bulk viscosity of high-temperature gluon plasma *
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Abstract: We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of

a gluon plasma system in kinetic theory, including both the elastic gg↔gg forward scattering and the inelastic soft

gluon bremsstrahlung gg↔ ggg processes. Due to the suppressed contribution to η and ζ in the gg↔ gg forward

scattering and the effective g↔gg gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore

(ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we

calculate the correction to η and ζ in the soft gluon bremsstrahlung gg↔ ggg process with an analytic method.

We find that the contribution of the collision term from the gg↔ ggg soft gluon bremsstrahlung process is just a

small perturbation to the gg↔gg scattering process and that the correction is at ∼5% level. Then, we obtain the

bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk

viscosity is the formula ζ∝
α2

sT
3

lnα−1
s

in high-temperature gluon plasma.
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1 Introduction

It is believed that the hot and dense quark-gluon
plasma (QGP) found at the Relativistic Heavy Ion Col-
lider (RHIC) seem to be a near-perfect fluid [1, 2]. The
remanent of the non-central collisions shows collective
motion (elliptic flow) with the shear viscosity to en-
tropy density ratio η/s = 0.1±0.1 (theory) ±0.08 (ex-
periment) [3]. This η/s ratio is close to a conjectured
minimum bound 1/4π [4], which is motivated by the un-
certainty principle and gauge/string duality.
It is known that the parametric behavior is η ∝
T3

lnα2
sα
−1
s
in the QGP [5–9]. Arnold, Moore and Yaffe

(AMY) calculated complete results both at leading log-
arithmic order [10] and full leading order [11] in the
QCD coupling αs. However, a recent perturbative QCD
calculation of η and η/s of a gluon plasma by XG (Z.
Xu and Greiner) [12] and Q. Wang [9, 13] considered
the inelastic number changing process with gg ↔ ggg
soft gluon bremsstrahlung in gluon plasma. The bulk
viscosity ζ has been considered to be zero for a long
time [5, 8]. Now, however, it is believed that bulk vis-
cosity is related to the conformal variance of a system:
in a conformally invariant system, the bulk viscosity is

definitely zero; but in a conformally non-invariant sys-
tem, the bulk viscosity is not zero but a function of the
velocity of sound vs. Therefore, we must consider the
contribution of the process of particle number violation.
Arnold, Dogan and Moore (ADM) considered the con-
tributions of quark or gluon splitting process for particle
number violation. They give the leading-log order of bulk
viscosity in the massless high-temperature QCD matter,

ζ∼
α2

sT
3

lnα−1
s
[13, 14]. The bulk viscosity ζ is much smaller

than η, ζ/η∝α4
s¿1 [13, 14]. In lattice QCD, however,

the bulk viscosity may be divergent [15–18] and ζ/s is
large [19–23] at the chiral phase transition point. This
has also been observed in PNJL model calculations [24].
In this paper, we will use an analytic method to solve

the Boltzmann equation to get shear and bulk viscosity,
including the inelastic gluon bremsstrahlung gg ↔ ggg
process, in a high-temperature gluon plasma system.
The structure of this paper is as follows. Section 2 in-
troduces the effective kinetic theory and the form of η
and ζ in the variational method. The computation of
the collision term is described in Section 3. Section 4
concludes the paper along with some discussions of the
result.
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2 Effective kinetic theory

In a local equilibrium state, the stress-energy tensor
can be expanded into an equilibrium term and dissipa-
tive term:

T µν=<T µν>eq+4T
µν , (1)

where,

4Tij=−η[∇iuj+∇jui−
2

3
δij∇·u]−ζδij∇

lul. (2)

η is the shear viscosity, and ζ is the bulk viscosity.
This expression is written in the local rest frame, and
uµuν4T µν=0.
On the other side, in kinetic theory the stress-energy

tensor is:

T µν=

∫
d3p

(2π)3
pµpν

p0
f(p,x), (3)

where f(p,x) is the color-averaged gluon distribution
function in gluon-plasma.
In a high temperature and weak coupling gluon

plasma system, the gluon distribution function satisfies
the Boltzmann equation in the usual form

[
∂

∂t
+vp·

∂

∂x

]
f(x,p,t)=−C[f(p,x,t)]. (4)

vp = p̂ ≡ p/|p| means the spatial velocity, which is a
unit vector. Here, we do not consider the external field.
C[f(p,x,t)] denotes the collision term. This equation is
a differential integral equation, and is very hard to be
solved analytically. We consider only the 2↔2 collision
term and 2↔3 collision term [10]:

C[f ]=C2↔2[f ]+C2↔3[f ], (5)

Here,

C2↔2[f ] =
1

4|p1|Ng

∫

p2,p3,p4

|Mgg
gg(p1,p2;p3,p4)|

2

×{f(p1)f(p2)[1+f(p3)][1+f(p4)]

− [1+f(p1)][1+f(p2)]f(p3)f(p4)}

×(2π)4δ(4)(P1+P2−P3−P4), (6)

and

C2↔3[f ] =
1

8|p1|Ng

∫

p2,p3,p4,k

|Mgg
ggg(p1,p2;p3,p4,k)|

2

×{f(p1)f(p2)[1+f(p3)][1+f(p4)][1+f(k)]

−[1+f(p1)][1+f(p2)]f(p3)f(p4)f(k)}

×(2π)4δ(4)(P1+P2−P3−P4−K)

+
1

12|p1|Ng

∫

p2,p3,p4,k

|Mggg
gg (p1,p2,k;p3,p4)|

2

×{f(p1)f(p2)f(k)[1+f(p3)][1+f(p4)]

− [1+f(p1)][1+f(p2)][1+f(k)]f(p3)f(p4)}

×(2π)4δ(4)(P1+P2+K−P3−P4). (7)

Here, Ng=16 is the helicity and color degeneracy of
the gluons, and the Lorentz invariant momentum inte-
gration is

∫
p
≡
∫

d3p

2p0(2π)3
.

The distribution function corresponding to a small
departure from equilibrium state can be written as the
sum of a local equilibrium term plus the departure term:

f(p)=f0(p)+f0(p)[1+f0(p)]f1(p). (8)

Here f0(p) is the gluon distribution function in the local
equilibrium state, which satisfies the Bose distribution:

f0(p)=
1

eβ|p|−1
. (9)

On the basis of distribution function expansion, we can
expand the collision term, and get the linearized collision
term

C[f ]=C[f0]+C[f1]+O(f
2
1 ). (10)

The local equilibrium part has no contribution, C[f0]=0.
C[f1] is the linearized collision term, C[f1] = C

2↔2[f1]+
C2↔3[f1], where,

C2↔2[f1] =
1

4|p1|Ng

∫

p2,p3,p4

|Mgg
gg(p1,p2;p3,p4)|

2

×f0(p1)f0(p2)[1+f0(p3)][1+f0(p4)]

×[f1(p1)+f1(p2)−f1(p3)−f1(p4)]

×(2π)4δ(4)(P1+P2−P3−P4), (11)

and

C2↔3[f1] =
1

8|p1|Ng

∫

p2,p3,p4,k

|Mgg
ggg(p1,p2;p3,p4,k)|

2

×f0(p1)f0(p2)[1+f0(p3)][1+f0(p4)][1+f0(k)]

×[f1(p1)+f1(p2)−f1(p3)−f1(p4)−f1(k)]

×(2π)4δ(4)(P1+P2−P3−P4−K)

+
1

12|p1|Ng

∫

p2,p3,p4,k

|Mggg
gg (p1,p2,k;p3,p4)|

2

×f0(p1)f0(p2)f0(k)[1+f0(p3)][1+f0(p4)]

×[f1(p1)+f1(p2)+f1(k)−f1(p3)−f1(p4)]

×(2π)4δ(4)(P1+P2+K−P3−P4). (12)

On the left-hand side of the Boltzmann equation, the
gradients acting on f1 give a higher order of the depar-
ture from equilibrium, so that in the linear approxima-
tion, only the gradients acting on f0 should be consid-
ered. The Boltzmann equation becomes a linear integral
equation

[
∂

∂t
+vp·

∂

∂x

]
f0(p,x,t)=−Cf1(p,x,t) (13)

The left-hand side of the linearized Boltzmann equa-
tion has the form [8, 10],

LHS=βf0(p)[1+f0(p)]qκ(p)Iij(p̂)Xij(x). (14)
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where the spatial tenor Xij(x) denotes the driving force,
which is defined as:

Xij(x)=




∇iuj+∇jui−

2

3
δij∇·u, (shear viscosity)

δij∇·u, (bulk viscosity)
(15)

and

Iij(p̂)=





1

2

(
p̂ip̂i−

1

3
δij

)
, (shear viscosity)

1

3
δij , (bulk viscosity)

(16)

with qκ(p)




qη(p)=|p|. (shear viscosity)

qζ(p)=
p·vp

3
−v2

s

∂(βEp)

∂β
. (bulk viscosity)

(17)

AMY and ADM give the qκ(p) of Eq. (17) in Ref. [10, 14].
In this paper we do not consider the mass of the gluon
and the thermal masses. So, the parameter qζ(p) can be
given as

qζ(p)=

(
1

3
−v2

s

)
|p|. (18)

Here we have determined the speed of sound vs in the
gluon plasma. In a conformally invariant system, it can
easily be verified that v2

s =
1
3
and qζ(p) = 0. Then in

the conformally non-invariant system, we can determine
the speed of sound with the temperature dependence of
the pressure. According to Ref. [14], the speed of sound
vs is written as follows in a high temperature and weak
coupling gluon-plasma system,

v2
s=
1

3
−
55α2

s

24π2
, (19)

where the strong coupling coefficient is αs≡
g2

4π
.

Consequently, giving the left-hand side of Eq.(14),
the departure distribution function f1(p) on the right-
hand side, which will solve the linearized Boltzmann
equation, must have the corresponding form

f1(p,x)=β
2Xij(x)χij(p). (20)

Here, χij(p) = Iij(p̂)χ(p). From Eq. (13), Eq. (14)and
Eq. (16), we can write the linearized Boltzmann equa-
tion in the concise form [10, 14],

Sij(p)=Cχij(p), (21)

with

Sij(p)≡−
T

Ng

f0(p)[1+f0(p)]qκ(p))Iij(p̂). (22)

To solve Eq. (21), we use the variational approach
proposed in Ref. [10]. First, we introduce an inner prod-
uct as

(f,g)≡β3Ng

∫
d3p

(2π)3
f(p)g(p), (23)

with

(χij ,Sij)=−β
2

∫
d3p

(2π)3
f0(p)[1+f0(p)]qκ(p)χ(p), (24)

(χij ,C
2↔2χij) =

β3

8

∫

p1,p2,p3,p4

|Mgg
gg(p1,p2;p3,p4)|

2

×f0(p1)f0(p2)[1+f0(p3)][1+f0(p4)]

×[χij(p1)+χij(p2)−χij(p3)−χij(p4)]
2

×(2π)4δ(4)(P1+P2−P3−P4), (25)

and

(χij ,C
2↔3χij)

=
β3

12

∫

p1,p2,p3,p4,k

|Mgg
ggg(p1,p2;p3,p4,k)|

2

×f0(p1)f0(p2)[1+f0(p3)][1+f0(p4)][1+f0(k)]

×[χij(p1)+χij(p2)−χij(p3)−χij(p4)−χij(k)]
2

×(2π)4δ(4)(P1+P2−P3−P4−K). (26)

Solving the linearized Boltzmann equation, we define the
functional of the variational function χ(p),

Q[χ]≡(χij ,Sij)−1/2(χij ,Cχij)

Cχ=C2↔2χ+C2↔3χ. (27)

If χij(p) satisfies Eq.(21), Q[χij ] takes the maximum.
Then the shear viscosity η and the bulk viscosity ζ sat-
isfy the following form:

{
η=2/15Q[χ]max|qη(p),

ζ=2Q[χ]max|qζ(p).
(28)

3 Collision integrals

3.1 gg↔gg collision integrals

Before calculating the collision term of the gg↔ gg
scattering process, some approximations should be made
first:
(1) The high temperature approximation: the tem-

perature T of the gluon-plasma is extremely high, so that
the theory is weakly coupled with the scale of the tem-
perature, g(T )¿1.
(2) The forward scattering approximation: the mo-

mentum transfer between the incident particles q∼gT is
rather small, so that the the momentum difference be-
tween incoming and outgoing particles on the same in-
teraction vertex can be ignored in the distribution func-
tions.
The integrand of Eq. (25) is composed of three parts:

the matrix element, the distribution functions, and the χ
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term of the variational functions. With the q→0 Feyn-
man rule, it is trivial to evaluate the matrix element for
the gg↔gg scattering processes

|Mgg
gg|

2=16g4dAC
2
A

(
3−

su

t2
−
st

u2
−
tu

s2

)
, (29)

with dA=8 and CA=3.
The gg↔gg collision integrals in Refs. [10, 29] have

been calculated:

(χ,Cgg↔ggχ) =
48α2

s lnα
−1
s

π

∫ ∞

0

p2
1dp1f0(p1)[1+f0(p1)]

×([χ(p1)
′]2+

6

p2
1

[χ(p1)]
2). (30)

3.2 gg↔ggg collision integrals

For the treatment of the gg↔ ggg process, we con-
sider the case in Fig. 1.

p1

p2

q

p3

p4

p′4

k

Fig. 1. Soft gluon bremsstrahlung in gluon plasma.

Here, we consider the contribution of the soft gluon
bremsstrahlung gg↔ggg process to shear or bulk viscos-
ity. We use the Gunion-Bertsch (GB) formula [25–27]
for the gg↔ ggg matrix element which is valid for the
soft gluon bremsstrahlung. The GB formula is given in
Ref. [25]:

|Mgg
ggg|

2 = 12g2 9

2
g4 s

2

t2
1

k2
⊥

(1+
t2

s2
)

= 54g6 1

k2
⊥

(1+
s2

t2
). (31)

Starting calculation of the collision terms of gg↔ggg
soft gluon bremsstrahlung, some approximations should
be considered:
(1) The momentum of soft gluon k → 0 in

bremsstrahlung. Thus, we consider collinear approxima-
tion, and the angle between p4 and k is small, so that
p′4=p4+k in Fig. 1.
(2) The forward scattering approximation is consid-

ered in the gg↔gg scattering process.
(3) Soft gluon bremsstrahlung does not impact on the

gg↔gg forward scattering process.
The momentum of the soft gluon k→0, so we have

p′4=p4+k'p4. In Eq. (26), p
′
4−p1=q. Thus, we can ap-

proximately get d3p4=d
3q. We integrate over d3p3 with

the help of (2π)3δ3(p1+p2−p3−p4−k). Then, we consider

the momentum of the soft gluon k→0 with the collinear
approximation. We may write the angular integrals in
spherical coordinates with q on the z axis and p lying in
the x−z plane. One may transform the equation into:

(χij ,C
gg↔gggχij)

=
β3

3·213·π8

∫ ∞

0

dq

∫ q

−q

dω

∫ ∞

0

dp1

×

∫ ∞

0

dp2

∫ ∞

0

kdk

∫ 2π

0

dφ|Mgg
ggg(p1,p2;p3,p4,k)|

2

×f0(p1)f0(p2)[1+f0(p3)][1+f0(p4)][1+f0(k)]

×[χij(p1)+χij(p2)−χij(p3)−χij(p4)−χij(k)]
2,

(32)

where, p4≡|p1+q|'p1+ω , p3≡|p2−q|=p2−ω. To get
Eq. (32), we use the following approximation,

δ(p1+p2−p3−p4−k)'δ(p1+p2−p3−p4), (33)

then, following Baym et al. [28], eliminate δ(p1+p2−p3−p4)
and introduce a dummy integration variable ω.
Because the momentum of the soft gluon k→ 0, we

do not consider the impact of soft gluon bremsstrahlung
on the gg↔ gg forward scattering process. In the vari-
ational method, considering the collinear approximation
of soft gluon bremsstrahlung and the momentum of soft
gluon k→0, we specify the χ term as

χij(p
′
4)=χij(p4)+χij(k). (34)

Next, we must simplify the matrix element of the
gg↔ ggg soft gluon bremsstrahlung process. Following
Eq. (30), we should use the relationship of Mandelstam
variables in Ref. [25],

k2
⊥=
(s+t+u)2

s
; (s+t+u)=2p1·k (35)

with the approximation of the Debye screening mass
mD= gT ∼ 0, s> 4m2

D and s=<s>=18T
2. We do not

consider the direction vector of soft gluon momentum.
Using the forward scattering approximation

−
s

t
'
u

t
'
2p1p2

q2
(1−cosφ) (36)

we can simplify the matrix element of the soft gluon
bremsstrahlung gg↔ggg process as

|Mgg↔ggg|2≈124416π3α3
sT

2 p2
2

q4k2
(1−cosφ)2. (37)

We have used Eq. (37) to simplify Eq. (32), to elim-
inate dω, dφ. So the gg↔ggg collision integrals can be
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written as

(χij ,C
gg↔gggχij) =

162α3
sβ

π
4

∫ T

αsT

1

q
dq

∫ ∞

0

dp1

∫ ∞

0

p2
2dp2

×

∫ ∞

0

1

k
dkf0(p1)f0(p2)

×[1+f0(p1)][1+f0(p2)][1+f0(k)]

×([χ(p1)
′]2+

6

p2
1

[χ(p1)]
2). (38)

In Eq. (38), a factor 4 is considered due to the sym-
metry between particle 1 and 2 as well as the symmetry
between momenta p1 and p2 . The χ term contributes a
small q2 in the forwarding scattering approximation [10].
It is specified as

[χ(p′4)−χ(p1)]
2'[χ(p3)−χ(p2)]

2

'ω2[χ(p1)
′]2+3

q2−ω2

p2
1

[χ(p1)]
2. (39)

In the dk integration, we should consider infrared diver-
gence. The upper cutoff is q∼ T , and the lower cutoff
occurs q ∼ αsT , because we have considered the high
temperature approximation with αs¿1.

∫ ∞

0

dk
1

k
[1+f0(k)]'

∫ T

αsT

dk

(
T

k2
+
1

2k

)

=
1

αs

−1+
1

2
lnα−1

s . (40)

Here, we use [1+f0(k)]'(
T

k
+ 1

2
) with the approximation

k→0 in the soft gluon bremsstrahlung gg↔ggg process.
Then, the integration over dp2 can be carried out,

∫ ∞

0

p2
2dp2f0(p2)[1+f0(p2)]=

π
2

3
T 3. (41)

With the above integration over dk and dp2, the gg↔gg
collision integrals can be simplified as

(χij ,C
gg↔gggχij)

=
54α3

s lnα
−1
s T 2

π
2

(
1

αs

−1+
1

2
lnα−1

s

)

×

∫ ∞

0

dp1f0(p1)[1±f0(p1)]×([χ(p1)
′]2+

6

p2
1

[χ(p1)]
2).

(42)

4 Results of variational method

For calculating Eq. (21), we can determine the vari-
ational function χ(p). In this subsection, we will expand
the variational function χ(p) by a finite set of bases, and
maximize the functional Q[χ].
We know that in the case of viscosities, the variational

function χ only has one component in gluon-plasma. Ex-

panding the χ(p) on a set of bases

χ(p)=
∑

n

anφn(p), (43)

one can get the basis set components of S̃ and C̃,

(χ,S)=
∑

n

anS̃n, (χ,Cχ)=
∑

m,n

amC̃mnan. (44)

Here,

S̃a
n≡Ng

∫

p

φn(p)S
a
n(p)=(φ(p),S(p)), (45)

C̃ab
mn≡Ng

∫

p

φm(p)C
abφn(p)=(φ(p),Cφ(p)). (46)

When the Boltzmann equation is satisfied, the coef-
ficients an in front of the bases will be expressed as
a=C̃−1S̃.
With the natural function ansatz φ1(p)=

p2

T
, one can

evaluate the integral of S̃ and C̃.

4.1 Shear viscosity

Accordingly, the shear viscosity becomes

η=
2

15
Q̃η|max=

1

15
S̃>η C̃

−1S̃η. (47)

Here, S̃η includes qη(p)=|p|.
In the section on effective kinetic theory, we wrote

the linearized Boltzmann equation as Eq. (21). In gluon-
plasma the left-hand side can be written directly as:

(χ,Sη)=−Ngβ
2

∫
d3p

(2π)3
qη(p)f0(p)[1+f0(p)]χ(p). (48)

From Eq. (45), we substitute qη(p) in the S̃η.
So

S̃η=−100.86T
3. (49)

From Eq. (46), combining Eq. (30)and Eq. (42), we
can fulfil the collision integrals of the gg↔ gg process
and gg↔ggg process:

C̃gg↔gg=3968.8α2
s lnα

−1
s T 3, (50)

and

C̃gg↔ggg=180α2
sT

3
[
lnα−1

s −αs lnα
−1
s +

αs

2
(lnα−1

s )
2
]
.

(51)
On the basis of the above, the shear viscosity can be

obtained from Eq. (47)

η22=
0.171T 3

α2
s lnα

−1
s

, (52)

η≈
0.163T 3

α2
s lnα

−1
s

+
0.0071T 3

αs lnα−1
s

−
0.0035T 3

αs

. (53)

Here, η22 is the leading-log order shear viscosity which
only considers the contribution of the gg↔ gg forward
scattering process, which agrees with that of Refs. [10,
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13, 29], and η is the full shear viscosity including both
the gg↔gg forward scattering process and the soft gluon
bremsstrahlung gg↔ggg process. In Eq. (53), the first
term is the leading-log formula. It is smaller than η22,
because the correction of the soft gluon bremsstrahlung
gg↔ggg process depresses the leading-log shear viscosity
to about ∼5% level. The last two terms are the higher
order corrections with shear viscosity from the gg↔ggg
process, which are far smaller than the leading-log term
with αs¿1 in the the high-temperature system.
Figure 2 shows the ratio η/η22, and we can obtain

the correction at the ∼5% level. Our results agree with
AMY and ADM [11, 30], who found that g↔ gg only
contributes at ∼10% level for the three flavor quark dif-
fusion constant for αs<0.3, and with Q. Wang [13] for
vary small αs [9, 13].

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.950

0.955

0.960

0.965

0.970

Αs

Η�Η 22

Fig. 2. Ratio of the full shear viscosity η to leading-
log order shear viscosity η22.

Η22�s
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

1

2

3

4

5

6

7

Αs

Η�s

Fig. 3. The solid line is the shear viscosity η to en-
tropy density s ratio η/s; the dashed line is η22/s.

We use the entropy density for non-interacting glu-
ons, s=Ng

2π2

45
T 3 . In Fig. 3, we give the function η/s of

αs for two cases, η22/s and η/s, both of which decrease
rapidly with increasing αs. We calculate the collision in-
tegrals of the gg↔ gg process C̃gg↔gg in Eq. (30), and

the gg↔ggg process C̃gg↔ggg in Eq. (42). C̃gg↔ggg is just

a small correction to C̃gg↔gg .
Figure 4 shows the relationship between shear vis-

cosity η/s and temperature. To isolate the temperature
dependence, we use a simple form of the strong coupling
constant in a high temperature system [31],

αs=
2π

11

(
ln
4T

1.5Tc

)−1

(54)

Here Tc is the critical temperature of the QCD matter
phase transition. We use Tc=175 MeV.
We use an analytical method to solve the linearized

Boltzmann equation. The dominant contribution of
shear viscosity η (the first term in Eq. (53)) considering
the correction of the soft gluon bremsstrahlung gg↔ggg
process, and the leading-log η22 only counting gg↔ gg
scattering process, have the same form ∼ T3

α2
s lnα−1

s
. In

Fig. 1, there are three vertexes, providing g6 (or α3
s) in

the matrix element. But, when calculating the phase
space integrals dk of soft gluons, considering infrared di-
vergence, we do infrared cutoff and get an enhancement
factor α−1

s , such as the first term in Eq. (40). Therfore,
α2
s appears in the denominator of shear viscosity.

Η22�s
Η�s

5 6 7 8 9 10
0.30

0.35

0.40

0.45

T�Tc

Η�s

Fig. 4. The shear viscosity η to entropy density s
ratio, as a function of the ratio of temperature to
the critical temperature Tc=175 MeV. The solid
line is the full shear viscosity η to entropy density
s ratio η/s; the dashed line is η22/s.

4.2 Bulk viscosity

The bulk viscosity is:

ζ=2Q̃ζ |max=S̃
>
ζ C̃

−1S̃ζ , (55)

and,

S̃ζ=(χ,Sζ)=−Ngβ
2

∫
d3p

(2π)3
qζ(p)f0(p)[1+f0(p)]χ(p),(56)

with qζ(p)=(
1
3
−v2

s)|p| included in S̃ζ .
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Then we substitute qζ(p) in S̃ζ :

S̃ζ=−23.4192α
2
sT

3. (57)

Combining the results of the collision integrals of the
gg ↔ gg process (Eq. (50)) and the gg ↔ ggg process
(Eq. (51)), we can get the bulk viscosity of the gluon-
plasma:

ζ=
0.132α2

sT
3

lnα−1
s

+
0.0057α3

sT
3

lnα−1
s

−0.0029α3
sT

3. (58)

In Eq. (58), we give the form of bulk viscosity in high

temperature gluon plasma: ζ∼
α2

sT
3

lnα−1
s
. Comparing to the

shear viscosity Eq. (53),

ζ/η=15(
1

3
−v2

s)
2=0.81α4

s. (59)

This result is dependent on qκ(p) (Eq. (17)) and shear
and bulk viscosity with the variational function (28),
which is the same as the emission of light quanta by the
medium [32], ζ¿η, because Sζ(p) contains (

1
3
−v2

s)∼α
2
s

in the variational method.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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0.0014
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Fig. 5. Bulk viscosity ζ/s as a function of strong
coupling coefficient αs in high temperature gluon-
plasma system.
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Fig. 6. The bulk viscosity ζ to entropy density s
ratio as a function of the temperature ratio T/Tc.

In a high temperature gluon-plasma system, the bulk
viscosity is much smaller than shear viscosity. In Fig. 5,
we give the growth of ζ/s with αs. The shear viscosity to
entropy density η/s ratio as a function of αs, however,
decreases in Fig. 3. Moreover, contrary to the growth
trend of η/s in Fig. 4, ζ/s decreases as T increases in
Fig. 6.
In Fig. 7, we show that η/s decreases quickly with

the increase of αs, but ζ/s increases slowly with αs. ζ/s
is very small; when αs=0.2, ζ/s'4.6×10

(−4)¿1 . Also,
η/sÀζ/s; when αs=0.187, η/s is 1000 times larger than
ζ/s.

Ζ�s´103

Η�s

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0
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5

6

Αs

Η�s&Ζ
�s´103

Fig. 7. Shear versus bulk viscosity: η/s and ζ/s as
a function of αs. The solid line is ζ/s×10

3, and
the dashed line is η/s.

5 Conclusion

In this paper, we use the variational method to solve
the linearized Boltzmann equation, getting the shear and
bulk viscosity of gluon-plasma in a high-temperature sys-
tem, including both the elastic gg↔gg forward scattering
and the inelastic soft gluon bremsstrahlung gg↔ggg pro-
cesses. On the basis of leading-log order result of shear
viscosity, we calculate the correction of the gg↔ggg soft
gluon bremsstrahlung process. Calculating bulk viscos-
ity, we consider the gg↔ggg soft gluon bremsstrahlung
process as the process for particle number violation and
give our result. We will consider the correction of the
Debye mass mD [9, 11, 13], LPM corrections [8, 13, 33]
and all 2↔3 number changing processes in QCD. In this
paper, we only use the basis function φ1(p) in the varia-
tional method. If more basis functions are considered, a
more accurate result may be obtained.
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