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Abstract: The angular momentum dependencies of parity splitting and electric dipole transitions in the alternating

parity bands of heavy nuclei have been analyzed. It is shown that these dependencies can be treated in a universal

manner with a single critical angular momentum parameter, which characterizes phase transition from octupole

vibrations to the stable octupole deformation. Using the simple but useful model of axially-symmetric reflection-

asymmetric mode, the analytical expressions for parity splitting and electric dipole transitional moment have been

obtained. The findings are in good agreement with the experimental data for various isotopes of Ra, Th, U, and Pu.
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1 Introduction

The investigation of phase transitions in nuclei has
attracted much attention in recent times since the nu-
cleus provides an opportunity to study numerous exam-
ples of this phenomenon. Mainly, the phase transitions
between spherical, axially deformed, and the γ-soft limits
of the nuclear structure have been analyzed [1]. Recently,
the evolution of reflection asymmetric deformation in ac-
tinides and rare-earth nuclei has also started to attract
notable attention. This is an interesting case of the oc-
currence of phase transition with angular momentum.
Indeed, as was shown in [2], the evolution of parity split-
ting in the alternating parity bands in actinides clearly
demonstrates the transition between the octupole non-
deformed phase to the stable octupole deformation. This
phenomenon can also be considered as an example of the
excited state quantum phase transition [3].

It is well-known that many nuclei in the actinides and
rare-earth mass regions are soft with respect to deforma-
tions that violate the spatial reversal symmetry. Exper-
imentally, it is revealed by the appearance of low-lying

negative parity states connected by strong (collective)
odd-multipolarity transitions with the members of the
ground state band [4]. Since the first observation of low
energy negative parity states [5, 6], an extensive set of
experimental data has been accumulated (for the review
see [7]). Note also the recent experimental investigations
on the reflection-asymmetry in 218,220Rn and 222,224Ra
[8], in 240Pu [9, 10], in 143Ba [11] and in 144,146Ba [12].

In nuclei with strong quadrupole deformation, yrast
negative parity states constitute the rotational band 1−,
3−, 5− ... In the case of static reflection-asymmetric de-
formation, these states together with the members of the
ground state band form the unified band with the nega-
tive and positive parity states interleaved with each other
following the rotational order, with an equal moment of
inertia. However, in most even-even nuclei, at low angu-
lar momenta, the negative parity states are shifted up-
wards relative to their positions in a unified alternating
parity band of the molecular type. This shift which is
denoted by the parity splitting [13] indicates that at low
angular momenta, nuclei undergo vibrational dynamics
in a reflection-asymmetric degree of freedom. Indeed, the
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results of calculations within the shell-corrected liquid
drop models [14, 15] and mean-field models [16–21] show
that although the nuclei in these mass regions are soft
with respect to the octupole deformation, they do not de-
velop a strong minimum at non-zero values of reflection-
asymmetric deformation.

Therefore, we see that although reflection-
asymmetric deformation is not as stable as conventional
quadrupole deformation, it is very important for the
description of the structure of the excitation spectra.
However, with the increase of angular momentum, parity
splitting decreases and an almost unperturbed alternat-
ing parity band is formed. This means that reflection-
asymmetric deformation is stabilized. Therefore, with
an increase of angular momentum, the transition occurs
from the reflection-symmetric to reflection-asymmetric
phase. In [2] it was shown that it is possible to define
the critical angular momentum at which this transition
occurs.

Another observable that is sensitive to the strength
of the reflection-asymmetric deformation is the reduced
transition probability for the electric dipole transitions
between the states of the negative parity and the ground
state band. Data on angular momentum dependence of
the dipole moment are not as rich as that for the en-
ergy spectra (for the review, see [4]). The electric dipole
transitional moment increases with angular momentum
until some critical value after which it remains almost
constant. Such a behavior of the dipole moment is con-
sistent with the idea of phase transition.

It is interesting to note that in odd-mass nuclei, the
stabilization of the reflection-asymmetry occurs earlier
than for their even-even neighbors. As shown in [22], an
interplay between the single-particle motion and collec-
tive reflection-asymmetric degree of freedom leads to a
reduction of parity splitting.

Theoretical models developed to describe nuclear
reflection-asymmetry dynamics are dependent on the de-
grees of freedom used. This degree of freedom is related
either to the octupole deformation [23, 24] or to clus-
tering [25–27]. In the framework of these models, it is
possible to obtain qualitative and quantitative descrip-
tions of the evolution of reflection-asymmetric deforma-
tion with mass and charge number, as well as the energies
of the lowest negative parity excitations and their decay
properties. In the framework of the interacting boson
model extended to include dipole and octupole bosons,
an acceptable reproduction of experimental data is ob-
tained [28]. In the cluster approach based on the semi-
microscopical dinuclear system model, a satisfactory de-
scription of parity splitting and Eλ transition probabili-
ties in many actinides have been obtained [29]. However,
the evolution of reflection-asymmetry is difficult to an-
alyze fully microscopically since it requires calculations

up to large values of angular momentum. An attempt to
perform the calculations in 144Ba for the lowest positive
and negative parity states has been performed in the
GCM framework with angular momentum, parity and
particle number projected HFB wave functions [30]. The
same technique has been applied to the description of
the lowest states in 224Ra with the relativistic mean field
wave functions [31]. We note also an interesting analysis
of the octupole properties of U isotopes performed using
improved Routhian surface calculations [32, 33].

Despite these difficulties, the analysis of experimental
data shows that the behavior of parity splitting and tran-
sitional dipole moment with angular momentum seems
to be universal. In other words, based on the general
ideas related to the reflection-asymmetric mode (regard-
less of octupole or mass-asymmetry), one can propose
a simple analytical description of the angular momen-
tum dependence of these quantities containing a small
number of the parameters with a clear physical meaning.
These parameters can be further fitted to the experiment
or calculation in the microscopic models. It is the aim
of this paper to find such an analytical description of
the angular momentum dependence of the main physical
characteristics of the alternating parity bands.

2 Description of the model

2.1 Hamiltonian and eigenfunctions

Following the discussion in [34], we assume that the
nucleus under consideration has a static quadrupole de-
formation 〈β20〉 and is soft with respect to the axially-
symmetric (K = 0) reflection-asymmetric vibrations.
These vibrations can be generated either by the octupole
or by the mass asymmetry degree of freedom. In both
cases, we denote the corresponding dynamical variable
by β30, although in the case of the mass asymmetry de-
gree of freedom, the contribution of the higher order odd
multipolarity modes is effectively included. The intrin-
sic Hamiltonian describing collective motion in β30 for a
given angular momentum I can be written as:

HI=− ~
2

2B

d2

dβ2
30

+VI(〈β20〉,β30), (1)

where B is the effective mass. The potential energy VI

is an even function of β30.
In the Hamiltonian (1), the coupling of the

quadrupole and octupole modes is neglected. This cou-
pling would lead to the angular momentum dependence
of the moment of inertia of the octupole mode and to
the K-mixing through the linking of the octupole mode
with gamma-vibrations. Because we consider only K=0
bands in well-deformed nuclei for not too large angular
momenta in this study, it seems reasonable to neglect
the quadrupole-octupole couplings by using the average
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values of quadrupole deformations.
The numerical diagonalization of the Hamiltonian (1)

with different variants of the potential VI has shown
[25, 35] that with a good accuracy, the lowest eigenstate

of the positive parity can be approximated as a superpo-
sition of two Gaussians of width

√

~/(Bω(I)) centered
at β30=±βm(I)

Ψ(+)
I (β30) =

[

ω(I)

π~

]1/4(

2

{

1+exp

[

−Bω(I)

~
β2
m(I)

]})−1/2

×
(

exp

[

−Bω(I)

2~
(β30−βm(I))

2

]

+exp

[

−Bω(I)

2~
(β30+βm(I))

2

])

, (2)

where, ω(I) is, in principle, a function of the angular mo-
mentum which is determined further. The convenience
of the ansatz (2) for the positive parity wave functions
is because both the limit of the octupole vibrations and
the limit of the stable octupole deformation are described
equally well by the ansatz [34]. One can introduce the
parameter

ξI=

√

Bω(I)

~
βm(I), (3)

which gives the ratio of a distance between the centers
of the Gaussians to the sum of their widths. If ξ≪ 1,
the overlap of the components in (2) is large and the
wave function Ψ(+)

I corresponds to the case of octupole
vibrations. If ξ≫1, the situation is the opposite and the
components in (2) are well-separated. The latter corre-
sponds to the static octupole deformation.

With the wave function Ψ(+)
I , one can obtain the po-

tential for the axially-symmetric octupole mode from the
Schrödinger equation with the Hamiltonian (1) as:

VI(〈β20〉,β30)=
~
2

2B

Ψ(+)′′

I

Ψ(+)
I

+E(+)
I (〈β20〉), (4)

where E(+)
I (〈β20〉) is the excitation energy of the lowest

state with an angular momentum I and a positive parity.
In this investigation, we are interested in the calculation
of the parity splitting which is determined as a difference
between the energies of the negative parity E(−)

I and the
positive parity E(+)

I states with the same angular mo-
mentum I. Since there exists only one physical excited
state for a given I (positive parity for even I and neg-
ative parity for odd I) due to the K=0 selection rules,
an experimental parity splitting can be determined as
a difference between the experimental excitation energy
for one parity and the energy obtained by interpolation
between the energies of the neighboring states of the op-
posite parity (see [13] or Eq. (34) of the present paper).
Thus, E

(+)
I (〈β20〉) never enters the final results and we

can set it equal to zero. Note, however, that as discussed
in Sect. (3.2), this can only be done for the well-deformed
nuclei.

The ansatz (2) for the wave function Ψ(+)
I (β30) yields

the following expression for the potential energy of

the axially-symmetric reflection-asymmetric mode deter-
mined up to I-dependent constant

VI(β30) =
~ω

2

(

−1+
Bω(I)

~
(β2

30+β2
m)

−2
Bω(I)

~
βmβ30tanh

Bω(I)

~
βmβ30

)

. (5)

The potential (5) is used for the numerical diagonaliza-
tion of HI and to calculate the parity splitting as a func-
tion of angular momentum.

Using the dimensionless variable x= β30/βm(I) and
the parameter ξ defined in Eq. (3), one can rewrite the
Hamiltonian HI and the potential energy VI in a conve-
nient form as follows:

HI = ~ω(I)h(ξI),

h(ξ) = − 1

2ξ2
d2

dx2
+vξ(x),

vξ(x) =
1

2
(ξ2−1)+

1

2
ξ2x2−ξ2xtanh(ξ2x). (6)

From Eq. (6) it follows that the parity splitting can be
parametrized as

∆E(I)≡E(−)
I −E(+)

I =~ω(I)f (ξI), (7)

where f (ξI) is the energy of the first-excited state of the
Hamiltonian h(ξ) (the ground state energy of this Hamil-
tonian is zero). All nuclear specific information is con-
tained in the dependence of ξI on the angular momentum
and implicitly enters the Hamiltonian hξ and the func-
tion f(ξI). Due to its universal character, it make sense
to determine an approximate analytical expression for
f(ξI).

For small values of angular momentum (ξ≪ 1), the
potential energy vξ(x) reduces to that of an oscillator:

vξ(x) =
1

2
(ξ2−1)+

1

2
(1−2ξ2)ξ2x2,

ξ≪1. (8)

The energy of the first excited state is then given by the
frequency of an oscillator and we have:

f(ξ)=1−ξ2. (9)

For large values of angular momentum (ξ≫1), vξ(x)
has the form of two oscillators separated by a large bar-
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rier:

vξ(x) =
1

2
(ξ2−1)+

1

2
ξ2(|x|−1)2,

ξ≫1. (10)

The value of the energy interval between the two lowest
levels of the double well potential for a large barrier is
given as [36]

f(ξ)=
2√
π
ξexp(−ξ2). (11)

Both limits, (9) and (11), are reproduced by one gen-
eral expression:

f(ξ) =
ξ2e−ξ2

2
[

1+(1−e−αξ2)
√

π

4
ξ
] coth

(

ξ2

2

)

,

for α=0.053, (12)

where the value of the parameter α is obtained by fit-
ting the numerical results for the f(ξ). The results ob-
tained by numerical diagonalization of the Hamiltonian
and those given by (12) are presented in Fig. 1. In the
limiting cases of very small and very large ξ, the differ-
ence between the approximate and exact values of f is
negligible and vanishes asymptotically. The maximum
deviation approaches approximately 2% at ξ≈2.

It should be noted that for the actual description of
the experimental data, one can set α=0, which yields a
simpler expression for the parity splitting as:

∆E(I)=~ω(I)ξ2I e
−ξ2I coth(ξ2I/2). (13)

Because the values of parity splitting are small and are
influenced by many effects which are not included in the
model (for example, band crossing) in the region of ξ≫1,
we can neglect the deviations of (13) from (12) for large
values of ξ and use the expression (13).

2.2 Dipole transitions

In addition to the appearance of the low-lying nega-
tive parity states, a common property of nuclei exhibit-
ing strong reflection-asymmetric correlations is the large
values of the electric dipole transition probabilities [4].
While the absolute values of the dipole moment for the
transitions between negative- and positive-parity states
depend on the nucleus, its angular momentum depen-
dence can be described, as it is shown in the following
section, by the universal function. This is similar to the
situation with the parity splitting.

0,0
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1,0

1,5

2,0
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]

Fig. 1. Upper part: The function f(ξ) obtained by
the numerical diagonalization of the Hamiltonian
hI (dots) and with an approximation of Eq. (12)
(solid line). Lower part: difference between exact
and approximated values of function f(ξ).

In the case of the well-deformed axially-symmetric
nuclei, the operator of the collective electric dipole mo-
ment can be written in the intrinsic system as:

D0∼Cβ20β30, (14)

where C is the dipole polarizability determined by the
asymmetry between neutron and proton densities [4]. In
the macroscopic liquid drop model, for example, we have:

D0=CLDAZeβ20β30, (15)

where CLD=0.0007 fm [37].
Therefore, we see that the angular momentum depen-

dence of the transitional dipole moment is determined
by the matrix element 〈i||β30||f〉, where vectors |i〉 and
|f〉 denote the initial and final states, respectively. The
lowest negative parity eigenfunction of the Hamiltonian
(1) can be found numerically by solving the Schrödinger
equation with potential (5). However, given that our
objective is to obtain the result in the analytical form
we supplemented the ansatz (2) for the positive parity
ground state wave function by the expression for the low-
est negative parity wave function as follows:

Ψ(−)
I (β30) =

[

Bω(I)

π~

]1/4(

2

{

1−exp

[

−Bω(I)

~
β2
m

]})−1/2

×
(

exp

[

−Bω(I)

2~
(β30−βm)

2

]

−exp

[

−Bω(I)

2~
(β30+βm)

2

])

. (16)
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This form was confirmed based on numerical calcu-
lation. It should be noted that previously in [34], the
methods based on supersymmetric quantum mechanics
were used. Here, we use a simpler approach to obtain
an approximate expression for parity splitting. Using
the expression for the parameter ξ and a dimensionless
variable x, the wave functions Ψ(±)(x) can be rewritten
as:

Ψ(±)(x) =
ξ1/2

β
1/2
m π1/4

1

21/2
√

1±exp(−ξ2)

×
(

exp

[

−1

2
ξ2(x−1)2

]

±exp

[

−1

2
ξ2(x+1)2

])

.

(17)

Using the ansatz (17) for the intrinsic wave functions
of the positive and negative parity members of the alter-
nating parity bands, we can find an analytical expression
for the angular momentum dependence of the matrix el-
ement of β30, namely:

〈i||β30||f〉 =

√

~

Bω

√
2e

(ξ2
f
−ξ2

i
)2

2(ξ2
f
+ξ2

i
) (ξf ξi)

1/2

√

(eξ
2
f−1)(eξ

2
i +1)

×



ξ2f−ξ2i +e

2ξ2
f
ξ2
i

ξ2
f
+ξ2

i (ξ2f+ξ2i )





(ξ2f+ξ2i )
3/2

. (18)

The last expression can be simplified if we assume the
approximation ξi≈ξf=ξ. Then

〈i||β30||f〉=
√

~

Bω

ξeξ
2

√
e2ξ2−1

. (19)

From Eq. (19), it is seen that in the vibrational limit
of the octupole motion (ξ≪1), we have:

〈i||β30||f〉≈
√

~

Bω
. (20)

For large values of ξ, the dipole moment is an increasing
function of ξ. This increase is almost linear for ξ>1

〈i|β30|f〉 ≈ βm, (ξ≫1). (21)

The angular momentum dependence of the dipole re-
duced transition probability has the form:

B(E1,i→f)=B(E1,0+→1−)
ξ2e2ξ

2

e2ξ2−1
, (22)

where ξ=
√

ξiξf .

3 Results of calculations

From Eq. (7), it follows that the angular momen-
tum dependence of the parity splitting is determined by
the function f [ξ(I)]. All information on the nucleus is

contained in the actual dependence of ξ on the angu-
lar momentum, while the function f [ξ] is universal. This
function can be obtained numerically as the energy of the
first excited state of the Hamiltonian hξ. f [ξ] is approx-
imately given by Eq. (12). Therefore, in the following,
we use the function f [ξ] given by Eq. (12) to describe
the parity splitting of the nuclei.

Our calculations have shown that with sufficiently
good accuracy that the angular momentum dependence
of ~ωI and ξI can be fitted as:

~ωI=const, ξ(I) = cI. (23)

This parametrization contains a very small number of
parameters. If this parametrization of the potential is
used, it can be seen that the value of the frequency ~ω is
immediately determined by the value of the parity split-
ting at zero angular momentum, ∆Eexp(0). Indeed, if
I=0 then ξ(0)=0 and VI(β30) reduces to the oscillator
potential. The interval between the ground state and
the first excited state is then given by the frequency ~ω.
Therefore, we obtain that ~ω=∆Eexp(0). The function
f [ξ(I)] is a universal function of ξ and thus depends only
on the parameter c defined in Eq. (23). Moreover, if we
use the results of [2], we can connect the value of c to
the value of the critical angular momentum Icrit, at which
the phase transition from the octupole nondeformed to
the octupole deformed shape takes place, namely:

cIcrit=
1√
2
. (24)

Finally, we obtain:

∆E(I)=∆Eexp(0)f

[

I√
2Icrit

]

. (25)

The choice of the angular momentum dependence of
ξ, given by (23), can be qualitatively justified in the fol-
lowing way. At a low angular momentum (I <Icrit), we
can consider the alternating parity band as being formed
from two distinct bands consisting of even-parity and
odd-parity states. Defining the moment of inertia of the
positive- (negative-) parity bands as ℑe(ℑo), the parity
splitting can be obtained as:

∆E(I) = ∆E(0)+
~
2I(I+1)

2ℑo(I)
−~

2I(I+1)

2ℑe(I)

= ∆E(0)−~
2I(I+1)

2ℑ̃(I)
, (26)

where

ℑ̃(I)= ℑe(I)ℑo(I)

ℑo(I)−ℑe(I)
. (27)

At low I, we have an expression for the moment of
inertia of the positive parity states that is given by
ℑe(I)≈ℑ(β30 =0). The moment of inertia of the nega-
tive parity state ℑo(I) is a weakly dependent function of
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the angular momentum [38]. Comparing (26) with the
approximated expression obtained using (9), we get:

∆E(0)=~ω, ~ωξ2(I)=
~
2I(I+1)

2ℑ̃(I)
. (28)

Because ℑo, and therefore ℑ̃ are weakly dependent func-
tions of I, the expression (28) is in agreement with the
approximation (23).

At the limit of large angular momenta (I ≫ Icrit)
the nucleus approaches the static octupole deformation
and the assumption of two separate rotational bands for
positive- and negative-parity states is no longer valid. In
this limit, the nuclear potential energy surface as a func-
tion of β30 has two pronounced minima separated by the
barrier [see Eq. (10)]. The parity splitting can then be
determined as [36]

∆E(I)=
2ω√
π

√

2V0

~ω
exp

(

−2VB

~ω

)

, (29)

where VB is the barrier between the right and left oc-
tupole minima. This barrier arises because the nuclear
moment of inertia increases with β30. Because it is as-
sumed that at I = 0 the potential has the form of an
oscillator [i.e. VB(I =0)= 0], the barrier height can be
determined as the difference between the rotational ener-
gies associated with the change in the moment of inertia
with β30

VB(I)=
~
2I(I+1)

2ℑ(β30=βm)
− ~

2I(I+1)

2ℑ(β30=0)
. (30)

For a large angular momentum, the moment of in-
ertia of negative and positive parity states are both
close to the value at the minimum of the potential, i.e.
ℑ(β30=βm)≈ℑo. Therefore, we have

VB(I)=
~
2I(I+1)

2ℑ̃(I)
. (31)

Comparing the expression (29) with the barrier height in
the form (31) with the expression (11) we obtain:

∆E(0)=~ω,~ωξ2(I)=
~
2I(I+1)

ℑ̃(I)
, (32)

where the constancy of ~ω is again taken into account.
As ℑ̃ is a weakly dependend function of I, the as-

sumption (23) is approximately valid in both limits of
small and large angular momenta. With the help of (23),
(24) and (28), the critical value of the angular momenta
can be related to the change in the rotational energy
caused by the mass asymmetric deformation dependence
of the moment of inertia

Icrit=γ

(

∆E(0)

2~2

ℑ0ℑe

ℑ0−ℑe

)1/2

, (33)

where γ is a constant close to unity. In this expres-
sion, the moment of inertia of the positive parity states

should be calculated at small angular momenta, namely
ℑe=ℑe(I=2), while the moment of inertia of the nega-
tive parity states should be considered in the vicinity of
the critical angular momentum ℑe=ℑe(I=Icrit).

Using the procedure described in [2], we can calculate
the barrier separating the octupole minima as a function
of angular momentum. The result is shown in Fig. 2.
Similarly to the parity splitting, which was represented
as a function of I/Icrit, the barrier is represented by the
universal function. We see that up to the critical value
(I/Icrit = 1), there is no barrier (VB = 0). Beyond the
critical value, the barrier starts to grow quadratically in
accordance with Eq. (31).

1,0 1,1 1,2 1,3
0,00

0,04

0,08

0,12

0,16

 

 

V
B   

   
 (i

n 
un

its
 o

f 
)

I/Icrit

Fig. 2. The barrier separating the octupole minima
as a function of angular momentum. There is no
barrier (VB = 0) for values of angular momenta
smaller than the critical (I/Icrit≤1).

The calculation of the parity splitting is performed
with the use of the expression (25) with the function f
in the form (12). The experimental values for the par-
ity splitting ∆E(I) are determined using the experimen-
tal energies Eexp(I) of the lowest negative parity states
and the positive parity states of the ground state band
[39]. The quantity ∆E(I) is determined as the difference
between the energies of the negative- and the positive-
parity states with the same spin I. As described in the
preceding section, since at every value of I there exists
only one state with the fixed parity π=(−1)I, the energy
of the state of the opposite parity but with the same I can
be determined only by interpolation using the energies
of the neighboring states of I. This interpolation should
account for the angular momentum dependence of the
excitation energy near I. Since it is assumed that nuclei
have a stable quadrupole deformation in the model, the
rotational law can be used, which leads to the following
interpolation [40]:

Einter(I+1)=
1

2
[Eexp(I+2)+Eexp(I)]

−1

8
[Eexp(I+4)−2Eexp(I+2)+Eexp(I)], (34)

and the parity splitting is given by
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Table 1. The values of the parameters ∆E(0) (keV) and c used to describe the parity splitting in the alternating par-
ity bands of various actinide are presented. Additionally, the last column contains the values of the critical angular
momenta Icrit characterizing the phase transition from octupole vibrations to the stable octupole deformation.

nucleus ∆E(0)/MeV c Icrit nucleus ∆E(0)/MeV c Icrit

222Ra 0.209 0.252 2.81 238Pu 0.584 0.053 13.32

224Ra 0.192 0.210 3.37 240Pu 0.585 0.058 12.10

226Ra 0.235 0.150 4.70 242Pu 0.767 0.060 11.77

228Ra 0.456 0.094 7.53 244Pu 0.888 0.047 14.94

224Th 0.226 0.247 2.86 230U 0.351 0.063 11.21

226Th 0.209 0.149 4.88 232U 0.548 0.044 16.20

228Th 0.311 0.094 7.54 234U 0.772 0.031 22.90

230Th 0.492 0.069 10.21 236U 0.674 0.046 15.39

232Th 0.699 0.049 14.50 238U 0.669 0.056 12.67

234Th 0.685 0.060 11.77 240U 0.789 0.058 12.12

∆E(I)exp=(−1)I(Einter(I)−Eexp(I)). (35)

An alternative expression for the parity splitting is
given in [41]. Both definitions produce almost identical
numerical results for the parity splitting.

Because the experimental value for the parity split-
ting at I=0 is not available, the value ∆E(0) is fixed to
reproduce experimental data for ∆Eexp(1). The critical
angular momentum Icrit is fitted to give a best overall
description of the parity splitting in the range of the an-
gular momenta 0≤ I≤20. Larger values of the angular
momenta are not considered because of the possible ap-
pearance of the band crossing at higher values of I. The
calculations performed for the deformed isotopes of Ra,
Th, U, and Pu are presented in Figs. 3-6 together with
the experimental data from [39]. The obtained values of
the critical momenta Icrit are presented in the Table 1.

A good overall agreement with the experimental re-
sults is observed for all the considered nuclei. There are
discrepancies in the behavior of the calculated and ex-
perimental dependencies for parity splitting which can
be differentiated into two “groups”. The discrepancies
of the first group are due to the fact that the experi-
mental parity splitting can assume negative values, while
the calculated result approaches zero and remains pos-
itive. Among the considered nuclei, this is the case
for 222,224,226Ra and 224,226Th. Such a behavior of the
parity splitting results from the coupling of the axially-
symmetric octupole mode to the other modes which are
not included in the model. For example, all nuclei in
the considered mass region have a negative parity band
with K = 1 [9]. This band can be interpreted as be-
ing built on the excitation of the non-axially symmetric
octupole mode [38]. The Coriolis coupling of this band
with the negative parity states of the alternating parity
band shifts the latter down in energy. Since there isn’t a

∆K=1 partner band for the states of the positive parity,
this perturbation will decrease the parity splitting and,
if the unperturbed parity splitting is close to zero, it will
be shifted to negative values.

The effect of Coriolis coupling with non-axially sym-
metric modes can only be seen in nuclei with critical
angular momenta that is not too large. Indeed, the par-
ity splitting adopts negative values only for 222,224,226Ra,
with critical angular momenta Icrit of 2.81, 3.37, and
4.70, respectively and for 224,226Th (Icrit=2.86, 4.88) .

If the critical angular momentum is large, this effect
is hidden by the discrepancies of the second group. The
second group combines the nuclei with large critical an-
gular momenta, such as heavy Th isotopes and most of
the considered U, and Pu isotopes (see Figs. 4–6). For
these nuclei, we see that the calculated parity splitting
for I > Icrit demonstrates a steeper incline than the ex-
perimental result. These discrepancies can be related
to centrifugal stretching. Indeed, from Eq. (32) it fol-
lows that the linear dependence of ξ(I) given by (23) can
only be assumed if the reduced moment of inertia does
not depend on the angular momentum. This is an ob-
viously rather crude approximation for large values of I.
To improve the agreement with the experimental results
at large values of I, we can assume

ξ(I)=cI/(1+dI), (36)

instead of (23). As an example, the effect of this addi-
tional term is demonstrated by the dashed line in Fig. 5
for 230,232,236,238U, whose alternating parity bands are
long enough to account for the additional term in the
angular momentum dependence of ξ. Thus, by adding
the parameter d, the agreement between the calculated
and experimental parity splitting at large angular mo-
menta is improved. However, to keep the model simple,
we avoid the introduction of an additional parameter d.
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Fig. 3. Parity splitting as a function of angular momentum for various Ra isotopes. Experimental data (circles) are
taken from [39]. The calculated parity splitting (lines) are obtained as in Eq. (25) with the use of the approximation
(12). The values of the parameters Icrit and ∆E(0) are given in Table 1.
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(12). The values of the parameters Icrit and ∆E(0) are given in Table 1.
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Fig. 5. Parity splitting as a function of angular momentum for various U isotopes. Experimental data (circles) are
taken from [39]. The calculated parity splitting (lines) are obtained as in Eq. (25) with use of the approximation
(12). The values of the parameters Icrit and ∆E(0) are given in Table 1. The calculations are performed based
on the dependence of ξ on the angular momentum in the form (36) displayed by the dashed line (see discussion in
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It is worth mentioning that for large angular momen-
tum, one should also consider the coupling of octupole-
mode with single-particle degrees of freedom. This would
lead to the mixture of octupole-mode with various two
quasi-particle excitations and, as a result, to band cross-
ing. An interesting example of such a band crossing is
provided by the different behavior of the parity splitting
in 238U and 240Pu. In the low spin part, the parity part-
ner bands behave almost the same; however, at larger
spins, their behavior differs dramatically [42]. This dif-
ference can be generated by the crossing of the alter-
nating parity band with the relatively low-lying proton
two-quasiparticle positive parity band. The proton two-
quasiparticle excitation could be different in both nuclei
because of the difference in the positions of the proton’s
Fermi level. Because of the crossing, the lowest pos-
itive parity states are additionally shifted downwards,
and parity splitting decreases more slowly. However, the
treatment of this coupling is outside the limit of applica-
bility of the model. For angular momenta well above the
critical value, the behavior of the parity splitting and the
dipole moments determined by the coupling of various
single-particle and collective modes and the separation
of a single octupole mode is no longer valid.

Using the acquired values of the critical angular mo-
menta Icrit, one can calculate the angular momentum de-
pendence of the electric dipole transitional moment. In
Fig. 7, the results for the 240Pu are presented. The cal-
culated values are compared with the experimental data
on dipole moment obtained in [43]. In order to obtain
the values of D0 from the experimental data, we have
assumed the stable quadrupole deformation and an axial
shape of the considered nuclei.

The dipole moment is obtained from the reduced
transition probabilities using the expression [4]

B(E1,I→I ′) =
3

4π
D2

0

(

CI′0
I0 10

)2

=
1

2I+1
〈I ′||M(E1)||I〉2. (37)

As it follows from (22), the absolute value of D0 requires
the experimental data on B(E1,0+→1−) for its defini-
tion. If these data are not available, the initial value of
the dipole-to-quadrupole moment is fitted to reproduce
the lowest experimentally available value of D0/Q. As
seen from the results presented in Fig. 7, the calcula-
tion performed using Eq. (22) and the critical angular
momentum obtained from the fit of the parity splitting
reproduces well the angular momentum dependence of
the dipole transition probabilities along the alternating
parity band.

Another example is presented in Fig. 8 for the re-
duced matrix elements of the E1 transitions in 226Ra.
The experimental data are taken from [44]. Unlike 240Pu
which remains reflection symmetric until a large angu-

lar momenta (Icrit = 12.1), the 226Ra has almost sta-
ble reflection-asymmetric deformation very close to the
ground state (Icrit = 4.7). As we see in both cases of
small and large values of Icrit, the calculations based on
Eq. (22) agree well with the experimental data.
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Fig. 7. Dependence of the calculated and experi-
mental values of the transitional dipole moment
on the angular momentum obtained for 240Pu.
The calculations are performed using the expres-
sions (22) and (37). The value of the critical an-
gular momentum is given in Table 1.
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Fig. 8. Dependence of the calculated and experi-
mental values of the E1 matrix element on the
angular momentum for 226Ra. The calculations
are performed using the expressions (22) and (37).
The value of the critical angular momentum is
given in Table 1.

4 Conclusion

A simple model is proposed for the description
of spectroscopic information on the alternating parity
bands in actinides. The model is based on the assump-
tion that the yrast negative parity states of quadrupole-
deformed nuclei are related to the excitation of an
axially-symmetric octupole mode. It is shown that the
octupole deformation is stabilized with an increase of
the angular momentum, i.e., the phase transition occurs
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from octupole vibrations to the stable octupole deforma-
tion. This is caused by the dependence of the moment
of inertia on the octupole deformation. As the moment
of inertia increases with octupole deformation, its value
is larger at the minimum of the potential than at the
barrier height. As a result, the depth of the deforma-
tion minimum increases with an increase of the angu-
lar momentum. For 222−228Ra, 224−234Th, 230−240U, and
238−244Pu, the critical angular momenta Icrit character-
izing the phase transition to the reflection-asymmetric
shape were calculated. The relation of Icrit to the spec-
troscopic properties (such as the energies of the lowest
Iπ=1− states and the moments of inertia of the positive
parity and negative parity bands) is obtained.

Based on this model, the approximate analytical ex-
pressions for the angular momentum dependence of the

parity splitting (13) and the electric dipole transitional
moment (22) were obtained. These analytical expres-
sions contain a small number of parameters with the clear
physical meaning, namely, the frequency of the axially-
symmetric octupole vibrations at zero angular momen-
tum ~ω and the critical angular momentum Icrit. These
parameters can be fitted according to the experimen-
tal data or calculated using a microscopical model. We
note that the same values of the parameters ~ω and Icrit,
which were determined to provide a good agreement with
the experimental data for parity splitting, provide a good
description of the data for the electric dipole transitional
moment. The results obtained were validated by the cal-
culations for the different actinides and compared with
the experimental data.
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43 I. Wiedenhöver, R. V. F. Janssens, G. Hackman et al, Phys.

Rev. Lett., 83: 2143 (1999)
44 H. J. Wollersheim, et al, Nucl. Phys. A, 556: 261 (1993)

124104-11


