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Abstract: The DD̄∗ interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry

approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this DD̄∗

interaction, a bound state slightly lower than the DD̄∗ threshold is generated dynamically in the isospin zero sector

by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872)

particle announced by many collaborations. This formulism is also used to study the BB̄∗ interaction, and a BB̄∗

bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle

Data Group. Furthermore, the one-pion exchange between the D meson and the D̄∗ is analyzed precisely, and we do

not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.
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1 Introduction

The hidden gauge symmetry approach has been
shown to be a successful method to include the vector
meson in the Lagrangian [1–4]. Along these lines, the
pseudoscalar meson and vector meson interaction [5], the
vector meson and vector meson interaction [6, 7], the vec-
tor meson and baryon octet interaction [8, 9], and the
vector meson and baryon decuplet interaction [10, 11] in
SU(3) flavor space have been studied in the coupled-
channel unitary approximation. This method is ex-
tended to SU(4) space when the components related to
c and c̄ quarks are taken into account [12–14]. In the
past few years, more and more XYZ states have been
discovered, and it has become necessary to include the
c and b quark components in the effective Lagrangian
when the interaction of hadrons is investigated. How-
ever, since mesons composed of c and b quarks are much
heavier than mesons composed of light quarks, the ex-
change of heavier mesons is extremely suppressed, and
the mesons which consist completely of light quarks, such
as pions, and ρ and ω mesons, play a dominant role in
the interactions of hadrons.

The c and b quarks usually act as spectators in the
interactions of hadrons. Thus, strange quarks can be
replaced by c or b quarks in the process of strangeness

zero, and then the interactions of hadrons composed of
heavier flavor quarks can be discussed in the SU(3) sub-
space of u, d and c(b) quark components. Many studies
have been done on this topic [15–17], and it should es-
pecially be stressed that this replacement is used in the
study of the generation of charm-beauty bound states
of B(B∗)D(D∗) and B(B∗)D̄(D̄∗) interactions [18]. It is
clear that the model becomes much simpler than those
used in Refs. [12–14], where the SU(4) hidden gauge
symmetry approach is discussed in detail.

The X(3872) state was first observed by the Belle
Collaboration in 2003 [19], and then confirmed by many
experimental collaborations. Finally, a mass of 3871.69±
0.17 MeV [20] and a decay width <1.2 MeV [21] are given
by fitting the experimental data, which is extremely close
to the DD̄∗ threshold. A lot of theoretical research work
has been done on the properties ofX(3872). Some people
suppose X(3872) to be a DD̄∗/D̄D∗ bound state since its
mass is very close to the DD̄∗ threshold [22–25]. X(3872)
is also described as a virtual state of DD̄∗/D̄D∗ [26, 27],
a tetraquark [28–30], a hybrid state [31] or a mixture
of a charmonium χc1(2P ) with a DD̄∗/D̄D∗ compo-
nent [32, 33]. Moreover, the X(3872) state is studied
by using the pole counting rule method [34, 35], and it
is found that two nearby poles are necessary to describe
the experimental data [36, 37].
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In the present work, we will replace the strange quark
by the charm quark in the SU(3) hidden gauge sym-
metry approach, and then study the DD̄∗ interaction in
the coupled-channel unitary approximation by solving
the Bethe-Salpeter equation. Consequently, the X(3872)
state is generated dynamically when the ρ and ω ex-
changes between D and D̄∗ mesons are taken into ac-
count.

One-pion exchange between D and D̄∗ mesons at the
DD̄∗ threshold is addressed specially. Since the mass of
the D̄∗ meson is about one pion mass larger than the
mass of the D meson, the intermediate pion might be re-
garded as a real particle at the DD̄∗ threshold, therefore
the behavior of the DD∗ interaction through one-pion ex-
change is interesting. However, although it is divergent
at the DD̄∗ threshold, the one-pion exchange potential of
DD̄∗ becomes weaker when the total energy of the sys-
tem departs from the DD̄∗ threshold. When the hidden
gauge symmetry approach is considered, the ρ and ω
meson exchange between D and D̄∗ mesons is dominant,
and thus the one-pion exchange potential is neglected in
the present work.

In addition, this model is extended to study the BB̄∗

interaction in the isospin zero sector by replacing the c
quark with a b quark, and a new bound state is pre-
dicted, which is not listed in the review of the Particle
Data Group (PDG) [20].

This article is organized as follows. The formulism is
described in Section 2, and then the implementation of
unitarity is discussed in Section 3, where the contribution
from the longitudinal part of the vector meson propaga-
tor in the loop function of the Bethe-Salpeter equation is
taken into account. The one-pion exchange potential of
DD̄∗ is analyzed in Section 4. The calculation results on
the DD̄∗ and BB̄∗ interactions are presented in Section 5.
Finally, a summary is given in Section 6.

2 Formalism

The hidden gauge symmetry approach is success-
ful when vector mesons are involved in the Lagrangian,
where vector mesons are treated as gauge bosons of the
SU(3) local gauge symmetry breaking spontaneously [1–
5]. This formalism can be extended to study the interac-
tion of the D meson and the D̄∗ meson by replacing the
s and s̄ quarks with c and c̄ quarks, respectively.

In the hidden gauge symmetry approach, the DD̄∗ in-
teraction would proceed through the exchange of a vector
meson, as depicted in Fig. 1(a). Since the vector prop-
agator contributes a factor of 1/M 2

V if the momentum
transfer between the D meson and the D̄∗ meson can be
neglected, the exchange of ρ and ω mesons is dominant,
while the possible exchange of heavier vector mesons is
suppressed.

D D D D ∗

ρ, ω π

D̄ ∗ D̄ ∗ D̄ ∗ D̄
(a) (b)

Fig. 1. The interactions of the D and D̄∗ mesons.
(a) Vector meson exchange, (b) One-pion ex-
change.

The DDρ and DDω couplings can be obtained with
the Lagrangian

L=−ig〈Vµ[P,∂µP ]〉, (1)

where

g=
MV

2fπ
, (2)

with fπ=93 MeV the pion decay constant and MV the
mass of the ρ meson.

The matrices of vector mesons and pseudoscalar
mesons take the form of

Vµ=













ω√
2
+
ρ0√
2

ρ+ D̄∗0

ρ−
ω√
2
− ρ0√

2
D∗−

D∗0 D∗+ 0













, (3)

and

P=













π0√
2

π+ D̄0

π− − π
0

√
2

D−

D0 D+ 0













, (4)

respectively, where only the relevant mesons are enumer-
ated.

The Lagrangian density of vector mesons can be writ-
ten as

LV =−
1

4
〈VµνV µν〉, (5)

with
Vµν=∂µVν−∂νVµ−ig[Vµ,Vν ]. (6)

According to Eq. (5), we can derive the D∗D∗ρ and
D∗D∗ω couplings from the interaction Lagrangian

LV V V =ig〈(∂µVν−∂νVµ)V µV ν〉. (7)

Since the mass of the ω meson mω =782 MeV is sim-
ilar to that of the ρ meson mρ=770 MeV, we suppose
MV ≈mρ≈mω, then the potential of the D meson and
D̄∗ meson is simplified as

Vij=Cij

1

f2
π

[(k1+k2)·(p1+p2)]ε·ε∗, (8)
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with ε and ε∗ the polarization vectors of the initial and
final vector mesons, and k1(p1) and k2(p2) the momenta
of the initial and final D(D̄∗) mesons, respectively. The
coefficients Cij in the different channels are shown in Ta-
ble 1.

Table 1. The coefficients Cij in the D and D̄∗ in-
teraction, Cji=Cij .

Cij D+D∗− D0D̄∗0 D̄0D∗0 D−D∗+

D+D∗− 1
4

1
4

0 0

D0D̄∗0 1
4

1
4

0 0

D̄0D∗0 0 0 1
4

1
4

D−D∗+ 0 0 1
4

1
4

The DD̄∗ pair with isospin I=0 takes the form of

|DD̄∗,I=0〉

=
1√
4

(

|D+D∗−〉+|D0D̄∗0〉−|D̄0D∗0〉−|D−D∗+〉
)

, (9)

where the C-parity of the DD̄∗ pair is assumed to be
positive.

According to Eqs. (8) and (9), the potential of DD̄∗

with isospin I=0 can be written as

V t
DD̄∗→DD̄∗=

1

2

1

f2
π

[(k1+k2)·(p1+p2)]ε·ε∗. (10)

According to Ref. [38], the kernel Ṽ t
DD̄∗→DD̄∗ can be

obtained from the potential form in Eq. (10) when the
Bethe-Salpeter equation is solved, i.e.,

Ṽ t
DD̄∗→DD̄∗=

1

2

1

f2
π

[(k1+k2)·(p1+p2)], (11)

where the ε·ε∗ structure has been eliminated.
Actually, the kernel in Eq. (11) can be written as

Ṽ t
DD̄∗→DD̄∗ =

1

2

1

f2
π

(s−u)

=
1

2

1

f2
π

(2s+t−2(M 2
D+M

2
D∗)), (12)

where the Mandelstam variables s=(p1+k1)
2, t=(k2−k1)2

and u=(p2−k1)2. In the derivation of Eq. (11), we have
neglected the momentum transfer q= k2−k1 compared
to the mass of the vector meson MV , which would be a
good approximation for the interaction relatively close to
threshold where bound states or resonances are searched
for, i.e., t=(k2−k1)2 =0 is assumed in the approxima-
tion. Thus the kernel in Eq. (12) is only a function of
the Mandelstam variables s, which is the square of the
total energy in the center of mass frame.

Ṽ t
DD̄∗→DD̄∗ =

1

f2
π

(s−M 2
D−M 2

D∗). (13)

3 Implementation of unitarity

In the coupled-channel unitary approach, the unitar-
ity can be implemented into the DD̄∗ interaction by solv-

ing the Bethe-Salpeter equation:

T̃ = [I−Ṽ G̃]−1Ṽ , (14)

where Ṽ is the kernel of the DD̄∗ interaction provided by
Eq. (11), and G̃ is the DD̄∗ loop function. The loop func-
tion is logarithmically divergent and thus is calculated
with a three-momentum cutoff [39, 40], or by means of
dimensional regularization [41]. Recently, a loop func-
tion of a pseudoscalar meson and a vector meson is de-
rived in the dimensional regularization scheme, where
the contribution of the longitudinal part of the vector
meson propagator is taken into account in Ref. [38]. In
the present work, this formula of the loop function will
be applied to the DD̄∗ interaction in the hidden gauge
symmetry approach.

The loop function can be written as

G̃(s)=−
(

GD∗D(s)+
1

M2
D∗
H00

D∗D(s)+
s

4M 2
D∗
H11

D∗D(s)

)

,

(15)
where GD∗D(s) is the original form of the loop func-
tion in Ref. [41], while the terms related to H00

D∗D(s)
and H11

D∗D(s) stem from the longitudinal part of the vec-
tor meson propagator, and their analytical forms can be
found in the appendix of Ref. [38].

4 One-pion exchange

From the Lagrangian in Eq. (1), we can obtain the
interaction Lagrangian for the D∗Dπ coupling, which can
be written as

LD∗Dπ = − ig√
2
[D̄∗0

µ (D0∂µπ0−∂µD0π0)

+
√
2D̄∗0

µ (D+∂µπ−−∂µD+π−)

+
√
2D∗0

µ (π+∂µD−−∂µπ+D−)

+D∗0
µ (π0∂µD̄0−∂µπ0D̄0)

+
√
2D∗−

µ (D0∂µπ+−∂µD0π+)

−D∗−
µ (D+∂µπ0−∂µD+π0)

+
√
2D∗+

µ (π−∂µD̄0−∂µπ−D̄0)

−D∗+
µ (π0∂µD−−∂µπ0D−)]. (16)

Therefore, the one-pion exchange potential of the D and
D̄∗ mesons is obtained as

V u
ij=Dijg

2(q−k1)·ε∗
1

q2−m2
π

(q−k2)·ε, (17)

as shown in Fig. 1(b). The coefficients Dij in Eq. (17)
for different channels are listed in Table 2. According to
Eq. (9), the one-pion exchange potential of the D and D̄∗

mesons in the sector of isospin I=0 can be written as

V u
DD̄∗→DD̄∗ = 6g2q·ε∗ 1

q2−m2
π

q·ε, (18)
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where q=p2−k1=p1−k2, p1·ε=0 and p2·ε∗=0 are used
in the derivation.

Table 2. The coefficients Dij in the one-pion ex-
change potential of the D and D̄∗ interaction,
Dji=Dij .

Dij D+D∗− D0D̄∗0 D̄0D∗0 D−D∗+

D+D∗− 0 0 −1 −

1
2

D0D̄∗0 0 0 −

1
2

−1

D̄0D∗0
−1 −

1
2

0 0

D−D∗+
−

1
2

−1 0 0

Since the D̄∗ meson mass is about one pion mass
larger than that of the D meson, MD∗−MD ≈mπ, the
intermediate pion can be regarded as a real particle ap-
proximately at the threshold of DD̄∗, i.e., q20 ≈ ~q2+m2

π
.

The denominator in the one-pion exchange potential of
the D and D̄∗ mesons in Eq. (18) can be written as

q2−m2
π
= q20−~q2−m2

π
=[

√

~q2+m2
π
]2−~q2−m2

π

=

[

mπ

√

1+
~q2

m2
π

]2

−~q2−m2
π

∼
[

mπ

(

1+
~q2

2m2
π

)]2

−~q2−m2
π
∼ |~q|4
(2mπ)2

, (19)

approximately. However, the zero component of the po-
larization vector of the D̄∗ meson is in inverse proportion
to the D̄∗ meson mass, and thus can be neglected in the
calculation, so we have

q·ε∗∼|~q|, (20)

and
q·ε∼|~q|. (21)

According to Eqs. (19), (20) and (21), although the
one-pion exchange potential of the D and D̄∗ mesons is
divergent at the DD̄∗ threshold,

V u
DD̄∗→DD̄∗∼

1

|~q|2 , (22)

it can be neglected when the total energy of the system
is far away from the DD̄∗ threshold.

In Ref. [22], the one-pion exchange potential of the D
and D̄∗ mesons is assumed to be dominant in the gener-
ation of the X(3872) state. The formula of the one-pion
exchange potential is given explicitly in the second term
in Eq. (11) of Ref. [22], which is relevant to the external
three-momentum in the center-of-mass frame. The po-
tentials of the D and D̄∗ mesons as functions of the total
energy of the system

√
s are depicted in Fig. 2, and it

can be found that the vector meson exchange potential
is more important than the one-pion exchange potential
of the D and D̄∗ mesons if the hidden gauge symmetry
is taken into account. Therefore, the one-pion exchange
potential of the D and D̄∗ mesons is neglected in the
present work.

Fig. 2. The vector meson exchange potential of
DD̄∗ in Eq. (13) (solid line) and the one-pion ex-
change potential of DD̄∗ in Eq. (11) of Ref. [22]
(dashed line) as functions of the total energy of
the system

√

s.

5 Results

In Ref. [42], the DD̄∗ interaction is studied in the
SU(4) flavor space, and an intermediate J/ψ exchange
in the kernel is taken into account besides the ρ and ω
exchanges. Actually, the J/ψ particle is heavier than
the ρ and ω mesons, and the DD̄∗ interaction via a J/ψ
exchange can be neglected in the calculation. Moreover,
we suppose that the pion decay constant fπ = 93 MeV
in the DD̄∗ potential in Eq. (8). However, the f 2

π
is re-

placed with fifj in the potential in Eq. (4) of Ref. [42],
related to the initial and final particles, respectively. In
the DD̄∗→DD̄∗ process, both fi and fj take the value
of the decay constant of the D meson, i.e., fi=fj=fD=
165 MeV.

Five channels of 1√
2
(K̄∗−K+−c.c.), 1√

2
(K̄∗0K0−c.c.),

1√
2
(D∗+D−−c.c.), 1√

2
(D∗0D̄0−c.c.) and 1√

2
(D∗+

s D−
s −c.c.)

are discussed in Ref. [42]. A potential is given by

Vij(s,t,u)=
ξij

4fifj
(s−u)~ε·~ε∗, (23)

where ξij denotes the coefficient between these channels,
and ~ε and ~ε∗ are 3-dimensional polarization vectors of
the initial and final vector mesons, respectively. When
the J/ψ exchange is neglected, the coefficients ξij for the
1√
2
(D∗+D−−c.c.) and 1√

2
(D∗0D̄0−c.c.) channels can be

obtained from the values listed in Table 1. It is apparent
that ~ε·~ε∗ is supposed to be −1 in Ref. [42], and thus the
coefficients in these two channels take negative values in
Eq. (5) of Ref. [42].

The K̄∗K threshold is far lower than the energy region
where the X(3872) is detected. Thus the 1√

2
(K̄∗−K+−

c.c.) and 1√
2
(K̄∗0K0 − c.c.) channels can be excluded

when the generation of the X(3872) particle is dis-
cussed. Moreover, it should be emphasized that the
1√
2
(D∗+

s D−
s −c.c.) channel only contributes about 0.016
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of the probability in the wave function of the X(3872)
particle, as discussed in Ref. [42], so the 1√

2
(D∗+D−−c.c.)

and 1√
2
(D∗0D̄0−c.c.) channels play an important role in

the generation of the X(3872) particle. Therefore, it is
reasonable that only the DD̄∗ interaction is taken into
account in the present work.

The resonance state of DD̄∗ corresponds to the con-
dition

det(I−Ṽ G̃)=0. (24)

In a single channel, Eq. (24) leads to poles in the T̃ am-
plitude when Ṽ −1=G̃. Figure 3 shows the real parts of
the loop function G̃ of DD̄∗ with different values of the
regularization scale µ in Eq. (15) as functions of the total
energy of the system

√
s in the center-of-mass frame. The

inverse of the kernel Ṽ in Eq. (13) is also shown. The
real part of the loop function G̃ is less than the value
of Ṽ −1 when the regularization scale ν<750 MeV with
a=−2 fixed. Therefore, no resonance state is generated
dynamically in the DD̄∗ channel with isospin zero even
if a peak of the T̃ amplitude is detected on the complex
energy plane of

√
s. A pole of the T̃ amplitude appears

at 3872.62+i0.00 MeV in the complex energy plane of√
s if the value of the regularization scale is set to be

µ=800 MeV with the subtraction constant a=−2 fixed,
which is consistent with the experimental data for the
X(3872) particle. The real part of the pole position is
about 1∼2 MeV lower than the DD̄∗ threshold, and thus
the X(3872) particle can be regarded as a DD̄∗ bound
state.

Fig. 3. The inverse of the DD̄∗ potential in Eq. (13)
and the real part of the loop function in Eq. (15)
with different values of the regularization scale µ
as functions of the total energy of the system

√

s,
where the subtraction constant a = −2 is fixed.
The solid, dashed and dotted lines stand for the
real part of the loop function with µ=900 MeV,
µ=750 MeV and µ=700 MeV, respectively, while
the dash-dotted line denotes the inverse of the
DD̄∗ potential.

If the longitudinal part of the vector propagator in
the loop function G̃ is excluded, a bound state can also

be generated in the corresponding energy region by ad-
justing values of the regularization scale µ and the sub-
traction constant a. In this case, a pole of the T̃ ampli-
tude is detected at 3871.69+i0.00 MeV on the complex
energy plane of

√
s with µ=813 MeV and a=−2.

The real and imaginary parts of the loop function G̃
as functions of the total energy of the system

√
s in the

center of mass frame are depicted in Fig. 4. The solid
lines denote the case where the longitudinal part of the
intermediate vector meson propagator is taken into ac-
count, and the parameters are set to be µ=800 MeV and
a=−2. The dashed lines show the case where only the
transverse part of the intermediate vector meson propa-
gator in the loop function G̃ is considered, and the reg-
ularization scale is set to be µ=813 MeV with the sub-
traction constant a=−2.

Fig. 4. The inverse of the DD̄∗ potential in Eq. (13)
and the real and imaginary parts of the loop func-
tion as functions of the total energy of the system
√

s. The solid lines show the case where both
the transverse and longitudinal parts of the vec-
tor meson propagator in the loop function with
µ = 800 MeV are taken into account, and the
dashed lines show the case where only the trans-
verse part of the vector meson propagator in the
loop function with µ = 813 MeV is considered.
The dash-dotted line denotes the inverse of the
DD̄∗ potential.

The formalism in Section 2 can be extended to study
the interaction of the B meson and B̄∗ meson by replac-
ing the c and c̄ quarks with b and b̄ quarks, respectively.
When the longitudinal part of the vector meson prop-
agator in the loop function is taken into account, the
amplitude satisfies the pole condition in Eq. (24) only in
the case of µ>1700 MeV with a=−2 fixed. When the
regularization scale µ takes the value of 1800 MeV, the
pole of the amplitude is detected at 10600.97+i0 MeV on
the complex energy plane of

√
s, which is about 3 MeV

lower than the BB̄∗ threshold, and can be regarded as
a bound state of the BB̄∗ system. If the longitudinal
part of the vector meson propagator in the loop func-
tion is excluded in the calculation, the pole of the am-
plitude appears when µ > 1974 MeV with a = −2. If
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the regularization scale µ= 2000 MeV, the pole lies at
10603.64+i0 MeV, which is below the BB̄∗ threshold.
Moreover, it is worth stressing that the bound state of
the BB̄∗ interaction has no counterpart in the Particle
Data Group review.

6 Summary

The DD̄∗ interaction is investigated in the hidden
gauge symmetry approach of the SU(3) flavor subspace
of the u, d and c quark components. The one-pion ex-
change between the D meson and the D̄∗ meson is ana-
lyzed precisely. Since the mass of the D̄∗ meson is just
one pion mass larger than that of the D meson, the inter-
mediate pion can be treated as a real particle at the DD̄∗

threshold. Thus the diagram of the one-pion exchange
between the D meson and the D̄∗ meson is divergent and
supplies a singularity at the DD̄∗ threshold. However,
this one-pion exchange potential becomes trivial when
the total energy of the DD̄∗ system is far away from the
threshold, so it is neglected in this work.

A kernel of the DD̄∗ interaction by exchanging a ρ or
ω meson is derived, and then this kernel is used to solv-
ing the Bethe-Salpeter equation in the coupled-channel

unitary approximation. In the isospin I = 0 sector, a
DD̄∗ bound state with a mass about 3872 MeV is pro-
duced, which is slightly lower than the DD̄∗ threshold
and can be regarded as a counterpart of the X(3872)
particle. This method is also extended to study the BB̄∗

interaction by replacing the corresponding c quarks with
b quarks, respectively, and a bound state is produced in
the isospin I=0 sector, which has no counterpart in the
PDG data. It should be emphasized that the regulariza-
tion scale takes different values from the DD̄∗ case when
the subtraction constant is fixed. The heavy quark flavor
symmetry should be considered in our future work.

Although a DD̄∗ bound state can be generated dy-
namically in the isospin I=0 sector, which stems from
the ρ and ω meson exchange due to the hidden gauge
symmetry approach, the DD̄∗ interaction in the isospin
I = 1 sector is unfortunately zero, and thus no bound
state can be generated dynamically. This implies that
other mechanisms need to be considered besides the hid-
den gauge symmetry approach.

We would like to thank Han-Qing Zheng for useful

discussions.
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