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New model of kaon regeneration
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Abstract: It is shown that in the standard model of K0
S regeneration a system of non-coupled equations of motion

is used instead of the coupled ones. A model alternative to the standard one is proposed. A calculation performed

by means of the diagram technique agrees with that based on exact solution of the equations of motion.
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1 Introduction

The effect of kaon regeneration has been known since
the 1950s. However, in the previous calculations [1–3] a
system of non-coupled equations of motion was consid-
ered (see Eq. (1)) instead of the coupled equations of mo-
tion. This is a fundamental defect because it leads to a
qualitative disagreement in the results. This means that
the regeneration has not been described at all. The result
obtained in Ref. [2] was adduced in Refs. [4, 5] and sub-
sequent papers. In this paper we consider a model based
on the exact solution of the coupled equations of motion
with the potentials taken in general form. A comparison
with the previous model and our calculation performed
by means of the diagram technique is given as well.

Let K0
L fall onto the plate at t=0. Our particular in-

terest is in the probability of finding K0
S. Our approach is

as follows. Since K0N- and K̄0N-interactions are known,
we go to K0,K̄0 representation. The problem is described
by coupled equations of motion for K0(t) and K̄0(t). We
find the corresponding solutions and revert to K0

L,K
0
S

representation.

2 Previous calculations

In the previous calculations the starting equations are
(see Eqs. (3) of Ref. [2]):

(∂x−ink)α=0,

(∂x−in
′k)α′=0, (1)

where n and n′ are the indexes of refraction for α and
α′, respectively. In this equation the change of variables
α,α′→α1,α2 is performed and the effects of weak inter-
actions are added. As a consequence of the change of

variables, Eqs. (5) of Ref. [2] are coupled. The solution
of Eqs. (5) in Ref. [2] gives the result in Eq. (6) of Ref.
[2] (or Eq. (1) of Ref. [3]). This result is adduced in Eq.
(9.32) of Ref. [4], in Eqs. (7.83)–(7.89) of Ref. [5], and
subsequent papers.

We consider all the possibilities. If α and α′ corre-
spond to K0

S and K0
L, α1 and α2 describe K0 and K̄0,

whereas our interest is in K0
S and K0

L. The indexes of
refraction for K0

L and K0
S are unknown.

Let α = K0 and α′ = K̄0. Then α1 = K0
S and

α2 = K0
L. This variant follows from the initial condi-

tions (see Ref. [2]): α2(0) = 1, α1(0) = 0. There is no
off-diagonal mass ε = (mL−mS)/2. Equations (1) are
non-coupled. The non-coupled equations exist only for
the stationary states and do not exist for K0 and K̄0.

In any case Eqs. (1) are unrelated to the prob-
lem. Our calculation gives the inverse ∆Γ - and ∆m-
dependences (see Eq. (24) of Ref. [6]). In this paper
we consider a model with the potentials taken in general
form. A similar question for ΛΛ̄ oscillations is studied in
Refs. [7-10].

3 Our model

Let K0
L fall onto the plate at t=0. We use the model

described in the second paragraph of the Introduction.
In Ref. [6] the exact wave function KS(t) of K

0
S has been

calculated. The probability of finding K0
S or, equiva-

lently, the probability of the K0
LK

0
S transition, is given

by Eq. (12) of Ref. [6]:

|KS(t)|
2 =

1

4
|V/p|2eImV t+2ImMt

[

e−Im(pt)+eIm(pt)

−eiRe(pt)−e−iRe(pt)]. (2)
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This expression is exact; |KS(t=0)|2=0.
If ImV =0, then Imp=0 as well. In this case

|KS(t)|
2=|V/p|2e−(Γ

a

K0
+Γd)tsin2(Re(pt)/2). (3)

This is a pure oscillation regime. Here regeneration by
scattering takes place. The regeneration by absorption
is described by ImV .

As in Ref. [6] we put p ≈ V +2ε2/V (ε = ∆m/2,
∆m = mL−mS, where mL and mS are the masses of
stationary states); Γ d

K0 =Γ d
K̄0 =Γ d, mK0 =mK̄0 =m (m

and Γ d are the mass and decay width, respectively, of
K0). Let us denote Γ a

K0 and Γ a
K̄0 as widths of absorption

(not decay) of K0 and K̄0, respectively. Then

2ImM=−(Γ a
K0+Γ d), (4)

ReV =ReUK̄0−ReUK0 , (5)

ImV =−
∆Γ

2
, (6)

where
∆Γ=Γ a

K̄0−Γ a
K0 . (7)

Equation (2) gives:

|KS(t)|
2=Rω, (8)

R=
1

4
|V/p|2e−(Γ

a

K0
+Γd)t, (9)

ω=e−Γ (KL→KS)t+e[Γ (KL→KS)t−∆Γ ]t−2e−∆Γt/2cos(Re(pt)),
(10)

where

Γ (KL→KS)=
ε2

|V |2
∆Γ, (11)

Rep≈ReV+2ε2
ReV

|V |2
. (12)

Γ (KL→KS) is the width of KLKS transition (regener-
ation). The value ∆m is involved in Γ (KL→KS) and
cos(Re(pt)).

Let
∆ΓtÀ1. (13)

In this case
ω=e−Γ (KL→KS)t. (14)

The t-dependence is given by an exponential decay law.
It is significant that ReV 6= 0, in contrast to Ref. [6].
(Note that Eq. (14) is valid if ∆Γ>2ε.)

4 Connection between models based on

the diagram technique and the exact

solution

The calculation presented above is cumbersome and
formal, so verification is required. In Ref. [11] an ap-
proach based on perturbation theory was proposed. Re-
generation followed by the decay K0

L → K0
S → ππ was

considered. A similar approach is used for the nn̄ tran-
sition in a medium followed by annihilation (see Refs.
[12-15]). The process amplitude M(K0

L→K0
S→ππ) is

M(K0
L→K0

S→ππ)=
ε

V
Md(K

0
S→ππ). (15)

(See the second term of Eq. (23) of Ref. [11].) Here
Md(K

0
S→ππ) is the in-medium amplitude of the decay

K0
S→ππ. The corresponding process width is

Γ (K0
L→K0

S→ππ)=
ε2

|V |2
Γd(K

0
S→ππ), (16)

where Γd(K
0
S→ππ) is the width of the decay K0

S→ππ.
Consider now the connection between the models

based on the diagram technique and the exact solution.
In this case we write Eq. (16) in the form

Γ (K0
L→K0

S→ππ)=
ε2

|V |2
Γd(K

0
S→ππ)

∆Γ

∆Γ
=Γ (KL→KS)W,

(17)

W=
Γd(K

0
S→ππ)

∆Γ
, (18)

where W is the probability of the K0
S decay in the chan-

nel K0
S→ππ. The physical sense of Eq. (17) is obvious:

the multistep process K0
L→K0

S→ππ involves the subpro-
cess of KLKS transition (regeneration). Equation (17)
is verification of the models considered above.

Due to a strong absorption of K̄0 and zero momentum
transfer in the K0K̄0 transition vertex, the description of
competition between scattering and absorption is of par-
ticular importance. In this regard the diagram technique
has some advantages over the model based on the equa-
tions of motion (see Refs. [14,15]).

5 Limiting case and numerical results

Let us consider the limiting case t→ 0. Expanding
Eq. (10) to the terms ∼t2 we have

ω=[1−cos(Re(pt))](2−∆Γt)+ω1t
2/2, (19)

ω1=[Γ (KL→KS)]
2+[Γ (KL→KS)−∆Γ ]

2−
(∆Γ )2

2
cos(Re(pt)).

(20)
Let ReV 6=0 and ∆Γ =0. Then Γ (KL→KS)=ω1=0

and |KS(t)|
2 coincides with Eq. (3). The opposite case

when ReV =0 is more interesting. Then

ω=ω1t
2/2 (21)

and

|KS(t)|
2=

1

8
|V/p|2e−(Γ

a

K0
+Γd)tt2. (22)

Here regeneration by absorption takes place. Compar-
ing Eq. (19) and Eq. (21) we see that ReV 6=0 violates
t2-dependence.
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Fig. 1. Probability of finding K0
S . The solid and

dashed curves correspond to ReV = ∆Γ/2 and
calculation by means of Eq. (25), respectively.

Fig. 2. Probability of finding K0
S . The dot-dashed

curve corresponds to ReV =0.

Let us revert to Eqs. (8)–(10). Γ a
K0 and Γ a

K̄0 are given
by standard expressions which follow from the optical
theorem:

Γ a
K0=Nnvσ(K

0n)+Npvσ(K
0p) (23)

and
Γ a
K̄0=Nnvσ(K̄

0n)+Npvσ(K̄
0p), (24)

whereNn andNp are the number of neutrons and protons
in a unit of volume, respectively; σ(K0N) and σ(K̄0N) are

the total cross sections of K0N- and K̄0N-interactions,
and v is the velocity of the K0 meson. By way of illus-
tration we take σ(K0n)=σ(K0p)=15 mb [16]. As in Ref.
[2], we use σ(K0N)= 1

3
σ(K̄0N).

Instead of cross sections one can use the forward
scattering amplitudes of kaons by the molecules of the
medium. In this case

V =UK̄0−UK0=
2π

m
Nmf21, (25)

f21 = f− f̄ . Here Nm is the number of molecules in a
unit of volume, and f and f̄ are the forward scattering
amplitudes of K0 and K̄0, respectively.

For a copper absorber the probability of finding K0
S

is shown in Figs. 1 and 2. ImV is determined by Eqs.
(6), (7), (23) and (24), and ReV is the parameter. The
solid and dot-dashed curves correspond to |ReV |=∆Γ/2
and ReV =0, respectively. The dashed curve corresponds
to the copper plate and V defined from Eq. (25). The
amplitudes f and f̄ are taken from Ref. [17]. In the case
ReV =0 only regeneration by absorption takes place. It
is seen that ReV leads to the suppression of regenera-
tion. |KS(t)|

2 is about 10 times smaller than in Ref. [2]
(although comparison with Ref. [2] is meaningless for the
reasons given above.)

6 Conclusion

The main results of this paper are given in the ab-
stract. The most distinctive feature of the model pre-
sented above is the inverse ∆Γ - and ∆m-dependences of
the amplitude of regenerated K0

S, or parameter regener-
ation r (see Eqs. (19)–(24) of Ref. [6]). The main uncer-
tainty in the numerical results is conditioned by the un-
certainty in the cross sections σ(K0N) and σ(K̄0N). The
same is also true for the previous results [1-5] since they
have been obtained by means of the above-mentioned
cross sections as well. In this connection we would like
to recall that ∆m is extracted from free-space oscilla-
tions without recourse to the potentials of K0 and K̄0.
Nevertheless, in any case the regeneration should be de-
scribed correctly.

The author is grateful to Michael Bayev for help in

numerical calculations.
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