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Abstract:
dinates {v,r,x%,a=2,3}. In Bondi-like coordinates, the three-dimensional hypersurface is a null hypersurface, and the

We discuss the Hamiltonian formulation of gravity in four-dimensional spacetime under Bondi-like coor-

evolution direction is the advanced time v. The internal symmetry group SO(1,3) of the four-dimensional spacetime
is decomposed into SO(1,1), SO(2), and T*(2), whose Lie algebra s0(1,3) is decomposed into so(1,1), s0(2), and
t*(2) correspondingly. The SO(1,1) symmetry is very obvious in this type of decomposition, which is very useful in
s0(1,1) BF theory. General relativity can be reformulated as the four-dimensional coframe (e,) and connection (w/.”)
dynamics of gravity based on this type of decomposition in the Bondi-like coordinate system. The coframe consists

2 €3. The Palatini action is used. The Hamiltonian analysis

of two null 1-forms e™, e™ and two spacelike 1-forms e
is conducted by Dirac’s methods. The consistency analysis of constraints has been done completely. Among the
constraints, there are two scalar constraints and one two-dimensional vector constraint. The torsion-free conditions
are acquired from the consistency conditions of the primary constraints about 7/;. The consistency conditions of the
primary constraints 7%, =0 can be reformulated as Gauss constraints. The conditions of the Lagrange multipliers
have been acquired. The Poisson brackets among the constraints have been calculated. There are 46 constraints
including 6 first-class constraints 7%;=0 and 40 second-class constraints. The local physical degrees of freedom is 2.

The integrability conditions of Lagrange multipliers no, lo, and ej' are Ricci identities. The equations of motion of

the canonical variables have also been shown.

Keywords:
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1 Introduction

The Hamiltonian analysis plays an extremely impor-
tant role in the initial-value problem and canonical quan-
tization. For a gravitational system, the Hamiltonian
analysis depends on two fundamental elements, namely,
the foliation of a spacetime and the choice of canonical
variables.

The most frequently used foliation method is to foli-
ate a spacetime by a series of three-dimensional spacelike
hypersurfaces along a time-like vector field [1], based on
which the initial-value problem is well defined. An alter-
native foliation method is to foliate the spacetime along
two null vector fields [2], named by 2+2 formalism, based
on which the initial-value problem can also be well de-
fined.

For a better understanding of the gravitational radi-
ation, a null foliation is proposed [3], which provides a
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canonical formulation of a theory on outgoing null hy-
persurfaces. In a neighborhood of an outgoing beam of
wave near the future null infinity in an asymptotical flat
spacetime, the metric can be written in a Bondi-Sachs
coordinate system {u,r,z*,a=2,3} [4, 5],

ds® =goodu®+2go; dudr+2go,dudz®+gapdzda’, (1.1)

with goo <0, go1 <0, and go, > 0. The metric has four
Bondi conditions: g1, gi2, ¢15 =0, and det(ga;) ~ 7.
In the system, the retarded time u is a null coordinate.
Each u defines a three-dimensional null hypersurface in
the four-dimensional spacetime. The spatial coordinate r
is regarded as the distance from the isolated gravitational
source. For a given u, every r defines a two-dimensional
spacelike surface in the three-dimensional null hypersur-
face.

For a beam of an outgoing gravitational wave, u
always remains constant in its propagation direction.
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Therefore, if one wants to study the propagation proper-
ties of a given beam of a gravitational wave, the advanced
time coordinate v should be used instead of the retarded
time coordinate u. In the study of the geometry near
an isolated horizon that is a null hypersurface, the ad-
vanced time coordinate v should also be used [6-8]. In
these cases, the metric is better written in a Bondi-like
coordinate system {v,r,z%,a=2,3} or {z°,z',2*,a=2,3}:

ds® =goodv*+2g01dvdr+2go,dvda® +g,,dr*da®,  (1.2)

with goo <0, go1 >0, and g, >0. In the above metric,
there are three Bondi-like conditions, namely, g11, gio,
and g;3 = 0; therefore, the metric has only 7 variables
rather than 10 variables in the general form of a metric.
The 4th coordinate condition is not imposed here.

Unlike the 143 spacelike foliation and 242 foliation,
which can be used in the analysis of initial-value prob-
lems in the whole spacetime, the 1+3 null foliation can
only be used in a finite region of the spacetime where
there is no null signal incident in the opposite direction.
In fact, in the study of the propagation of a beam of a
gravitational wave, the one-way propagating wave and
its propagation property are focused on and, thus, it is
supposed that no other null signals exist. In the case of
an isolated horizon, by definition, it is a null hypersurface
without the incident of ingoing signals.

To have a better knowledge of the evolution of a ge-
ometry, the three-geometry h,;; on a three-dimensional
spacelike hypersurface in the ADM formalism [1] and
the two-geometry 7,; on a two-dimensional spacelike sur-
face in the 2+2 formalism are chosen as the canon-
ical configuration variables. To make general relativ-
ity look like a gauge theory, having polynomial forms,
su(2)-connection on a three-dimensional hypersurface is
chosen as the canonical configuration variable [9]. The
su(2)-connection is also constructed for the 242 formal-
ism [10-12] and for the 143 null decomposition [13, 14]
and serves as the canonical configuration variable. The
reason for the choice of su(2)-connection comes from
the fact that the Lorentz group can be decomposed
as the direct product of two SO(3) subgroups, namely,
SO(1,3)=S0O(3)®SO(3), and the corresponding Lie alge-
bra s0(3) is isomorphic to su(2).

Because the local symmetry SO(1,d—1) in a d-
dimensional spacetime with d#4 does not have a similar
decomposition, such a type of connection dynamics can-
not be generalized to other dimensional spacetimes. In
order to overcome this difficulty, the so(d)-connection
instead of the so(d—1)-connection as the basic config-
uration variable [15]. With the so(d)-connection, un-
fortunately, the Lagrangian formalism on a spacetime
with a Lorentzian signature fails to be constructed, al-
though the Hamiltonian formalism can be established
[15]. In fact, the local Lorentz group SO(1, d—1) in

a d-dimensional spacetime can always be decomposed as
SO(1,d-1)=S0O(1,1)xSO(d2)x T~ (d-2)xT*(d-2), where
the last two cross products x are Cartesian products of
the subgroups [16]. Another problem of the decompo-
sition SO(1,3)=SO(3)®S0O(3) is that the SO(1,1) local
symmetry does not manifest. The local SO(1,1) symme-
try is very essential in the BF-theory approach to the sta-
tistical explanation of black hole entropy [17-20]. There-
fore, it is worthwhile checking the possibility of choosing
the so(1,d—1)=s0(1,1) ®so(d—2) dt (d—2) Dt*(d—2)-
connection as the canonical configuration variable.

The decomposition of so(1,d—1)=s0(1,1)Pso(d—2)P
t7(d—2)®tt(d—2) can be easily realized in a coframe
consisting of two null 1-forms (e,e™) and d—2 spacelike
1-forms e*, which is similar to the Newman-Penrose form
[21]. The reason is that the coframe has four types of lo-
cal transformations: boost, rotation, and two types of
translations, which leave the metric invariant [22]. They
belong to four subgroups of the Lorentz group SO(1,d-1),
namely, SO(1,1), SO(d-2), T~ (d2), and T*(d-2). In par-
ticular, the SO(1,1) symmetry acts on (e~,e™) only and
the SO(d—2) symmetry acts on e* only. In a Bondi-like
coordinate system near an isolated horizon or a beam of
a gravitational wave, the null coframe e~ is chosen to be
proportional to dv, which makes the SO(1,1) symmetry
more obvious.

In our previous study [23], we carried out a Hamil-
tonian analysis of three-dimensional gravity in Bondi-
like coordinates, based on Dirac’s treatments of a con-
strained system [24]. In the three-dimensional case, go;
was fixed to 1; all the three variables ef, €2, and e? of
the coframe and the connection components wi‘] were
treated as configuration variables; the Palatini action
was used; and the cosmological constant was also in-
cluded. A consistency analysis was carried out success-
fully, and torsion-free conditions and Gauss constraints
were acquired. There were only second-class constraints.
The BTZ spacetime was discussed as a test, which sat-
isfied all the constraints.

The aim of the present study is to make a Hamilto-
nian analysis of four-dimensional gravity in Bondi-like
coordinates, by using the same method as in Ref. [23].
For convenience, we implement some modifications in
the treatment. Unlike in the treatment in the three-
dimensional case [23], go; is not fixed, and, therefore,
the metric is more general and can be applied to more
cases. The other differences are that ng, lo, and ef' are
treated as Lagrange multipliers and that the cosmologi-
cal constant is not included. The consistency conditions
of the constraints will require the multipliers ng, ly, and
ep! satisfying certain equations. These equations define
the first derivative of ny, ly, and ef' with respect to dif-
ferent coordinates, and therefore, the multiplier should
satisfy the integrability conditions. Such a situation is
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not met in Dirac’s original literature [24]. In the new
approach, the torsion-free conditions will appear as the
consistency conditions of the primary constraints con-
taining 7%;. In the coframe framework, the Gauss con-
straints are not independent ones, and they will emerge
in the consistency conditions of 7?,=0.

The rest of the paper is structured as follows. In Sec.
2, the symmetry decomposition, coframe, connection, ac-
tion, and Poisson brackets are introduced. In Sec. 3, the
consistency conditions for the constraints are analyzed,
and the equations of motion are obtained. As a part of
the consistency conditions, the integrability conditions of
no, lo, and €' are also presented. In Sec. 4, the classifica-
tions of constraints are considered, and the local physical
degrees of freedom are discussed. The scalar, vector, and
Gauss constraints in the new approach are also given in
this section. In Sec. 5, the summary is made. In Appen-
dices A and B, 2 identities are proved. In Appendices C,
D, and E, the integrability conditions of ng, Iy, and e
are shown to be equivalent to Ricci identities. The non-
zero Poisson brackets among the constraints are listed in
Appendix F.

2 Preliminary

2.1 Symmetry decomposition
The internal symmetry group of the four-dimensional

spacetime is SO(1,3), and its Lie algebra is s0(1,3). The
generators are denoted as L;;,I,J=0,1,2,3, satisfying

[LIJvLKL]:nILLJK"'T]JKLIL_nIKLJL_T]JLLJK; (2-3)
where 7;; = diag(—1,1,1,1) is the Minkowski metric of

the local space.
The generators of s0(1,3) can also be redefined as [16]

L+A7LBC :5ABL+C_6ACL+Ba

1
L_,:=Ly, Lis:=—(LoatLlis), Lap:=Lug,
+ 01 +A \/5( 0atLia) AB AB
(2.4)
where A,B=2,3. They satisfy
(Lo, Loal==L_a, [L_y,Lya]=L.a,
[L7+7LAB]:07 [LfA,L,B]:O,
[L_a,Lypl=Lap—0apL_,
[L_a,Lpc)=6apLl_c—06acL_p, [Lia,Lip]=0,
[ J
J

=0apLpc+dpcLap—0acLp—0ppLac.
(2.5)

[LABaLCD

The above equations can also be written together as (2.3)

with I,J=—,+,2,3 and
0 —-100
-1 000
= 2.6
O (26)
0 001

2.2 Coframe

The spacetime line element can be written in terms
of the coframe,
ds®=nre’®e’. (2.7)
Corresponding to our decomposition, the coframe is
{e~,e*,e?}, which contains two null 1-forms e~,e* (or
n,l) and two spacelike 1-forms e?,A = 2,3. For any
coframe like this, the following four types of gauge trans-
formations [22] leave the line element (2.7) invariant:
o
E-=—, Et=qet, E*=e4, (2.8)
«
Et=et—ctet

(2.9)

1
E-=e —c e +=csctet, Et=eT,
2

1
E=e, E*ze*—bAeA+§bAbAe’, EA=et—bte,
(2.10)

2.1
E-=e”, Eft=e", E“=e”cosf—espelsing, (2.11)
which correspond to SO(1,1), T~(2), T*(2), and SO(2)
transformations, respectively. Here, o, b4, ¢#, and 3 are
gauge parameters, which are arbitrary functions of the

coordinates.
2.3 Connection
Both ef and ET should satisfy torsion-free conditions

d€I+wIJ/\€KT](]K:O, dEI+QIJ/\EK77]K:O (212)
If ! and E! are related by gauge transformations (2.8),
(2.10), (2.9), and (2.11), one can obtain the relations
between w!’ and Q7:
gz—A:lwa7

@

; (2.13)

QO t=w t—dlna,

Q+A:aw+A QAB:wAB
)

Q t=w t—w b, QA=w4
AB_, AB,, —ApB_, —BpA
QP =W 4w b7 —w™"b",

Ot A=t 4w A —w Bbgb?

3

1
+WABbB+dbA+§w7AbBbB; (214)
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- - A
Q T=w t4+wtcy,,
QAB —,AB | (+AYB
QO A=w A—w et —wt?

Q*A:erA,
wtPph,

CBC +wABc

1
+ch+§w+AchB; (2.15)
O T=w=F, QF=w*cosf—espwrPsing,
QA8 =B 143, (2.16)

2.4 Action

In the following analysis, a special coframe is chosen

n=nedv, [=ldv+dr, e*=e¢ldv+eldz® (2.17)

or written as

et=efdz'+dr, e*=elldvtelda”.

(2.18)

- = ,0
e” =¢ydz”,

The four-dimensional Palatini action of gravity is

1
S:/ F”/\E”:/ 5e”KLe“””"Flf;’effegdvdxldx2d:103
M

_ 0jkl I K L 0ijl 1 J K L\ 74
_/ (eryxre™ Fojep e +erxne Fleg e )d a,
M

(2.19)
where
F7 =dw" +ngpw™ Aw?. (2.20)
Therefore, the Lagrangian is
L:/GIJKLEOijk(F&Jefek +F el ef)d’ . (2.21)

In the following analysis, e/ and w!” will be treated as
configuration variables, and their conjugate momenta are
denoted as 7% and 7, respectively. e/ will be treated as
Lagrange multipliers, and therefore, there are four cor-
responding primary constraints:

0jkl PIK Kl JK L
€ryxL€”’ F —EIJKLEJ Fk e, =0 (2.22)
where €%* is written as ¢/* for brevity. Under coframe

(2.17), the above four constraints can be written as

EABEEbFlJ;Aef—f—Fg;QJO, (223)
eape” el =0, (2.24)
FpA+e® e Fr =0, (2.25)

corresponding to ng, ly, and e}, respectively.

H, /ﬂ'Ae +- 7T”w”)

+2(w01 wlc D5CD+w0

—2F el —dnoFliAel —no F4P]d%,

31:—/ LdA3z
v

_ ab(p—A g, —4, —A_ =
_/ €ap€” [4(wgq +wo Tw, —w, Twy —w,
v

2.5 Poisson bracket

The Poisson bracket of two quantities f(v,z) and
g(v,y) at the same time v is defined as

(F(0,2),9(0,y)} = /{va 59(v,y)

ded(v,z) 07% (v,2)

L 6f(v,x) dg(v,y)

2 dwl?(v,2) oy (v,2)

df(v,x) 6g(v,y)

om4 (v,2) b (v,2)

1 6fa) dgly)
2077, (v,2) 6wl (v,2)

d®z, (2.26)

where x, y, and z stand for three-dimensional null hyper-
surface coordinates. The Poisson brackets of canonical
pairs are

{e2(v,z),m% (v,

{w,"(v,2), 75 (v,

Y)}=030,0"(z—y),
Y)}=(8L67—8L6%)016° (x—y).

(2.27)
(2.28)

3 Hamiltonian analysis

3.1 Total Hamiltonian

By definition, the canonical momentum P conjugate
to a configuration variable @) is

P::(S—l.;

5Q’
and when the Lagrangian contains, at most, the linear
term of @, the definition of the conjugate momentum
P gives a primary constraint. Because the Palatini La-
grangian (2.21) is of the first order, one can obtain 28
primary constraints

(3.1)

1 b A_B
74=0, 7, =0, m_,—2eape”e; e, =0,

a
4 =0,

(3.2)
7 —despelel =0,

o _ 1
m_ =0, =m_,=0,

TG A=T Y A= T =Ty =My =53 =0. (33)
Together with (2.23), (2.24), and (2.25), there are 32
primary constraints in all.

By the Legendre transformation,
Hamiltonian is

the canonical

A 7Dwg’A6

_D, CA B
petw, “wy “0pc)e;

TP8ep)etel —AF Tet el +AF Alyel

105101-4



Chinese Physics C  Vol. 42, No. 10 (2018) 105101

and therefore, the total Hamiltonian with primary constraints is

_ ab( —~A, 4 A 4+ _A D CA D, CA B
HT—/ [deape™ (wo o +wy Tw, " —w, Twy P —wy T wy dpetw, “wy “dpo)e,
v

ab(, —+ , —C, 4D ¢, 4D A_B ab( [ +A_B |, mAB
+2e45€" (Wy i —wy “wy T doptw, “wi T dep)e, e, —nocape™ (AFY ey +F7)

+aeape® Fi el lotes eape® (2F,P—AF T el )N o+, Tl

A (Tl —2eape®elte) ) A, Tl NG AT AT AT AN A (70, —deape™e))

FAT AT A A AT AT AT AT A AT Ty H AT oy + AT TS5 ] d (3.5)
3.2 Consistency analysis of the primary constraints

The primary constraints should always hold in the whole evolution. It means that their Poisson brackets with
the total Hamiltonian should be zero on the constraint surface in the phase space. The following is the analysis of
the consistency conditions for the primary constraints in detail. First, the consistency conditions for 74 =0 are

_ b, -B,, —+ -B_ .-+ -B__ _D CB D, CB
{Hp, w4} =4eape™ (Wo,, Wy "W, = —wy, "Wy —wy Cwy T dpetw, Cwy S pe)

ab B/, —+ —C, D+ —C, D+ ab_ B\ —+
+4.6AB€ €y (WO,I —|—w1 Wy 6CD_W() Wy 5CD)_4€AB€ [ )\1

+deape® (o FP—el Frym—noFihP)—4eape®® A, P ~0. (3.6)

They will always be valid if
A;*sz’j—wawarBéAB+ngwl+BéAB+Xf+, (3.7)
A g o wy Twg t —wg Twy A —wg Pwg A dpotwy Pwg dpoted Fit —eg I —eg L e X (3.8)

where X; 1 is a function of the canonical variables to be determined.
Next, the consistency conditions of the constraints with 77, are

{HT,7T2+}:—46ABe“bef(efyl—i—wfcef(scp—w;’q)%o, (3.9)
{HT,W£+—26ABe“befef}:—46,436‘“76;4(e{ib—i—ijno—i—w;Blo—i—wfc6556@ —wlePdcp)
+eape®eg (e, +wi ey dep)+eape™ N, ey =0, (3.10)
{Hr,m*  Y=deape®e] (5, —wy * +wi*no+wi Hot+wi“eldcp)

—eg (65, —w, “4wi%e, dcp)] =0,

—~

3.11)
3.12)

0 b,B(, +C D - b(,B | BC,D ~
{Hr,m° ,}=4eapeey (wi el dcp—w, T )+4eape® (el ,+wy “er dcp)~0,

{HT,TriA}:—4€AB€abeoB(W:CGbD(SCD)—Al:GABGablO(€5b+wl7BC€aDécD)

—~

+deape®el (I otw, Tlo—wi el Scp+w el deopn)~0, (3.13)
b B b B — b BC_D b B +C_D
{Hp,7" ,—4espe™’ey } =deape®e)wy T +deape™wy el doptieape® el wi e dop

b,B, +C D b(] B by ,C, —
—deapePefwiCeldop—4deape®®(loel ) 1+4ecac®loey wy

i
—4€A36ablowfcef5cp—4€A36ab(6?)7b—46A36abw506()D5CD
—deape®elwy T —deapew Pnotdeape® N\ =0, (3.14)
{Hr,m) \}=—2€pce®elef w;* =—dew; *~0, (3.15)
{HT,WiA}:46,436‘“’710(egb—kwfcef5CD)—|—4eABe“be?w;CebD§CD
—4deape™®e?(—ngptw, “eldoptw, Tno—w, ‘el dopn) =0, (3.16)
{HT,wiA}:—46,436‘“’(—110,165—110651 —wPngel 6optw, Png)
—46ABe“befw;+nO—|—4eBCe“be?ebcw;D(SDA

_ ab B, —+ ab B ab_B _C, —D
=—4despe’’ey wy Tnot+deape®’ng ey +4epce®’es ey wy T Opa
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+4eape®no(er +wi ey dop—w, ¥) =0,
{HT,F(2)3}:—4€abu};c€bD§CD'fUO,
{Hyp,my y=4e"low, “el dop—4e now! el §op =0,
{Hyp, w8y =4€ (no p+wy “er op—wy, Ced deptw, Tno)—4eng(w, T —wiCeldop)~0.
The above 24 conditions are equal to 24 torsion-free conditions

—+

No,1—W, n()%(),

—+ —A_B —A_Bs .
No,a—W, No—Wy €, 0ap+w, “e;dap~0,
log—wy THwi el dap+w; Tly=0,
+A_B +A_B —+7
lootw egdap—wy €] daptw, Tlo=0,
A —A,, +A AB,Cs .,
€1 —wo " Wi notwi e 6pe 0,
A Ay, —A +4 ABC AB,C
€0.a— g TW, “lotw, “notw, “eg dpc—wy e, 0pe 0,
and
wy =0,
EQbW;AebB(SABQJO,
—4_, +A_B
w, T—wi e, dap=0,
EQijAGbB(SABQJO,
A —A,, AB_C
€pq—w, “Hwi e, dpe~0,
by, A AB,C ~
€” (eayb—wa e; dpc)~0.
Eq. (3.26) consists of four torsion-free conditions by using the equations of motion of e
A [ A _ VA A —A +A AB,C AB,C
e ={el Hr}=\reg ,+w, lo+w] *no+w, Pegdpc—wi ey dpc, (3.33)
which result in
A A —A +4 AB C AB,Cs .
€50 Ca oW, “lotw, “notw, " eg dpo—wy ey dpe 0. (3.34)

The last 12 torsion-free conditions (3.27)-(3.32) contain no multipliers, and therefore, there are 12 secondary con-
straints.
Finally, the consistency conditions for (2.23), (2.24), and (2.25) are as follows:
{EABEGbFleef,HT}:EABEGb{Flle,HT}ef—f—EABEabFl;A{ebB,HT}

=eape (M 1 =M Twy A—wr TAT A=A “wP oo ey Heape FrL A &0, (3.35)

which will be a trivial identity after the determination of Ay ™ and A\;4 (see Appendix A).

{eape™® FLAeP+F2 Hrl=eape®{FLA HrYeP +eape™ AN +{F2 Hp} =0, (3.36)
where
{FEA Hpy =M =M 240 T ol A wr TAT A AT Pwl 4 potwi PAS A6
AT A —w AT A AT BWEAS e —w T BAS A5, (3.37)
(F2 Hy} =22, — A2, 4 e\ 20 e 20 e AT 20 34 e b 7203, (3.38)
{FRt+ee Bt He Y ={F5* Hr }+e NAF, T +ee { F,, T Hyp } 20, (3.39)
where
{Fp Hry=—e"" X\, 3 ="\, Twy A —e®w, T\ A+ A Pwy A dpc+ew, P 4 0pc, (3.40)
{FL T He =X T = A0+ Pwl ©0petw;, AT 0pc. (3.41)
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Egs. (3.36) and (3.39) set three relations among the multipliers.
3.3 Consistency analysis of the secondary constraints
The secondary constraints should also be preserved in the evolution, which requires

{wrt He} =M "~0
{ew; 2elosp, Hr =€\, el dsp+e"w, AN 6 4p~0,
{w; T —weBoap, Hr} =\, "= 2eB0 s p—w 4 AP 645 ~0,
{ewi el p, Hry =€ el S ap+ew* 25,50,
{ea s C(SBC—w’A,HT}=)\A1+)\AB6C550+wf‘B)\S(530—)\’A
~ (AP —wi P twy fwi P —witwy Ped dept2no F A+ FiiP el dpctey Fi T +elt X[ T ~0,
{e*(el,—wiPey dpc), Hry=e" N, —e* NP ey dpc—ew P Ay dpe~0.

a

Combining (3.8), (3.26), and (3.43), one can obtain

b —A_, —+, —A_ -B CA -B, CA D b —A A+ +A\, B
€ (wo —w, "Wy —wy Cwy M dpotw, Twy “opc)e, dapter (loF,  —eg BT —noF ey dan

ab —A +A AB _C AB _C -D
—e”(ef g Fw; Mlotw notwi el dpc—ws Pel dpc)wy, Poap 0,

which will be automatically satisfied after the determination of X; * (see Appendix B).
Eq. (3.46) leads to four expressions of A\33:

?1) Nwo 1~ Wo w1 "’Wo w1 _2710F1J52(6 )" 1_F1223 (
)‘1(2) NWO 1 wgzwf3+wf2w53—2noF1§2 (eg) ! F1233 (eg
(e3)” (€3

-2, 43 1 F23 2
12 €0

)\1(3) Rwg —wy “wi P Hwi wy P+ 2n0 i (e
N Ay o o S+ o P (2) 1 — P (2) el Fiy (e2) M hed(ed) X .
They should be equal to each other. From them, one can obtain two new secondary constraints:
eabngzeg’—f—eabFJrS ,\,0
€ FF2el—e P FHed 0,
and determine X; * as
X TangFie  —eape™el Fl T efe™ .
Therefore,
A T rwg 4wy fwi PoaptnoFas e t —eape®el FrTeg e P =t AT T
Ay A mwg 2wy Tw; A —w) Twy t—wy Pwl e tw; Pwi S poted FrLt
—eg FA—el Bl T —ngel Fiie ' +elepoe™ el FryteSe ' =1
From (3.47), the multipliers A2* can be determined:
A2 Nwo —wy PwtwPwt? wgzw;3—|—w0+3w;2—noefF;éB(SABe*l—loe’:F;SB(SABe 1—€AB€ el Fe =
3.4 Consistency analysis of the further secondary constraints
The consistency conditions of the further secondary constraints (3.53) and (3.54) are
{eFl2ed+e ™ FiBer Hp Y =" {2 HyYey+e™ F2 NS +e*{ FP2  Hp Yep+e™ FHAA =0,
{eF el —e P Fi3ed Hpy =" {Ft 2 HyYep+e™ FP2 A —e*{ FP2 Hp el —e ™ A =0,

where

+2 _\t+2 +2 —+, ,+2 —+\+2 +3,,32 +31y32 —+, 42 —+y\+2 +3, .32 +3y32
{Fla ?HT}_)\a 1_>\1 a+A1 wa +w1 Aa +>\1 wa +w1 Aa _Aa wl _wa )\1 _)\a wl _wa )\1

N)\+2_)\+2+A +w+2+w +)\+2+)\+3 32 w1+3A22— +wik2 7+Ai‘2 )\+3wa +3A11327
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+3 +3 -+, ,+3 —+\+3 +2, .23 +21y23 -+, ,+3
{ la 7HT} )\a,l_)\l a+)\1 wa +w1 )\a +)\1 wa +OJ1 )\a _)\a wl _wa

RAF A AT W T A AT WP W AT A W

They are relations among the multipliers.
3.5 Integrability

Egs. (3.21)-(3.26) define the first derivatives of nq,
lo, and ef' with respect to their spatial coordinates z*
and x*. As a self-consistent system, these multipliers
(no, lo, and ej') should satisfy the integrability condi-
tions. Therefore, we should check whether the integrabil-
ity conditions will result in new constraints. The direct
calculations show that all the integrability conditions re-
sult in the Ricci identities. The detailed calculation will
be discussed in Appendices C, D, and E, respectively.

3.6 Equations of motion

The equations of motion of the configuration vari-
ables are

ed={el Hr}=Nmef 4w, lotwno+w el dpc
—wy Peddpe, (3.63)
Wy T={wy L Hr}=AT, @ T={wy L Hp =M
b, T={w, L Hr =T, (3.64)
wo " ={wg N Hey =" ot ={wr ! Hr =M ~0,
wy A ={w; Y Hr} =), (3.65)
wFt={wf Hr} =X, of*={w Hr}=\",
wit={wI Hey =\, (3.66)
P={wi® Hr} =23 f={wi® Hr} =P
w?ﬁ:{wa ,HT}=A§3. (3.67)

The equations of motion of the non-vanishing conju-
gate momenta are

byA
T +—{71' Hrl~deape™ N\, e,

7 g ={m? 4 Hr} mdeape™ ;. (3.68)

4 Classifications of constraints

4.1 First- and second-class constraints
One can see that there are six first-class constraints

7T(1+:O, 70, =0, wiA:O, 79, =0, (4.1)
because their corresponding configuration variables wl”
do not exist in the constraints. The remaining 40 con-
straints are of the second class. The Poisson brackets of

the constraints can be found in Appendix F.

—hy4+3_ y42, 23 2423
AT =AW —w, A

W F AP A2 2\
A=A PP —wP AR, (3.62)

|4.2 Degrees of freedom

There are 4 + 24 = 28 configuration variables and
28 conjugate momenta in this system, which span a 56-
dimensional phase space. There are 46 constraints, in-
cluding 32 primary constraints and 14 secondary con-
straints. Among the 46 constraints, there are 6 first-
class constraints and 40 second-class constraints, which,
altogether, reduce 52 degrees of freedom in the phase
space. Therefore, there are four degrees of freedom left
in the phase space, which means that there are two local
physical degrees of freedom. They correspond to two in-
dependent polarization modes of the gravitational wave.

4.3 Scalar and vector constraints

In su(2)-connection dynamics [9], the constraints are
classified as the spatial scalar, spatial vector, and su(2)
gauge constraints. In comparison, €,p€e** ;" A eP+FE~0
and e peF*ef ~ 0 are two scalar constraints and
Fy® +eeAF, " ~ 0 is a two-dimensional vector con-
straint. The vector constraint reduces 2 degrees of free-
dom in the phase space because it is actually composed
of two second-class constraints.

4.4 Gauss constraints

In the new approach, the Gauss constraints are not
independent ones. They can be read from the above
analysis in the following way.

The SO(1,3) Gauss constraints can be written as [15]

J o J KL_j KL_j
Djmt =0t j4nxw; “ T kW 0. (4.2)

By using primary constraints (3.3) to replace coframe
e;“ with non-zero conjugate momenta, one can see that
the above constraints (4.2) are actually the consistency
conditions of the six primary constraints 79,=0.

The SO(1,1) gauge constraint comes from the consis-

tency condition of 7% , =0:
0 ab B (A AC_D -A
{Hp,m2 |} = —deape™e, (e, ,+twi e, dop—w, ")
L_j KL_j
T TN rW; T

(4.3)

~ i K
~ —3jﬂ'{+—77,ij
_ P

= D]7T7+~0.

The T~ (2) gauge constraints come from the consis-
tency conditions of 7% , =0:

{Hp,7° ,} = 4eABe“b(eaBb—|—waeaD§CD)

b _B +C _D —+
+4€A36a (UJl a5CD—wa )

Q

KL,_j KL_j
TratNaxw; Ty _

(4.4)

j
—@-ﬂ;A—n,ij
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The T*(2) gauge constraints come from the consis-
tency conditions of 7 , =0:

{Hr, 70, } = —2ecpe®el efw; t=—dew;
~ j KL_j KL_j
N =0T A= kW) T T AT AKW; T

(4.5)

The SO(2) gauge constraint comes from the consis-
tency condition of 75, =0:

0 b, —C_D
{Hrp,mps} = —4e®w;“e;’dcp

_ J
= —Dj7T+A~O.

~ j KL_j KL_j
N_aj7T23_772ij T3 tN3rW; Ty

_ J o~
= —Dj7T23 ~0.

(4.6)

5 Summary

A self-consistent Hamiltonian formalism for a four-
dimensional connection dynamics has been set up in a
Bondi-like coordinate system {v,r,z*}. The advanced
null coordinate v is used as the time coordinate instead of
u in the Bondi-Sachs coordinates. Three components of
the metric are fixed in the Bondi-like metric, and there-
fore, there are only 7 non-zero components in the metric.
The three Bondi-like conditions can be translated into 3
conditions on the coframe and can also be treated as
three primary constraints, which will be preserved in the
evolution. The three-dimensional hypersurfaces labeled
by v have a degenerate metric, and therefore, they are
null hypersurfaces.

The internal symmetry SO(1,3) is decomposed into
SO(1,1), SO(2), and T=(2), and the Lie algebra so(1,3) is
spanned by {L_,Los,L_4,L;a}. The coframe consists
of two null 1-forms and two spacelike 1-forms. A simple
coframe has been chosen to make a Hamiltonian analy-
sis. The s0(1,3) connection has 24 components, which
are treated as 24 independent configuration variables.
They, together with four coframe coefficients e? and
their conjugate momenta, span a 56-dimensional phase
space. There are 32 primary constraints and 14 sec-
ondary constraints. Among all the 46 constraints, there
are 6 first-class constraints 79, =0 and 40 second-class
constraints. Therefore, the two local physical degrees of
freedom remain. All 24 torsion-free conditions appear as
the consistency conditions for the constraints. Among
the constraints, there are two scalar constraints ((2.23)
and (2.24)) and one two-dimensional vector constraint
(2.25). The six Gauss constraints, (4.3), (4.4), (4.5), and
(4.6), are not independent.

The four Lagrange multipliers ng, ly, and ef} satisfy
eight differential equations (3.21)—(3.26). The integrabil-
ity conditions of ng, ly, and ef' are Ricci identities. The
Lagrange multipliers, namely, A\, A7, A\TT, A74, A2,
and A2% are completely solved (expressed by coframes
and connections). The Lagrange multipliers A" and
A\ satisfy two algebraic equations and two differential

equations. The Lagrange multipliers A} satisfy one al-
gebraic equation and three differential equations.

From the analysis, one can see that wj”’ can also be
treated as Lagrange multipliers because they are multi-
plied by the Gauss constraints. In this treatment, the
Gauss constraints become the primary constraints. The
consistency conditions containing wj” are not treated as
constraints but as equations of multipliers. The final de-
grees of freedom in the phase space will be the same.

Using (3.3), one can also replace e2 with 7° 5, and
therefore, all the canonical variables in the Hamiltonian
are w/” and their conjugate momenta 77,;. In this way,
the dynamics of gravity is recovered as the pure connec-
tion dynamics. However, the Hamiltonian analysis under
this formalism will become more complicated.

The usual 143 spacelike foliation can be used in the
initial-value analysis of the whole spacetime, whereas
our foliation can only be used in a small part of the
whole spacetime within a short period of time. During
this short time period, we can think that there is just
gravitational wave from one direction passing through
a certain point in the spacetime. In the 143 foliation,
there is 1 scalar constraint and a three-dimensional vec-
tor constraint, whereas in our decomposition there are
two scalar constraints and a two-dimensional vector con-
straint. In the su(2)-connection dynamics, there are
three Gauss constraints corresponding to three genera-
tors of the su(2) connection as independent constraints;
however, in our analysis, there are six Gauss constraints
corresponding to six generators of the so(1,3)(=s0(1,1)®
$0(2) @ t(2) @ tT(2)) connection, which are not inde-
pendent constraints. Moreover, in the su(2)-connection
dynamics, the frame rather than the coframe is used,
and therefore, the torsion-free conditions do not ap-
pear, whereas in our approach the coframe is used, and
therefore, the torsion-free conditions will appear as the
requirements of consistency. However, in all the for-
malisms, there are two local physical degrees of free-
dom. The decomposition of symmetry and connection
in the usual 143 way cannot be postulated to a higher
dimensional spacetime, whereas our decomposition can
be applied to higher dimensions in principle.

The success of the Hamiltonian analysis of gravity
in three- and four-dimensional spacetimes shows that
there will probably be no conceptual difficulty for the
Hamiltonian analysis of gravity in a higher dimensional
spacetime; however, the analysis will become much more
difficult technically.

We would like to thank Prof. Zhe Chang, Prof.
Yongchang Huang, Prof. Yi Ling, Prof. Yongge Ma,
Prof. Xiaoning Wu, Dr. Jingbo Wang, and Dr. Bofeng
Wu for their helpful advice. Shibei Kong would also like
to thank Prof. Junbao Wu, Dr. Yu Han, Dr. Fei Huang,
Dr. Peng Liu, and Dr. Xiangdong Zhang for their good
suggestions.
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Appendix A: Proof of (3.35)

eape™ (Mg T —A7 Fwg tmwr TAT AT Wi e n)e eane FL A
=(eape” A, el ) 1—eape® A ep1—eane® A, Cwi M dopel —eapewy te AT T

—eape® A, ePwi T teape FANE
%(EABEWA;A@I?)J_6ABeabA;Aw;B—eABeabw;AeEAer—EABeabA; ey w1 ++€AB€abF1aAAb

aby—A B aby—A B —+ aby—B ab B —A ab—A B
=(eape®™ A, ey ) 1—€eaBe” A, Tey wi T —(eape® Ay T +eape® ey AT ) wg “Heape” Fi Ay

A

- ab;, —A | —4 —A —-D CA —-D CA B —A B 23
~leape (Wo,a+wo We — Wo Wy “We TOpctws T wy T dpc)ey —eap s ep —nolas]a

ab, —A, 4+ —A -4+ A _D CA _D CA B —+ A B —+
—€eaB€e” (Wo , HWo We T —We Wy T Wy T wWe T Opctw, wg T dpc)ey wy | +eanFas e wy

23 4 b WD+ —C D+ b -B  _Bp—+ +B
+noFzswy —leape™’e (W01+"J1 wo "dcp—wy wy  dcp)teape” (loFy,” —ey Fyy m —no k)

aby ~B, -+ -B__—4 -B__ _D CB -D CB —A
teape” (wop two W, —w, Wy —wo Wy 0potw, " wo - 6pc)|wa

ab, A —A +A AC _D AC _D
+eape®’ (€h o tw, “lotw, “notw, ey dop—wh e, Ocp)Fyy

aby —A, —+ —A 4 —A —D CA -D CcA B
=eap€” (Wo,q HWo W —We Wy —wy W Opctw, “wy Tdpc),iep

ab —A —+ —A —+ —A —D CA —D CA B
teape” (wo,q tWo  Wa  —Wa Wy —Wo  Wgq Opctwa Wy ODC)ebr

ab; —A, —4 —A 4+ —A _D CA -D, CA B —+
—€aB€” (Wo o +HwWp TWe T —wg Wy T —wy T we T Opctw, W T dpc)ey wy

—+ —B

ab, —B, —+ -B D, OB - —A
—eape” (W Wy Twy T —wy Wy —Wo - Wh Spotwy Pw§ Bopc)wy

b ab +A b AC

ab A —B a —A —B a D —B
+eape’ ey o, Feape w, CloF, T +eape w, Tnoky, +€AB€ wg ey 0cpFy,

ab By —+ , — —-c A ab
—eape®’ey (wo 1 +w1 Prsep— —wy wl 5cp)wa —€ABE wo 6a5CDF1b

_A B _A B
—eapFy31eg —eapliyg 60,1—710,1F23 n0F23 1+€ABF23 eowr TH+noFsswi t

ab B—+ —A —A
+eape e Fy wy +noeape” Fb Wa —loeABe Flb We

- ab, —A\ B ab —4+ —A B ab —4+ —A ab —4+ —A ab —4+ —A B
NEABE (Wo,l ),a€h +€aBE Wo 1 W ey Feane®wy Tw, 1eb —eaBe®w, 1wy eb —€ABE W W1 €

ab, —D (5 B ab, —D CA(S B ab, —D CA(S B ab, —D (5 B
—€ABE w01wa DC€p —€ABE Wy Wq,10DCE +eape Wq,1 Wo DCe€p TEABE Wg UJ01 DCé€p

aby —A, —+ —A —+4+ —A _D CA -D CA BE _F
—€ABE (Wo,a+wo We T =Wy Twy T —wy T wg “0pctw, Twg Tdpc)wi e, OEF

aby —A, —+ —A 4 —A_—D CA -D CA B —+
—eaB€e” (Wo o FWo We T =W, Twy T —wy T we T dpctw, T wg T dpc)ep wy

ab B, —+ —C D+ —A +A —A
—eape’ey (Wo 1 —wo Wi 0CD)We —noF231+noeABe b Flb +noeape” Fb Wy

ab —A

AC —+
+noeABF23 w1 Bieape® wg ey 5CDF1b —eABF23 1€0 +6ABF23 eowl +eape” eo Flb Wa

_A BC D A ab—+ B ab A —B
+eapFo3"wi ey dep+twy Teape Fi, ey +eape e o iy

-+ —A ed D, —+ —A cd B D, —-B CA cd D
RWi . Wy €ADE €g +wy  Wo . EADE ed —&—chwl 6BceAD6 €q +wg  wi,. 0BCEADE €4

ab A 1 ab A—B C —1 cd D ab —+ —A B
+(noe™’e Flbe )ceADe eq +(e e. Fry egepoe ) ceapeeqg —eape®w, Two i ey

ab 05 bABEF(S ab —A B —+ ab —+ —A B
—EABE w()lwa Dceb —€ABE Wg, Wi €, OEF—€EABE W, €p W1 +eaBE Wy Wa,1 €

ab —+ —A B ab ~D CAs B ab ~D CAg B ab —+, ~A BE F6
—€ABE W, 1 Wy €y —€ABE Wy Wq10DCEy TEABE W, 1 W ODCey +EABE W, W EF

ab —D CA BE F ab —D CA BE F ab —+ —A —+
+€EABE Wy Wq 5Dcw1 6b5EF—EABE W, Wo 5Dcw1 edeF—eABe Wy Wq ebw1

b —+ —A B — b —D CA B - b B —C D
+eape®wy Twy tedwy THeape®wy PwStdpcelwr THeape® e wy Cwi +tSepwi? F231

ab

+A ab —A 4B —A B AC D -B
+ngeane” w Flb +noeaBe Flb Wa —|—noeABF23 w1 —eABF23’1eO +eapew, ey dcpFyy

A B —+ ab Bp—t —A _A BC D —A abp—+ B ab A —B
+eapFo"eqwy THeape® ey Frpy w, CeapFas wi eg dep+twy “eape” i, ey, +eape®en o Fry
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cd

ab 23 —1 ab 23 —1 cd A D 23
=noe " eqFiy e +noe Fbece eADeaed +nge® Flbe €ADE €g€cq—nol53 1

—l—noeabece* € deADefed +noeape” wa AFlb +noeape” Flb Wa —l—noeABF{gAwfrB

—€pRBE dwc 5,43657105 efFﬁ?efl+6ABe“bwaeg)5¢DFbe—eABFzgﬁeg+eABF2§Aegwf+
—l—eABeabegFﬂfw;A—&—eABFngwfceg)écp—&—eabef’chbBegescefleADECdedD

et AFlb Cegesce eADeCdel?—wc_ceoDécDeab AFlbe eABECdedB—i—eab AFlb egeBce - eADeCdefi)

—+,D ab A c —1 cd \EDg F ab c —1
—eape” wc eq € Flb ey EBCE —€DFE wc AE€4 € €y Flb ey €EBce
ab +A A —A +B
N—nge Fla b— noF23 1+noeape” w Fy, —l—noeABe F1 +noeapFo3" wi

B —A BC D
—|—eoeABe Flb w 5CD—5ABF23160 —|—eABF23 ey Wy +€ABF23 wi ey dcp

A ab —B B ab—+ —A ab A ab —+ —B
+epeaBe Flayb“!‘@oGABE Fiy w, —606A36 Flbwa +606ABE w, ' FY

ab —A —A +B ab —A —A +B
NngeABF23 wl —|—nge eABwabwl +noeABe Fla wp ~ —MNoE eABwalwb —|—nge eABw w1

ab —A +B ab+B —A, B abp—+ —A B ab —+ —A
—TNo€E €ABW, Wy 1 TT0EABE Fly w, “Hegeape Fyw, T —eaBeg € Wy 1 Wa

B ab —+ —A | A ab, —+ 2—B A ab —+ —B C abp—B, AD
tegeape Wy, we tegeape we Iy, —eapege w, Wy tegeape Iy wa dcp
C ab —B —A_ B ab —A 23 B _ab —A 23

—€aceg € Wy wa Dsep— —ep Bsape Flb Wy —ep € wy TwipdaBtey € w, Twp104B

B ab —+ —A —A B —+ _B.ab —A 23 Bp—A 23
tegeapewy wap teaplhyegwy  —ege w, w1 6ap—eg Fog wi daB

~ —A +B A +B ab —A +B ab —A 1+
~noeapFy3” wy —’n,()eABF23 wl —|—noeABe Fla wy —no€  €aF, wy T —noe  €aBw, I
B abp—+ —A B abp—+ —A, A ab —+ —B
+ngeane” Flb Wa —l—eo eape Fi, w, "—eapege Fi, w,  tegeape wy Iy

A ab —+ p—B C ab —B ab
—eapeg € wy  F, +eqeape” Fyy wa Psep— eAceoe Flb wa Pspp—eldape Fbwa

B ab —A B bp—A 23 Bp—A 23
e ewy AP o ap—eleapewi TF L feapFoyt el wr THel e F A wi s ap—el Foy®wi?6ap=0.

In the 1st “~”, (3.26) has been used, whereas in the 2nd “~”, (2.23) and (2.24) have been used. The identity e*®F|,*ef5p~0
and (3.24), (3.26), (3.28), and (3.30) have been used in the 3rd “~”, and (2.25), (3.24), (3.25), (3.26), (3.28), (3.30), and (3.31)
have been used in the 4th “a~”. In the 5th “a”, (3.32) has been used. (3.30) has been used in the 6th and the last “~”.

The proof of the additional identity is as follows:

abp—A B ab, —A  —A 4 _A,  _—C DA —C DA —+ —A\ B
€VF ey dap=€"(we 1 —wy , —Wwy We AWy wg  0cp—w, Wi Tdcp+w, wy C)ey 0aB

~e

Dl A CPA ab —A abyy=C DA B
Pwa i —we Scp)etdap=0ape” Wa 1 €h 2—bapetw, dcpep

B

b —-C DA(S
Wq cD€y

b —A ab

a B a —A
=(0aBe®w, “ey ) 1—0aBe W, 6b1—5AB€

ab —C D ab —C DA B ab —C/ D DA _B
R—0cpew, ep1—0aBE W, ~wi " dcpe, =—0cpew,  (ep1+wi e, 0AR)

b —C -D
~—dcpe” wacwb =0.

In the 1st “~”, (3.30) and (3.31) have been used. In the 2nd and 3rd “a”, (3.28) and (3.31) have been used, respectively.

Appendix B: Proof of (3.48)

ab( —A —+

~A B CA -B CA D ab —A At +A\_B
€ (Wo.m —Wa Wy T —wp T wg “dpctw, “wy “dpc)ey dap+e” (loFy,” —ey Fr, —nol," )ey daB

b, A —A A AB C AB C -D
—e®(efatwa lotwd A notwiPel dpc—wi PeS dpc)wy Pdap

ab_A

—+ FE ab +A E ab —A —+ —A
~—e"ey Fi, ey dap—€e*" noFy, ey dap+e®(

-D cA B
Who—We Wy —Wo We Opc)eydar

ab —A(

B B BC D
+e*wy A (efptwi Pnotwl el dcp)dan

A —A

ab E — ab E —+ ab E —-D CA ab —A B ab —A +B
=€y 0AEW) 4 —€ €y OAEW, Wy —€ €, 0AEWy Wq Opcte W, T daBeypte W 6aBW, Mo

—A BC
+e* wa dABWY, € Dscp—e® €0F1a ep Eoap—e” noFla ep Foar
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ab —AE ab —AE + —A cA ab, —A B
=€""(daEwy "€y ),a—€" 0aEW, eb@—e eb(iAEwa wy =€ ebéAEwo wg “O0pc+e”’(w, “daBey ),

ab —A B, ab —A +B ab —A BC D ab Ap—+ E ab +A E
—€ wmbéABeO—l—e wy T0aBw, T notew, T0apwy ey dcp—€er ey Fi, ey dar—€e noF, ey dar

A —A B ab —AE _ab E 4 —A ab E -D CA
=" (6apwy el pte® (wa *oaned ) p—e"P S apwy €ha—€ €y 0ARW, Wy —€ €, 0AEWy Wq ODC

—A +B ab B, ab —A BC D ab Ap—+ E
4+ wa dABwy ~Mo— e noFla ebéAE eCw, 5,4560 +€ew, “daBwy ey dcp—€ey Fl, ey AR

A

—+ ab —A EF G ab E - - ab E -D CA
—N0,atwWs N0) e daBwy W, ey dra—€e" ey darw, wy T —€ ey dapwy T we T dpC

zeab(

—A +B ab B, ab —A BC D ab Ap—+ E
4+ wa dABwy ~Mo— e noFla ebéAE eCw, 5AB60 +€w, “daBwy ey dcp—e€eh Fl, ey AR

b — — —A B b A E
—e? (Wa;nO‘HUa +n0,b) € eb 5AEw +6 w (5,4BL4)+ no—e® noFlt e, 0AE

ab —A B ab —A BC D ab Apr—+ E
—€w, p0apey +€ W, T dapwy egdcp—e ep I, ey 0aE

. ab —+ ab —+, —+ —A B —A B ab_E —+ —A, ab —A +B
e w, p no—e Wy, (weg "Tnotwy “eq daB—w, “eg0aB)—€" ey 0aEW, wo € w, TdaBwy T no

—e“bnoFf;Aef(SAE—e“bw;bAéABeg+e“bw;A5ABwECeOD§cD—e“be§F1;+efdAE
=€ bw 570 o+e w A(SABw;ano € noFla ep (5AE € bw 6A36(])B+e“bw;A6ABwfceg)60D
—&—eabw;er;AegéAB—eabe(‘)qFﬂlJreféAE
:_nO(F27:s++€abF1J:; 5AE)+€0 dap(Fa _€abF1a 65) —no(Fa3 ++€abF1J; BaAB)
:—no[ﬁab(‘“;? —wi Aor twd ol Cwl o p—w, Twi t —wCwldcp)el San

+Hwid —wy 3 —w; “wiPiaptws wiPoas)]

—+ -4+ —A 4B - B b +A B
=—no[(w35 —wa3 —ws w3 Saptws *wi Poap+(ePwi el dap) 11— w] ep104B
b +A B b +A B b +0,,pA B
—(e" w{r €y 0AB),ate” wf eb’adAB-t-e“ 7Lo.)a 5AB—|—5 wy “écpey, 0AB
b —+ +A B b CyPA +A,BC D wiCPA B
Py Twl ey dap—€ewy 5cpeb daB]~ —no(e wi Cwy 6AB+6 wg “dcpey dap)=0.

In the 1st “~”, 1 identity €**F,,*ef5ap~0 has been used, whereas in the 2nd “~”, (3.25) and (3.32) have been used. In
the 3rd and 4th “~”, (3.22) and (2.25) have been used, respectively. In the last “~”, (3.22), (3.23), (3.24), and (3.25) have
been used.

Appendix C: Integrability of ng

The integrability of ng requires that

10,1a—"10,a1 =0, (C1)
€’ ng b =0. (C2)

From (3.21), one can obtain
(no,l—warno),a%no,la—wf’ino—warno,a%no,al—wf’jno—wf+(w;Jrno—&—w(;AeféAB—w;Ae(})B(SAB)QO. (C3)

On the other hand, from (3.22), one can obtain
(no,a—w;+no—w&AeféAB—&—w;AeégéAB),l
zno,al—w;;rno—w;Jrno,l—wafeféAB—w(;Aefi16A3+w;fe(])36AB+w;Ae§fl6,43
zno,al—w;irno—w;+wf+no—wafeféAB—wgB(w;A—wfcefécp)éAB—i—w;feégéAB
—|—wa_A6AB(wO_B—wi"Bno—wcheéjécD)
+ =+

- 4 - A +B —A B -B AC D
RN0,al—Wq 1 NO—We W1 No—W,  0ABW] No—Wo.1 €q 0AB+Wy Wi  €q0cDOAB

+w;fe(?5AB—ng6ABwcheg)5cp ~0. (C4)
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Eq. (C1) requires

—+ -+ —+ -+, —A_B -+, —A_B
—W1, Mo—Wy Wg  Mo—Wi Wy €q0aBtw, Wy ey dan

+

R S —A +B —A B _B AC D
R—We 1 N0—Wq W1 Mo—We 0ABW] MNo—Wg 1 €q0AB+Wy Wi €q0cpdAB

—A B —A BC D
+w, 1 €0 0AB—wg dABWI €y dcD, (Ch)

which is equivalent to

+B B

-+ —+ —-A —+
Wa1MO—W 4 NoF+W, “6ABWT]  No—w1

—A B —A B — AC D
Wy eaéAB—i—wO,leaéAB—wO wi eaécD(sAB

-+, —A B —A B —A BC D
tw; W, 606,43—(,%}160 daptw, “daBwi €y dcD

- —A -+ —A, —-C DA B —-A B
zFlfno—&—(wO’l —wy +w0 +wy “wy “dcp)e, dap—Fi,"eqdar

- —-A B —A B —I,J
%F1a+no—F01 e, 0aB—F1, ey (5AB=—(?71]F Ne )o1a=0. (C6)

The integrability conditions (C6) are Ricci identities.
From (3.22), one obtains

ab _ ab, —+ 4 _B A _B A _A B _A B
€*"no,ab€* (W, ) No+w,  NobFwop €q 0aB+Wy eap0AB—W, €0 0AB—We < €0p0AB). (Cn)

Eq. (C2) requires that
ab, —+ —+ —B_A —B_A —A B —A B
€7 (Wap Notwa TNobtWoy, € 0ABFWy  eapdaB—W,} €0 0AB—Wa  €0.40AB)

 abp —t TP _AB _A B B A B A ~A B A B
~e [wgy notwe (W, TMotwy ey daB—w, €y 0aB) W, €q0aBtW, € p0AB—W, p, €0 0AB— W, €0,50AB]

b

b o—+ ab —A 4+ —A\ B ab —A B ab, B —+ By —A ab —A B
Wy p No+e (—wa)b —W, Wy, T)eg 0ap—€Tw, “egdante (eq ptw, Tey )wy T0aB—€"wWg €, 0AB

a
e

b

b —A -4

~_ —+ ab —A\ B ab —A B ab BC D —+ B —A a
~e®wy g note (—wap —wa T wy T )ep dap—ew, Tegpdapte” (W ey doptwg ey Jwy  dap—e

—A B
wo’a €y 5AB

A —+

ab,~A B s ab, — —A —C DAs B
Wq €0,b0AB—E€ (wo,a—wa Wy —Wy Wq CD)eb AB

b —A -+

—+ ab —A\ _B
wa,bn0+6 (_wa,b —Wq Wy )60 daB—e€

a
e
. ab —+ +A —B ab —A —+ —A —C DA B
~e (Wa,b —w, “wy Tdap)note (—wa’b —wg "wy THwg wy “dep)en daB

—e"wg A efytwy Blotwy ProtwiCel socp—wi el dop)dan

— e (wp 4 —wa Twy P —wy CwlSeptwy “wd Adcptwy Twi Mes dan
ab(w&f—w;er(;A—w&cwaDAécp—i—w;CwoDAécp+w§+w;A)eE(5AB—F2§+no+F2§Ae§6AB—eabw;A)\{,BéAB

~e N, el dap—e" (wo.a —wa Twe P —wo Cwl A deptws Cwi Aoptwe Twa ed dap—Fas no+Fasted dan
e Fo el 0 an—Foy no+Fageg dap=(n1sF ' Ae’)o23 =0, (C8)

Here, (3.22), (3.26), (3.32), and (3.43) have been used. The integrability condition (C8) is a Ricci identity.

Appendix D: Integrability of [
Similarly, the integrability conditions for [y require
lo,1a—l0,a1=0, (D1)
€"lo.ap=0. (D2)

The left-hand side of (D1) is

 —+_ +A B +A_B —+ —+
lo1a™wg 4 —W1 4 €0 dAB—W] eoya(iAB—wlya lo—wi "loa

— —+_  +A B +A B —+ —+, +A B +A B —+
RWQ g —W1 .0 €0 0AB—WT  €0.q0AB—Wy 4 lo+wy  (wa “eg dap—wg €5 0aB+w, " lo)

=t +A_ —+, +A\ B +A B -+ =+ —+ -+, +A B
~Wo,q _(wl,a_wl Wq )60 d0AB—w] 60,a5AB—(W1,a —Wp  Wq )ZO—Wl wo “€q 0AB

- +A  —4 +A\ B A, —A A AC D AC D +B
~wy @ —( —wi Twg Meg dap+(—A; twg Tlotwg “notwy - eg dep—wy €5 d¢p)wy AR

,a 1l,a
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-+ =+, =+ —+, +A_B
—(w1,e ~w1 "wa lo—wi Twy “eg 4B
=t FA_ A O, +A +B
~Rwg . — (W1, —w1 we T —wy 5CD)60 daB— )\ wl 6A3+nowa wy 0AB
-+ _  —+, —+_—A +B +C\, +u + A
_(wl,a —Wp W —Wg Wi 5AB)l0_(W1 5CD+w ) 20AB, (DB)

and the right-hand side of (D1) is

+A

~, +A_ B +B_A +A B -+ -+
lO,alNWoJ 6a5A3+wo eavldAB—waleo daB—w, 60,15AB—WQ,1ZO—W¢1 lo1

+A A (wy Bowi B BC

. +A B —A_ AC D
~wg 1 eq 0aB+(w, T —wi eaécD)wo BSan— —w, 1605,43 wy “(wy T —wy “mo—wy ~eg0cp)iAB

—+ —+( —+_ +A_B —+
—Wa 1 lo—w, T (wo T —wi “egdap—wy o)

Y +A B _A_ AC.D +B FA_,HC,DA 4 A\ B
~wg 1 eq 0aB+(w, T —wi ey 0cp)wy  0AB—(Wa 1 —Wa W1 0cD—W, w1 )ep daB

—(wa+w;++w§ijB5AB)+wa wanoéAB—(w;f—w;+wf+)lo‘ (D4)

Eq. (D1) requires

+ + 44

—+ +A -+ +A\ B +A B -+ -+ —+ — B
—( )eo 0aB—w] 60,G6AB_(w1,a —wi " we Mo—wi Twy “eg 4B

Wo,a Wi,e —W1 We

@

. +A B —A  AC YA  +C DA —4+ +4A\ B
Rwg 1 €q 0aB+(wg ©—wi eDdcp)wg Poap— (Wa1—wy wi "dcp—w, "wi )egldan

—(wa+w;++w§Aw:BéAB)+wa wanoéAB—(w;f—w;+wf+)lo, (D5)
which is equivalent to

T4 yFO,PA —4 4A + oA B +A_B —+ —+
wo o +H(wi i —w dcp—w, ' wy —w1a+wl wa T)eg 0aB—wy “ep o0aB+w, | lo—wi 4 lo

—+ +A +A A  AC.D -B +A +B — -+
—wq "Wy eaéAB w01ea6AB (wg " —wi eaécp) 5AB+wa W 0AB—Wg T wi ModaBtwg wp
+ + +C, DA B -+, =+, —+ +A_B +A +B
(w01+w1 —wg Wi “dcp)eg dap+(wo., TWa W | )—wi €0.q0AB—W, W ModAB

—-A +B +A -B —+ -+ +A +A +C DA —+ +A +, +A\ B
—Wq  Wo 6AB+wa Wo 6AB+(wa,1 _wl,a)lo+( a,1 —Wi,a ~Wa dcp— —Wq +(1J1 Wq )O(SAB

+ +A +C DA

B —+ -+ - +A +B
("-’01"‘“1 —wy wy dcp)eg dap+(wy 4 +wa Wy

+ +A
)—w; 60a5AB wy “wy "Tnedas

—A B A —B — —A B A B C DA B
—W, w(;r (SAB-HL};r Wo 5AB+F1a+lo—wa wf 5ABl0+F1J; €o 6A5—w1+ Wy 5CD606AB

A ot At P4
€0a+wa TlO—HUa lO—HU 60 5CD)W1 Boan— (W01+W1 Wy  —Wo 5CD)ea5AB

~—(

+(w0 twy Twy T—wg fwg Boaptwitwy Boan)+Fr, o+ Fi el dan
( A
—(
(

A AC +B
eOa"'(“-)a nO"’wa l0+wa €0 5CD —Wp €4 5CD) 5AB

+A oA _wdCuLPA +C, DA + +A\ B

wa Wy —wg wi “dcptwi wy dcp—wy Wi )eq 0an
A +B —B + B

+(woad Sap+wi wp 5AB)+F1a lo+Fi el oan

oA _wiCu —+

=—w] FANBSAp— (wo 1 twy 5CD+w1 wd6cp— —wy wa)eaBéAB
+(wo, g w;AwJBdAB+w[wa5B5AB)—|—Ffa+lo+Ff;Ae§6AB

%AfAeféAB (wo I Fwr +w6”4 wgcwlDAécD—l—wfcwoDAécp—w5+w1+A)ef(5AB
= +—i—(wo e Awd Poastws fwg Boan)+F o+ F el dan

~ES el s ap—Fo T+ F o+ el s an=(nrs F T Ae” Y010 =0. (D6)

Here, (3.26), (3.44), (3.64), and (3.66) have been used. The integrability conditions (D6) are Ricci identities.
From (3.24), one obtains

., +A_B +A_B +A B +A B —+ —+
lo,abmwg p €4 0aB+Wg  €ap0AB—W, ;€0 0AB—W,  €0p0AB—W, p lo—wa Lo (D7)
q. (D2) requires
aby +A_B +A_B +A_B +A_B —+ —+
€"’lo,abre” (wObea daB+wy “eqp0AB—W, €0 0AB—W, eo,béAB—wayblo—wa lop)

~e +A +A —+( +A_B +A_B —+
[wObeaéAB—i—wO eabéAB wabeO(SAB wy 60b5AB wablo wa (wg ey dap—wy, “egda—wy o))
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ab +A B ab +A ab +A

+ +A B B -+ B
)eo dap—€* w, “eppdap—ewg 4 € Coap—e wo “(epatw, "€y )0AB

~—e” wablo+e P(—w —l—wa

++ ab +A B ab +A B ab BC D +A
~—e® wabl0+e (—wab—|—wa )eo dap—€"w, e p0aB—€"wy o e 0aB+€E W, ey dopwy T 0AB

et
i A)el b +A B WwPA —+ +A\ B
~—e wa FTlo+e™ (—w —|—wa Jeo daB—€*wy “ep. b6A3+e“ (—wo, T Cwlep —wy Twi el dan
o T— +A B +A —+ A ~
~Fp o+ Foited 5AB—ea Wi ANESap+et(— wg, T2 wi CwP e p—wy Twy Vet §ap~0,

%F25+10+F£A655A3+6ab(A+A w0a+w5rcwDA50D —Wg —+ +A) ey 0AB
~Fy o+ Foy el dap+e Fol el ap =17 F T Ae” )23 =0,

where (3.66) has been used. The integrability condition (D8) is a Ricci identity.

Appendix E: Integrability of ej

Finally, the integrability conditions for ef require

€ala—eéa1:0,
eabe{iabzo.
From (3.25) and (3.26), one has
eélazwa’f—wffno—wf’qno,a—wfaBegéBc—waega(sBc
%w&f—wffno _wﬁfeg‘sBc—wadBC (Ag—wgclo—W;LC”O—WSD655DE+W(?D€55DE)

+A; —+ -B C -B C
—w] Nwg Tnotwy T eqdBc—wg egdBc),

A __\A —A —A +A +A AB C AB C AB C AB C
€0,a1Aa,1~Wa,1 lo—Wa lo,1—w, 1 no—wa N0,1—We,1 €0 0BC—w,  €0,10BC+wi1 €4 0BC+wW)  €4.10BC
A —A —A, —+ -+ +A +A —+ AB _C
RAG1—Wa 1 lo—w, * (wo —wl 5AB —wy Tlo)—w, 1no—w, “wy T no—wgy i ey dBc
AB, -C  +4C cD ~C_ OD B
—Wg (wo —Wwy No—wi €g 5DE)5Bc+w0’1 €q 5Bc+w0 (wa —w1 5DE)5BC

Eq. (E1) requires

—A 44 AB C AB C_y=C +c CD_E CD _E
Wop —Wi o Mo—Wi g €0 0Bc—wi  0BC (A — lo—w, “mo—wg ey dpE+wy €q0DE)
+A; —+ -B C -B C -+ 4+B.C —+
—w] Hwg Tnotwy T eq dBc—w, ey 630)—)\ 1w lo+wa ( —w Tegdpo—wy o)

+A +A —+ AB C AB, —C  +C CD _E AB C
Fw, 1no+w, Twy T notwg 1 es dpotwy  (Wo T —wq  Mo—wi ey 0pE)dBC—Wwi T €q 0BC

AB, —-C_ COD_E
—wy (wg  —wi eq0pE)IBC

+ C

o —A_ tA AB c, AB AB c AB D
~w 4 —wi a0 —wie el dpc—wi Ppe NS +wi P dpcw, Clotwi P spcw) “notwiPoscw Ve dpe

AB CcD _E +A 4 +A —-B C +A —-B C A —A —A
—Wwi dpcwy e dpE—w]  We Mo—wi Wy €q0Bctw  We g dBC—Ag1HWe, 1 lotws T wy

—A +B, —A —+ +A +A 4 AB _C AB, -C AB +C
—wg Twy 5Bcfwa wy lotwy 1notwe Twy  notwat e dpetw, Wy dBc—wg Wi NodBc

WO E AB AB —C cD B
—wi® 0 0pESBC— w016a5Bc wiPwy “opctwi PwiPel sppdpe

o —A, —A —4  AB -C AB —C —A ~A_ —A —4+, AB -C
(W, TWe “wo THwW, T wy  0BC—Wh Wa  0BC—Ag " )H(we 1 —wa Twy T Hwi we  0BC)lo

A AB c A — A - AB C
+(w:,1 w1a+w1 + 5 BC— w+ a++w: Wy +7(“-)11 L«)f 530)”0

AB AD FA YT By At By AD , EB c

+(wat w1 a +w1 5DEw —Hu We  —Wwg Twi T —wg dpE)eg dBC
AB_AB_ D BB +A —-B, AD EB c

+(AMT —wo,r —wi dpp—wi “wy  +wy w1 0pE)es dBC

o —A, —+ —A 4 _A  _B CA A A +A AB _C
R(Wo o +wo We T —wWe Wy T —wy wa 5Bc+wa wo T0Be—A, )+ Fi lo+F1, no+Fi, ey dBc

A FB_ AD EB

AB ADEB
+(A1 w01+w0 W] —wi OpE— w1 +w

Spr)es dpc

—Fy L o+ F ?”Lo-I—Ff,‘lB63(5130-l—f‘j(ﬁBt%C(SBc=(771JFAI/\€J)01a=07
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where (3.46) has been used. The integrability conditions (E5) are Ricci identities.
From (3.26), one obtains

A A —A —A +A +A AB _C AB _C AB _C AB _C
€0,ab™Na,b—Wa p l0—Wa *lo,b—W, 5 NO—Wa * M0,b—Wa,b €0 0BC—Wa  €0,0BCHWH Y €4 0BCHW)  €q,0BC-

Eq. (E2) requires

e“beéab%e“b)\fb—eabwa Mo—ewy o b—eabw+l’?no wi M nop—ewit el dpc—ewlPel e
+e“bw0 Belpe+ew ABea,b5BC
m)\a b_w;b lo+wg (w;rB 5Bc—waLBebchc—Fw;Jrlo)—wIl’?no—wIA(w;+no+w§BebC5Bc—w;Beg(iBC)
—wape§ dpo—wa T (A —w;, “lo— w+cn0*waDegbe*woCD655DE)5BC+W645655BC+W§Beac,b5BC
ze“b)\fb—e“bw;b lot+e*wy “wi P el dpo—e*w, fwi ey dpote*w; fwy Tlo—e bw;rfno
—e"wiw, Tno—ewiwy Pel dpe+etwi twy, Bel 53075“%(;“,?6353075“"%“3,\,, dBc
+e®wiPwy Clodpote”w Pwi Cnodpo+ewg Pwy P et Sppdsote”ws Pwi P ey sppdsc
+ewiPel spo+ewiPwSP el Sprdnc

~(— e“bwj? ewlCuitPspote®w, T +A)n0+(76“bw;ffe“bw;+wb7A+e“bw;BwaAdBc)lo

by A By ety Ay~ B by, AB wAPEB c
+(ew, + +ePw wy ~—¢€" +e wy “0pE)eg 0BC
(€ PNAB _(aby,m A kB _caby A +Eab AD EB5 Eabw(.»)qf+€ab ADEBg VS Spe

%Eab()\aABi AB —-A +B +A —-B

AD EB EB A —A AB _C
Wo,a —We Wy —Wg Wy “+w, 5DE+W0 5DE)eb 5BC+F2+3 n0+F23 lo+F23 €o oBC

%eabF(ﬁBebc5Bc+F$Ano+F2§Alo+F2%Beg5Bc:(n]JFAI/\eJ)()zg,:O,

where (3.22), (3.24), (3.26), (3.32), and (3.47) have been used. The integrability conditions (E7) are Ricci identities.

Appendix F: Poisson brackets among the constraints
All non-zero Poisson brackets among the constraints are listed as follows:
ml i —2epce’ey el ) (y)}=deane™er (y)d(z—y),
7w p—depoeel ) (y)} =4eanc®’d(z—y),
wy Ped 5p0)(y)}="w, A (y)d(z—y),
w, T—wi el 6pc) (y)}=wi ! (y)d(z—y)d,
wy el 5p0)(y)}="wi  (y)d(z—y),
iy, P rwl e dop) () =wit (y)6(x—y) 8y —5 (2 —y) 41 645,
€ (ebe—wi Ceg 5ep) (y) y=€"'wy A (1) (z—y) =S (x—y) 164,

{4 (z),(epce” Fi, el ) (y) y=eane Fi, P ()3 (z—y),

—~ o~~~ —~ o~
[a))
<o
o

{4 (z),(epce™ FiyPel +F55) (y) y =eane™ Fy P (y)d(a—y),
y=e""F, " (y)(z—y)d%,
(Y)}r=—""F}2(y)o(x—y)oa—e" i (y)d(x—y) 83,
(

Y)y=—c"F (y)8(a—y)5a+e" iy (y)d (z—y) b4,

a
{7TA$76 1 €t

(

(

(Fss+e ey FiP)(y
( b €e
(¢

)
be +2 3 chJrS 2)
c)

F+2 2 ch+3 3

1 €c— 1 €

{(rly—2eape™eler)(@),(cope Fi.%el) ()} =eane™w, * (y)ey (y)d(z—y),

{(nly —2eape™eler ) (x),(ccpe™ FiL ed +F53) (y)} =eane™wi (y)er (y)d(z—y),
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{(rh s —2eanc™eitel) (@), (FiaC +eeC Figh) (y)}=c™eS ()3 (2 —y) 4o

{(rh —2eape™eger)(x), (€ i eire™ Fied) (y) = —[e"wa* (y)eb (y) +e"wd® (y)en (9)]6 (x—y),

{(hy —2eane™eger))(z), (€ Fiei—e Fil’ed) (y)y = wi (y)ed ()d (x—y) —e""wi? (y)eb (y)d (@ —y),

{4 (2),(w, T—wi s 0an)(y)} =—d(z—y)dF,

{724 (2),(cape” Fy) el +F33) () }=eane™wi " (y)ey (y)d(x—y),

{r% 4 (2),(Fos +€ ey Fi.P) (y) =€t ()0 (z—y) 1,

{r2(2), (" Fyy el +e Fyy e2) () b =€""wi ™ (y)ed (y) S (w—y)+e’wi ™ (y)eb (v)6 (z—y),
{7 (2), (" Fh2el—e" Fii ed) (y) } ="' wi? (y)eb ()3 (x—y) —"wi > (v)ed (y)d (z—y),
{rla(@),wr % (y)}=—8(z—y)63,

{(r% a—deape®er)(2),(e“w: “ed dop) (y) }=—c"ei (y)d(z—y),

{(n% a—deape™ et ) (2), (e —ws “+wiPeldpr) (y) =6(z—y)d5 62,

(@), (ccpe Fi.%ed ) (y)}=eane [wi T (y)er ()3 (z—y)—es (y)5(x—y) 4],
(@),(ecpe™ FilC e +F33) (y)  =e"wy () 556 (w—y) —“wy > (y) 626 (z—y),
{ (@), (P +eed Frg ) () }=e"wi " (y)er (y)6 (w—y)—€"5(z—y) ,0055¢,

{mialx),(wa Peddpo)(y)t=ed (y)d(z—y),

{m}a(2), EBceb“FJ,Bef+F§3)( )} =1ewi (y)ei (y)+eane™ wy T(y)er (y)]d(z—y)

(

(
—"eq (y)d(z—y) 4
(

G

{(r% 4—4deape” be

( 5)
( b)
{(x® s—4eape™ed)
( 5)
( )

b
a B
7% a—deape”er

{mha(2), F23B+6b665F1c YW)r=c"wa " (y)ey (y)d(z—y),
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