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Abstract: We performed systematic studies on the effects of event-by-event efficiency fluctuations on efficiency

correction for cumulant analysis in relativistic heavy-ion collision experiments. Experimentally, particle efficiencies

of events measured under different experimental conditions should be different. For fluctuation measurements, the

final event-by-event multiplicity distributions should be the superposed distributions of various type of events mea-

sured under different conditions. We demonstrate efficiency fluctuation effects using numerical simulation, in which

we construct an event ensemble consisting of events with two different efficiencies. By using the mean particle ef-

ficiencies, we find that the efficiency corrected cumulants show large deviations from the original inputs when the

discrepancy between the two efficiencies is large. We further studied the effects of efficiency fluctuations for the

cumulants of net-proton distributions by implementing the UrQMD events of Au+Au collisions at
√
sNN=7.7 GeV

in a realistic STAR detector acceptance. We consider the unequal efficiency in two sides of the Time Projection

Chamber (TPC), multiplicity dependent efficiency, and the event-by-event variations of the collision vertex position

along the longitudinal direction (Vz). When the efficiencies fluctuate dramatically within the studied event sample,

the effects of efficiency fluctuations have significant impacts on the efficiency corrections of cumulants with the mean

efficiencies. We find that this effect can be effectively suppressed by binning the entire event ensemble into various

sub-event samples, in which the efficiency variations are relatively small. The final efficiency corrected cumulants can

be calculated from the weighted average of the corrected factorial moments of the sub-event samples with the mean

efficiencies.
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1 Introduction

The major physics goals of heavy-ion collision exper-
iments are to explore the phase structure of strongly in-
teracting nuclear matter and to study the properties of
quark-gluon plasma (QGP) [1–8]. The QCD phase struc-
ture can be displayed in a two-dimensional phase dia-
gram with the temperature T versus the baryon chemi-
cal potential µB. Lattice QCD calculations show that the
transition from a hadronic phase to a QGP phase at zero
µB is a crossover [9] and QCD-based models suggest that
at larger µB, the transition is of the first order [10, 11].
If these model calculations at finite µB are correct, there
should exist an endpoint of the first-order phase transi-
tion line, which is the so-called QCD critical point. Due
to the sign problem, the first-principle Lattice QCD cal-
culation becomes very difficult at µB > 0 [12], thus there

are large uncertainties in determining the location of the
critical point from theoretical calculations [13–23]. By
tuning the collision energy in heavy-ion collisions, QCD
matter with various (µB, T ) can be created to access
broad regions of the QCD phase diagram.

One of the most important experimental methods of
searching for the critical point is the measurements of
the event-by-event fluctuation of conserved quantities,
such as the net-baryon (B) [24–26], net-charge num-
ber (Q) [27, 28] and net-strangeness (S) number [29–
47] (And their proxy observables net-kaon [48] and net-
proton number fluctuations). The fluctuation observ-
ables are sensitive to the correlation length ξ, which will
diverge near the QCD critical point. The Solenoidal
Tracker at the RHIC (STAR) experiment has measured
the fluctuation of the net-proton multiplicity (which is a
proxy to net-baryon) in Au + Au collisions at

√
sNN =
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7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, which is
taken from the first phase of the RHIC beam energy scan
program. The measured fourth-order net-proton cumu-
lants ratio (κσ2 = C4/C2) of 5% most central events show
a nonmonotonic energy (or µB) dependence [49–51].

To understand the underlying physics associated with
this measurement, we need to perform careful studies on
the background contributions, such as the detector effi-
ciency and acceptance effects, volume fluctuations, and
other noncritical parameters [52–60]. Owing to the finite
detector efficiency, efficiency correction is applied and
plays a very important role in cumulant analysis. Gen-
erally, the efficiencies are obtained by Monte Carlo (MC)
embedding technique [61]. This allows for the determi-
nation of the efficiency, which is the ratio of the matched
MC tracks number and the number of input tracks. It
contains the effects of both the reconstructed tracking
efficiency and acceptance. In principle, the properties
of the efficiency, including fluctuations and acceptance,
can be obtained from embedding. However, the embed-
ding sample is only with a limited number of events,
and usually, a small fraction of the real data. Thus, with
limited statistics of embedding data, it is difficult to cap-
ture every detail and property of the entire data sample.
The efficiencies are obtained by taking the average within
an event sample under different experimental conditions,
such as variation of the collision vertex position and the
detector performance. The final event-by-event multi-
plicity distributions should be the superposed distribu-
tions of various types of events measured under differ-
ent experimental conditions. For real data analysis, we
usually use the mean efficiency to perform the efficiency
corrections for cumulants. This is not problematic if the
mean efficiency is used, assuming the efficiency varia-
tion is relatively small. However, the problem is that
higher order cumulants are sensitive statistics and they
are influenced by the bulk properties of events. The aver-
age quantity of event ensemble will reduce the details of
event-by-event discrepancy, which could be crucial to the
cumulants analysis. Experimentally, one needs to imple-
ment careful data quality assurance to perform precise
measurement studies on efficiencies for data samples.

In our work, we demonstrate the effects of efficiency
fluctuations on efficiency correction for cumulants using
the average efficacy and provide an effective approach to
suppress this effect in future data analysis. This is sim-
ulated by injecting particle tracks from UrQMD events
into the STAR detector acceptance. The efficiency fluc-
tuations result from the fluctuating collision vertex po-
sition and the setting different degree of the asymmetry
of the TPC efficiencies. This paper is organized as fol-
low. In Section 2, we will introduce the cumulant ob-
servables and the efficiency correction to the cumulants.
In Section 3, we will demonstrate the effects of using

the mean efficiency with a numerical simulation. In Sec-
tion 4, the effects of using the mean efficiency are evalu-
ated in events generated from the UrQMD model with a
fast detector simulation. Finally, we will give a summary.

2 Cumulants and efficiency correction

The cumulants of conserved charge are sensitive
probes to QCD phase transitions and the QCD critical
point, the fourth-order cumulant is proportional to the
seventh-order of the correlation length C4∝ξ7. The cu-
mulants C1 ∼ C4 can be defined by moments 〈N〉, 〈N 2〉,
..., 〈N 4〉 as:

C1=〈N〉

C2=〈N 2〉−〈N〉2

C3=2〈N〉2−3〈N〉〈N 2〉+〈N 3〉

C4=−6〈N〉4+12〈N〉2〈N 2〉−3〈N 2〉2

−4〈N〉〈N 3〉+〈N 4〉.

(1)

The variance σ2, skewness S and kurtosis κ can be de-
fined as

σ2=C2, S=
C3

(C2)
3/2

, κ=
C4

C2
2

.

The ratios of the cumulants can be directly compared to
the thermodynamic susceptibilities, which can be com-
puted in lattice QCD [30].

Sσ=
C3

C2

=
χ4

χ2

, κσ2=
C4

C2

=
χ3

χ2

.

The cumulants measured with detector efficiencies can
be recovered by efficiency correction. For example, the
mean value can be corrected by:

〈N〉= 〈N〉
measure

ǫ
,
〈

N−N̄
〉

=
〈N〉
ǫproton

−
〈

N̄
〉

ǫanti-proton
.

Typically, the efficiencies for proton and anti-proton are
different. Thus, we should divide the mean value by cor-
responding efficiency, respectively.

The efficiency corrections for higher-order cumulants
are not as straightforward. One can assume that the re-
sponse function of detected particles follows a binomial
distribution with efficiency parameter ǫ. We can then ex-
press the moments in terms of factorial moments and/or
the factorial cumulants [62–64]. The rth-order factorial
moments of a stochastic variable N can be defined from
the expectation of its falling factorial as:

Fr=〈N (N−1)···(N−r+1)〉.

and the factorial moments can be easily corrected for
the binomial efficiency. Suppose the measured factorial
moment is fr with efficiency ǫ, we, therefore, have: (Sec-
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tion 6.1)

Fr=
fr
ǫr

(2)

With the efficiency-corrected factorial moments F1 to Fr,
we can obtain the moments 〈N r〉

〈N r〉=
r
∑

i=0

s2(r,i)Fr, (3)

where the s2 is the Stirling numbers of the second kind.
With moments 〈N r〉 we can further obtain the cumulants
using equation (1). In the case where the net-proton cu-
mulant is required, we should introduce two-dimensional
factorial moments and the efficiency correction equation
can be written as:

Frs=
frs
ǫrpǫ

s
p̄

,

where the ǫrp is the rth-order of the proton efficiency and
the ǫsp̄ is the sth-order of anti-proton efficiency. frs is
defined as:

frs=〈np(np−1)···(np−r+1)·
np̄(np̄−1)···(np̄−s+1)〉, (4)

where np and np̄ are the measured proton and anti-
proton numbers, respectively. The conversion from Frs

to
〈

N r
pN

s
p̄

〉

is

〈

N r
pN

s
p̄

〉

=

r
∑

i1=0

s
∑

i2=0

s2(r,i1)s2(s,i2)Frs.

The moments of the net-proton can be expressed as

〈

Nk
p−p̄

〉

=
〈

(Np−Np̄)
k
〉

=

k
∑

i=0

(−1)
i

(

k

i

)

〈

Nk−i
p N i

p̄

〉

. (5)

It is straightforward to write the net-proton cumulants
with equation (1).

2.1 Factorial moments and cumulants of super-

posed distribution

In this section, we discuss the factorial moments of
the superposed distribution. For example, if we have a
distribution obtained by the mixture of a Poisson dis-
tribution, Gaussian distribution, or some other type of
distribution, it is then left to determine the relations be-
tween the factorial moments of their superposed distribu-
tion and the sub-distributions. The probability density
function of the superposed distribution can be expressed
as:

P̃ (n)=
∑

aiPi(n). (6)

It describes the probability of detecting n particles in
an event, and the event may be from one of the various

types. Therefore, P̃ (n) is the summation of the proba-
bility of detecting n particles from the ith-type Pi(n). ai

is the weight of Pi(n).
With P̃ (n), we can write down the generating func-

tion G̃F (s) for factorial moments Fr

G̃F (s)=

∞
∑

n=0

P̃ (n)sn=

∞
∑

n=0

k
∑

i=0

aiPi(n)s
n. (7)

We can further write

G̃F (s)=

k
∑

i=0

ai

∞
∑

n=0

Pi(n)s
n=

k
∑

i=0

aiG
(i)
F . (8)

We then have the relation between superposed factorial
moments given by F̃r and F (i)

r

F̃r=
∂r

∂sr
G̃F (s)

∣

∣

∣

∣

s=1

=

k
∑

i=0

ai

∂r

∂sr
G(i)

F (s)

∣

∣

∣

∣

s=1

=
k
∑

i=0

aiF
(i)
r . (9)

We find that F̃r is the weighted average of F (i)
r .

However, we will show that we cannot use the aver-
age of the cumulants from different types of distributions.
First, we note that the superposed cumulants C̃r is not
the simple weighted average of C(i)

r . Since the generating
function of the cumulants K (θ) can be written as [65]

K (θ)=Kfc

(

eθ
)

. (10)

The Kfc(e
θ) is the generating function of the factorial

cumulants, and we have:

Kfc

(

eθ
)

=lnGF

(

eθ
)

. (11)

Therefore
K (θ)=lnGF

(

eθ
)

. (12)

The generating function of the superposed distribution
is

K̃ (θ)=lnG̃F

(

eθ
)

=ln

k
∑

i=0

aiG
(i)
F

(

eθ
)

. (13)

The cumulants C̃r are given by:

C̃r=
∂r

∂θr
K̃ (θ)

∣

∣

∣

∣

θ=0

=
∂r

∂θr
ln

k
∑

i=0

aiG
(i)
F

(

eθ
)

∣

∣

∣

∣

∣

θ=0

6= ∂r

∂θr

k
∑

i=0

ai lnG
(i)
F

(

eθ
)

∣

∣

∣

∣

∣

θ=0

=

k
∑

i=0

ai

∂r

∂θr
K(i)(θ)

∣

∣

∣

∣

θ=0

=

k
∑

i=0

aiC
(i)
r . (14)
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Thus, if the individual distributions are different, the cu-
mulant of the superposition of different distributions is
not the average of the cumulants of the individual dis-
tributions.

Suppose that GF (e
θ) is the factorial moment gener-

ating function after efficiency correction. Therefore, the
superposed cumulant generating function is given as:

K̃(θ)=lnG̃F

(

eθ
)

=ln

k
∑

i=0

aiG
(i)
F

(

eθ
)

=ln

k
∑

i=0

aiGF

(

eθ
)

=lnGF

(

eθ
)

=

k
∑

i=0

ai lnGF

(

eθ
)

=

k
∑

i=0

aiK
(i)(θ). (15)

We find that this relation is only true when all the
G(i)

F are equal. In order words, the average cumulant is
only valid for the superposed distributions of the same
type.

The statistical error for the superposed cumulants is
given by the Delta theorem [63, 66]. In our discussion,
the detecting efficiency ǫ is taken as a constant. There-
fore, we have:

V
(

C̃r

)

=

r
∑

p,q

∂C̃r

f̃p

∂C̃r

f̃q
Cov

(

f̃p,f̃q

)

=

r
∑

p,q

k
∑

i

∂C̃r

f (i)
p

∂C̃r

f (i)
q

Cov
(

f (i)
p ,f (i)

q

)

. (16)

2.2 Efficiency correction for superposed distri-

bution with different efficiencies

Experimentally measured multiplicity distribution
can be treated as a superposed of distributions with dif-
ferent efficiencies. For simplicity, we assume that the
response function of the detected efficiency is a binomial
distribution. This is a special case of equation (6), where
pi(n) is given by equation (A3) with a different efficiency
ǫi as:

pi(n)=
∞
∑

N=n

P (N)BN (n,ǫi) (17)

and the PDF for superposed distribution is:

p̃(n)=

k
∑

i=0

aipi(n)=

k
∑

i=0

∞
∑

N=n

aiP (N)BN (n,ǫi). (18)

The generating function of the measured factorial mo-
ments for each species of the distribution is given by

equation (A5)

G(i)
f (s)=

∞
∑

n=0

pi(n)s
n=

∞
∑

n=0

∞
∑

N=n

P (N)BN (n,ǫi)s
n

=

∞
∑

N=0

P (N)[1+ǫi(s−1)]
N

=
∞
∑

N=0

P (N)s′i
N=GF (s

′

i), (19)

where the s′i = 1+ǫi(s−1). Their average is given by
Eq. (8), and we have:

G̃f (s)=
k
∑

i

aiG
(i)
f (s)=

k
∑

i

aiGF (s
′

i). (20)

We then have the relation between the measured facto-
rial moments f̃r and the original factorial moments from
each species of event

f̃r=
∂r

∂sr
G̃f (s)

∣

∣

∣

∣

s=1

=

k
∑

i

ai

(

∂s′i
∂s

)r
∂r

∂(s′i)
rGF (s

′

i)

∣

∣

∣

∣

s=1

=

k
∑

i

ai ǫ
r
i

∂r

∂(s′i)
rGF (s

′

i)

∣

∣

∣

∣

s′
i
=1

=

k
∑

i

aiǫ
r
iFr. (21)

The mean efficiency 〈ǫ〉 should not be used for the su-
perposed distribution. It can be demonstrated in equa-
tion (21) by multiple 1/〈ǫ〉 to both sides, and comparing
it to the original superposed factorial moments

f̃r
〈ǫ〉r−Fr=

k
∑

i

ai

ǫri
〈ǫ〉rFr−Fr

=Fr

(

∑k

i aiǫ
r
i

〈ǫ〉r −1

)

=Fr

( 〈ǫr〉
〈ǫ〉r−1

)

. (22)

Since ǫi is fluctuating, the last line is usually not equal
to 0. Ideally, in order to obtain factorial moments of the
original distribution, we should perform efficiency cor-
rection for each types of events, separately:

Fr=
k
∑

i=0

ai

f (i)
r

ǫri
. (23)

There are two methods to obtain the efficiency corrected
cumulants for superposed distributions, from distribu-
tions with different efficiencies:

1. Correct f (i)
r to F (i)

r and compute C(i)
r . Then C̃r =

∑

i
aiC

(i)
r .
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2. Correct f (i)
r to F (i)

r , and F̃r =
∑

i
aiF

(i)
r . Then

compute C̃r from F̃r.

If we know the efficiencies of the different event types in
the superposed distribution, we should note that after
efficiency correction F (1)

r = F (2)
r = ··· = F (k)

r . Therefore,
we can demonstrate that methods 1 and 2 are equivalent.
However, in Section 4.3, we will find that the efficiencies
of each type of events are unknown. In this case, we use
the mean ǫ in each sub-event sample. Thus, the generat-
ing functions G(i)

F in different event sample bins are still
not the same after efficiency correction. G(i)

F is only an
approximation to the true GF . Thus, the correction for
superposition of different types of distributions should be
performed with the average factorial moments (method
2). If the efficiency variation in each bin is not small,
then the weight average of the cumulants will introduce
additional uncertainties. We note that this is similar
to the case of using the technique of centrality bin width
correction (CBWC) to evaluate cumulants in a wide cen-
trality bin to suppress volume fluctuations [67].

3 Effects of using mean efficiency in ef-

ficiency correction for cumulants of

multiplicity distributions

Usually, the efficiency ǫ in equation (2) is obtained
from MC embedding. It reflects the net contribution
of the detector acceptance, tracking efficiency, and the
other effects and it is obtained by taking the average
of the entire event ensemble. For most situations, the
true efficiency of each event should not fluctuate too far
from this mean value. In these cases, the 〈ǫ〉 is a good
approximation for efficiency correction. But we should
be careful when efficiencies of some events dramatically
deviate from 〈ǫ〉, we can exclude bad events by reject-
ing events with unusual multiplicity or selecting events
within a multiplicity range. It should be noted that with
a relative large efficiency shift, the change in 〈N〉 can be
slight because the binomial distribution is wide. Thus,
event selection becomes difficult.

The problem of using the mean efficiency to correct
cumulants exists in reality. We can consider an extreme
example in which an event ensemble mixes two types of
distinctive events. One type of event has efficiency ǫ1,
and the other type has efficiency ǫ2. The mean efficiency
eventually determined as the average of the two types
of event ǭ. To model this example, we used a Monte
Carlo simulation. For each event, the proton number N
we input follows a Poisson distribution with parameter
λ=100. In events of type I, the detected proton number
n follows a binomial distribution B(N,ǫ1). In events of
type II, the n follows B(N,ǫ2). The event-by-event pro-
ton number distribution from the simulation is shown in
Fig. 1.

In Figure. 1, we give the same original input distri-
bution with the number of events (M) for each case (the
solid grey lines). We then divide the original input events
into two sub-event samples, which passes different ef-
ficiencies. The two types of events are represented by
type I and II with the number of events given as M1

and M2, respectively (M1+M2=M). The efficiency of
type II is fixed at ǫ2 = 0.8. From column 1 to 5, we
decrease the efficiency of type I events from 0.8 to 0.4.
We find that the distinctive peaks of event-by-event dis-
tributions gradually emerged. The event fraction of the
total events for the type I sub-event sample are varied as
0.1, 0.5, and 0.9. Then, we perform efficiency correction
using the mean efficiency 〈ǫ〉 of each case. Since we can
represent ǫ1 by ǫ1=〈N〉

measure
/〈N〉

input
and so is ǫ2, their

average can be written as:

〈ǫ〉=M1〈n〉1+M2〈n〉2
M 〈N〉 .

where M1 is the number of events in type I and M2 is
the number of events in type II. The measured particle
number is denoted as 〈n〉, and the input particle number
is denoted as 〈N〉.

With the measured distributions (blue dashed lines
in Fig. 1) and the mean efficiency 〈ǫ〉, we can calculate
the efficiency corrected factorial moments (equation (2))
and the cumulants, which are shown in Fig. 2 (left) as
blue square markers. We then tune the efficiency dif-
ference ∆ǫ of the two types of events to determine how
the efficiency corrected results deviate from the original
cumulants (marked as the solid gray lines). We found
there is no issue in using the mean efficiency to correct
C1, since the results perfectly follow the solid lines (ap-
proximately around 100.0 which is the Poisson parameter
λ) with the change of ∆ǫ. However, the results start to
deviate significantly for C2, C3 and C4. Obviously, the
correction failed even if the ∆ǫ is as small as 0.1 (When
the event-by-event distribution shows no double peaks in
Fig. 1).

Therefore, we know that the event ensemble mixes
two types of distinctive event which causes the correc-
tion to fail for higher order cumulants. As such, it is
necessary to determine whether the results can be im-
proved when we perform corrections on each type. In
the following, we independently calculate the cumulants
of two types of event and correct them using their own
measured efficiencies.

ǫ1=
〈N〉(1)

measure

〈N〉(1)
input

, ǫ2=
〈N〉(2)

measure

〈N〉(2)
input

.

We, therefore, need to determine how to combine the
corrected result of different types of events. The simu-
lation of two types of events is the simplest case. Let’s
consider the measured distribution from a combination
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Fig. 1. (color online) Monte Carlo input (Original, gray line) and measured distribution with detector efficiencies
(dashed blue line). The statistics of event is 1.0 billion (109). In the first, second and third rows, events with
efficiency ǫ1 (i.e., Events of type I) makes up 10%, 50% and 90% of the total event number, respectively. In
columns 1 to 5, the ǫ1 varies from 0.8 to 0.4, while the efficiency of type II is fixed at ǫ2 = 0.8.

Fig. 2. (color online) Efficiency corrected cumulants and cumulant ratios. For each column, the events of type I
makes up 10%, 50% and 90% of the total event number (109). The ǫ1 of the x-axis represents efficiency event type
I and the efficiency of type II is fixed at ǫ2 = 0.8. Square markers (left): Result corrected with mean efficiency.
Circle markers (right): Result corrected independently by ǫ1 and ǫ2 (True efficiencies).
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bins (left) and 100 bins (right). The efficiencies of events are selected randomly in the range (ǫL,0.8). With a finer
efficiency bin (right), the difference of the two methods become smaller.

of K types of events. We can find in Section 2.1 that
Equation (8) shows that the factorial moments fr of the
superposed distribution is the weighted average of the
factorial moments f (i)

r of each type. Therefore, the ef-
ficiency corrected factorial moments of the superposed
distribution is:

Fr=

k
∑

i=1

ai

f (i)
r

ǫk(i)
. (24)

The results are shown in Fig. 2 (right). As expected,
the efficiency corrected cumulants follow the input val-
ues perfectly in all three cases.

As we have discussed in Section 2.2, the cumulants
of the superposition of different distributions (i.e., distri-
bution corrected using mean efficiencies instead of true
efficiencies) should be calculated from averaged facto-
rial moments. The average of the cumulants will intro-
duce additional deviation. We show the difference of
the factorial moments average and the cumulants aver-
age in Fig. 3. In this figure, the results of a numerical
simulation with 100M events is presented. Instead of
using 2 different efficiencies in the previous simulation,
each event is randomly assigned an efficiency number,
which is uniformly distributed in the range (ǫL, 0.8). To
perform efficiency correction, the entire event sample is
divided into sub-event samples with equal efficiency in-
tervals between (ǫL, 0.8). The efficiency correction for
each sub-event sample is performed using the methods
of factorial moments average and the cumulants average,
respectively. We can infer from the left panel of Fig. 3
that with 5 efficiency bins (larger efficiency variations in
each bin), the efficiency corrected results fail to repro-
duce the higher-order input cumulants for both meth-
ods. However, for the fourth-order cumulant (C4), the
average of the factorial moments is closer to the original,
and the results of the cumulants average method exhibit
large deviations. In order to reproduce the original cu-
mulants, we have to reduce the efficiency variation and
use more efficiency bins (with 100 bins in the right panel

of Fig. 3). For finer efficiency bins, the factorial moment
generating function G(i)

F with a mean efficiency becomes
closer to its true value GF . In addition, the additional
uncertainties of the cumulant average are much smaller.

In conclusion of this section, we demonstrate the ef-
fects of using the mean efficiency in the efficiency cor-
rection for cumulants of multiple distributions. If the
efficiency variation within the event sample is large, it
is problematic to use the mean efficiency to perform the
efficiency corrections. To perform precise and reliable ef-
ficiency correction, one has carefully bin the events into
various sub-event samples, in which the efficiency varia-
tion is relatively small.

4 UrQMD Model Simulation with STAR

Detector Acceptance

In this section, we will examine whether or not the
failed correction in the last section can occur in real ex-
periments. In the STAR experiment, particle identifi-
cation and track reconstruction are usually performed
with a time projection chamber [68] (TPC). The major
structure of the TPC is a cylinder drift chamber with a
high voltage electrode in the center. The two endcaps of
the drift chamber are covered with thin-gap, multiwire
proportional chambers (MWPC). The particles that pass
through the TPC will experience energy loss due to the
ionization of the drifting electrons. By measuring the
drift time and the number of electrons collected at the
endcaps, we can build the track of arrival particles and
calculate their energy loss dE/dx. As shown in Fig. 4,
the voltage electrode in the center (Central Membrane)
divides the drift chamber into two subparts. Usually, the
working conditions of the west and east side of the TPC
endcaps are not essentially the same, which can result in
different detection efficiencies for the west and east TPC.

The z-coordination of the primary vertex is described
by an important event parameter Vz. Vz = 0 indicates
that the primary vertex is located at the longitudinal
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center of the TPC. In the simulation, a positive Vz in-
dicates that the primary vertex is located to the right.
We also set a flat distribution of Vz within the range
(-50 cm, 50 cm), which is a similar case to RHIC BES
at low energies. In our discussion, Vz distributions are
important because the efficiencies are unequal in the left
and the right regions of the chamber. Since the parti-
cles from events with Vz < 0 are more likely to travel
into the left chamber, the mean efficiency of events with
Vz <0 become different from that of events with Vz >
0. Obviously, we will arrive at the situation which has
been discussed in Section 3. In fact, the detecting ef-
ficiencies have been observed to change with Vz in real
experiments.

−

Fig. 4. (color online) A sketch of the STAR TPC.

4.1 Efficiency generation in UrQMD model

To investigate the effect of fluctuation of Vz, we
performed a fast simulation using the UrQMD model.
UrQMD is a transport model that can simulate nucleus-
nucleus collision events [69]. The main idea is to give
each UrQMD event a random Vz in the range -50 < Vz

< 50 cm. Then, we can assign efficiency to each particle
base on its η and the Vz of the event.

We then simplify the geometry of the TPC into a
plane to emphasize the effects of interest. Since we can
judge which part of the drift chamber the particle will
travel into by its pseudo-rapidity η, the tracks’ azimuthal
angle (φ) can be omitted from our analysis. Therefore,
our realm of interest can be represented as shown in
Fig. 5. In this figure, the Vz of an event is randomly
assigned. The angle (θ) between a track and the beam
pipeline can be derived from the pseudo-rapidity η.

Owing to the magnetic field in TPC, particles have
a helix trajectory when passing through the chamber.

However, we can simplify this motion as a straight line
because we are only concerned with the part of the cham-
ber where the track will occur. It should be noted that
tracks sometimes go through the central membrane. For
the sake of clarity and simplicity, we suppose that the
entire track is in the left/right region of the chamber
if the end of the track is in the left/right region of the
chamber. Finally, we can assign the detection efficiencies
ǫL to tracks in the left chamber and ǫR to tracks in the
right chamber.

Vz > 0

Tr acks

TPC

Dr i f t Chamber

Lef t Ri ght

Fig. 5. (color online) Geometry sketch in UrQMD
simulation. Each event from UrQMD has been
assigned a random Vz.

In addition to the effect of Vz fluctuation, the de-
tecting efficiency is affected by the total multiplicity of
charged particles. The multiplicity of charged particles
is usually used as the reference to determine the central-
ity. This implies that the detecting efficiency must be
different from the central to peripheral collisions. Thus,
we introduce a multiplicity dependence efficiency. The
relation between total multiplicity and efficiency can be
expressed as:

ǫ=ǫ0−KRNmul, (25)

where the ǫ0 and theKR are constant, and the Nmul is the
total multiplicity of charged particles within |η|<1. The
minus sign before KR indicates the detecting efficiency
decreases with increasing total multiplicity. This effect
can be introduced in the simulation by simply reducing
the ǫL and ǫR by the minus of the factor KRNmul. For
simplicity and clarity, we set the detecting efficiencies
have no dependence of pT and the efficiencies of the p(p̄)
are the same. Since we are interested in the efficiency
fluctuations effects on net-proton cumulants, we did not
apply efficiencies to pions and kaons.

4.2 Results

In this work, we calculate the efficiency-corrected cu-
mulants of the net-proton distributions in Au + Au col-
lisions at

√
sNN = 7.7 GeV from UrQMD and select 0–

5% most central events from the dataset. The statistics
of selecting events is 2.0 million. Collision centrality is
determined by the charged particles within |η|<1 by ex-

104001-8



Chinese Physics C Vol. 42, No. 10 (2018) 104001

η
d/

N
d .

a
e

M 10

20

30

=0.3L∈
η

d/
N

d  .ir
O 10

20

30

40

-1 -0.5 0 0.5 1

y
c

n
ei

ci ff
E

0.2

0.4

0.6

0.8

=0.4L∈

-1 -0.5 0 0.5 1

=0.5L∈

Proton

-1 -0.5 0 0.5 1

=0.6L∈

-1 -0.5 0 0.5 1

UrQMD 7.7 GeV
Au+Au Collision
5% most central

=0.7L∈

-1 -0.5 0 0.5 1

Whole Vz
-50<z<-25
-25<z<  0
  0<z< 25
 25<z< 50

η

Fig. 6. (color online) dN/dη distribution (row 1: measured, row 2: original input) and the measurement efficiency
(row 3). From left to right columns, the detecting efficiency of tracks in the left part of the drift chamber arising
from 0.3 to 0.7, while the efficiency of tracks in the right part of the chamber is fixed at 0.8. The η dependence of
the detecting efficiency can be represented by the ratio of the first and the second row.

cluding the proton and anti-protons. In Fig. 6, we show
the proton dN/dη distribution for measured data (with
Vz fluctuation and detecting efficiencies) and the origi-
nal UrQMD data within a pseudo-rapidity coverage |η| <
1.0, which is the same coverage as the TPC of the STAR
detector. The lines of different colors in Fig. 6 repre-
sents the dN/dη distributions of protons within various
Vz ranges. In the columns from left to right, we gradu-
ally increase the efficiency of the tracks in the left part
of the chamber (corresponding to η <0 from ǫL = 0.3 to
ǫL = 0.7, while we fix the efficiency in the right part of
the chamber at ǫR = 0.8). Thus, we can evaluate the
efficiency fluctuation effects when we enlarge or reduce
the difference of ǫL and ǫR.

We can learn from Fig. 6 that the proton dN/dη dis-
tributions are asymmetry in the positive and negative
η regions, while the distributions of the original input
are flat. The detecting efficiencies of particles can be
expressed as the ratio of the first and the second row.
We found that when we narrow the Vz bin width, the
slope from negative η to positive η becomes steeper. On
the contrary, a wider Vz bin resulted in a smaller slope.
This implies that a wider Vz bin mixes more distinctive
events.

The relations between rapidity coverage, Vz and the
proton efficiency are shown in Fig. 7. In this figure, the
mean proton efficiency within various rapidity coverage
∆y is plotted as a function of Vz . The efficiencies for Vz

> 0 are larger than those for Vz < 0, which is consistent
with our setting. When the ∆y is small, particles are
more likely to concentrate in the left or right chamber.
Therefore, the slope from Vz < 0 to Vz > 0 is steeper.
When ∆y is larger; particles are more dispersed into dif-

ferent chamber parts, which leads to a smooth transition
from Vz <0 to Vz > 0.

The effect of the total multiplicity on the detecting
efficiency is shown in Fig. 8, where the proton mean ef-
ficiency is plotted as a function of the multiplicity of
charged π and K. Experimentally, instead of using wider
centrality bins to calculate the cumulants, the net-proton
cumulants are calculated in individual reference multi-
plicity bins to reduce the volume fluctuation which arises
from the uncertainty of the collision geometry. This is
the so-called centrality bin width correction (CBWC)
technique [67]. The reference multiplicity is equal to the
multiplicity of charged π and K within |η| < 1. From the
previous discussion, the mean efficiency should be differ-
ent across centralities and reference multiplicity bins.
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Fig. 7. (color online) Vz dependence of detecting
efficiency within various rapidity coverage ∆y.
The wider ∆y coverage corresponds to a smoother
slope in the figure.
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In Fig. 6–8, we obtained the proton mean efficiency
via simulation and thus we can perform the efficiency
correction on the net-proton cumulants. We first ex-
amine the event-by-event distributions of the measured
net-proton number via simulation. In Fig. 9, we found
that the shapes of the distributions show no significant
change when we enlarge the difference between ǫL and
ǫR. This result is due to the continuous distributions
of Vz . Moreover, the event-by-event distribution of the
mean net-proton number is the superposition of events
within the whole Vz range.

We show the efficiency-corrected net-proton cumu-
lants C1 to C4 (and their ratios Sσ = C3/C2, κσ2 =
C4/C2) within various pseudo-rapidity and rapidity cov-
erages in Fig. 10–11. The mean efficiencies of the proton
and anti-protons are used in the efficiency correction. As

we suppose in our previous work, the cumulants in var-
ious rapidity or pseudo-rapidity acceptance have 〈Np〉
scaling behavior (or 〈Np〉+〈Np̄〉 scaling) [70]. We also
plot the cumulants and their ratios as functions of the
mean total-proton number 〈Np〉 + 〈Np̄〉 in Fig. 12. In
this case, the cumulants within various ∆η or ∆y ac-
ceptance show a unified trend to the mean net-proton
number (or total-proton number). The original results
computed from the original input without detecting effi-
ciency are shown as a solid gray line in the figure. The
measured cumulants are represented by colored mark-
ers. We found that the efficiency-corrected cumulants
coincide with the original results when the efficiencies
to the left and right parts of the chamber are close to
each other. However, when the difference between ǫL
and ǫR is large (i.e., the case ǫL = 0.5, ǫR = 0.8), the effi-
ciency correction failed for the higher-order cumulants as
was demonstrated in Section 3, and the deviations grow
rapidly with the difference.

The simulation confirms that using the mean effi-
ciency for correction can produce inaccurate results and
the effect of efficiency fluctuations is not negligible. For-
tunately, the deviation is not negligible only when the
efficiency difference ∆ǫ become unrealistically large com-
pare to real experiments. In the case where the ∆ǫ is
less than 0.2, the efficiency-corrected cumulants coincide
with the input results within statistical uncertainties.

4.3 V
z
bin correction

The results shown in Fig. 6 suggest that wider Vz bins
mix up more distinctive events, thus we can perform the
efficiency correction within smaller Vz bins.

The method to perform the correction of Vz fluctu-
ation is analogous to what was done in Section 3. We
may suppose that events with different Vz have their own
mean efficiency. Therefore, the measured distribution is
the superposed distribution from all Vz ranges, and the
superposed distribution from events with different effi-
ciencies. Mean efficiencies of smaller Vz bins can be ob-
tained using Monte Carlo embedding procedures. Sup-
pose the efficiency-corrected factorial moments at Vz is
Fr (Vz), we can write the average result as equation (24)

F̃r=

∫

Vz

Fr (Vz)dVz.

The statistical error is evaluated by propagation of the
standard error.

We first investigate the effect of Vz bin correction with
different ∆ǫ and different Vz bin width. Fig. 13 shows
that when ∆ǫ = ǫR−ǫL is large, the corrected results us-
ing the mean efficiency show large deviations from the
input results. For the Vz bin correction, we set up 2 or 3,
4 Vz bins with equal interval in the range of (-50 cm, 50
cm) to perform efficiency correction. We found that the
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Vz bin correction can significantly improve the results of
high-order cumulants, especially in the case where ∆ǫ is
large. Finer Vz bin is important when ∆ǫ is large. We
also learn from Fig. 13 that efficiency corrected 2 Vz bins
show great improvement. However, the effect of Vz bin
correction may depend on the rapidity acceptance, since
we found in Fig. 7 that a smaller rapidity acceptance
∆y exhibits a steeper slope on the Vz dependence of ef-
ficiency. In Fig. 14 we show 2 and 3 Vz bins corrected
results within various y cuts. When |y| cut is small, the
result corrected by 3 bins is better than 2 bins. How-
ever, the discrepancy is not significant for larger |y| cut.
The reason is that when |y| cut is large; particles are
dispersed more evenly into two drifting chambers, so the
efficiency depends less on Vz.

5 Summary

In heavy ion collision, the cumulants of event-by-
event multiplicity of conserved charge have been used
as sensitive observables to probe the QCD phase transi-
tion and the critical point. Since the experiments have
a finite acceptance and detector efficiency, the measured
distribution should be corrected for detecting efficiency
in subsequent analysis.

The particle efficiencies of events measured under dif-
ferent experimental conditions should be different. We
called this effect event-by-event efficiency fluctuations.
The final event-by-eventmultiplicity distributions should
be the superposed distributions of various type of events
measured under different conditions. However, the effi-
ciency correction is performed using the mean efficiency

of the event sample. Mean efficiencies obtained from
Monte Carlo embedding procedures have been used to
perform the efficiency correction for cumulants. The
mean efficiencies reflect the net contribution of the ac-
ceptance, tracking efficiency and other effects. We have
shown the relation between the factorial moments of the
superposed distribution and the factorial moments from
individual distributions (i.e., the distribution with dif-
ferent efficiencies). We determined that the superposed
factorial moments are the weighted average of the indi-
vidual factorial moments, and the mean efficiency cannot
restore the original input since the efficiency fluctuates
across the various distributions. So we suggest that one
should be very careful when binning the events into var-
ious sub-event samples, in which the efficiency variation
is relatively small.

We performed a numerical simulation which com-
bined two types of events with different efficiencies which
revealed that a correction that is implemented using the
mean efficiency can have a significant deviation from
the original input. In addition, a more concrete sim-
ulation with the UrQMD model indicates that similar
effects can occur in real experiments. In the UrQMD
simulation, we consider the event-by-event fluctuation of
z-coordination of collision vertex (Vz). We also intro-
duced the different working conditions of detectors at
the west and east endcap of the detector (TPC), which
can lead to unequal detecting efficiencies of the tracks
in the west and east subpart of the chamber. We show
that the event-by-event efficiency fluctuation effects can
cause the efficiency-corrected cumulants using the mean
efficiencies, to deviate from the original input. However,
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when the efficiency fluctuation is at the level of real ex-
periments which is much smaller than our settings, the
deviation can be neglected. We also attempted to reduce
the efficiency variation by introducing the Vz bin average
method, which can significantly improve the precision of
the efficiency correction.

The event-by-event efficiency fluctuation imple-
mented in our simulation, is not the only source that
can be present in real experiments. For example, other

sources may exist such as the variation of the detector
performance as a function of time and bad events outliers
in the multiplicity distributions. To obtain high precise
and reliable efficiency-corrected cumulants, it is neces-
sary to careful study event selection and classification to
ensure the event-by-event efficiency fluctuations is small.
This work presents a simple but effective method to im-
prove the precision of efficiency correction for cumulant
analysis in relativistic heavy-ion collision experiments.

Appendix A

Efficiency correction for factorial moments

The factorial moments generating function is

GF (s)=

∞
∑

n=0

P (n)sn (A1)

where the n is the value of the stochastic variable and the
P (n) is the probability density function. The summation
can also be expressed as:

GF (s)=〈sn〉
Therefore the r-th factorial moment of n is given as:

Fr=
∂r

∂sr
GF (s)

∣

∣

∣

∣

s=1

=

∞
∑

n=r

P (n)n(n−1)(n−2)···(n−r+1)

=〈n(n−1)···(n−r+1)〉 (A2)

The probability of detecting n particles (p(n)) is given by
the Binomial distribution BN (n, ǫ), where N is the number
of input particles and the ǫ is the efficiency.

p(n)=
∞
∑

N=n

P (N)BN (n,ǫ)

=
∞
∑

N=n

P (N)

(

N

n

)

ǫn(1−ǫ)N−n (A3)

The generating function of the measured factorial moments
is then

Gf (s)=

∞
∑

n=0

p(n)sn

=
∞
∑

n=0

∞
∑

N=n

P (N)

(

N

n

)

ǫn(1−ǫ)N−nsn

=
∞
∑

N=0

P (N)
N
∑

n=0

(

N

n

)

ǫn(1−ǫ)N−nsn

=

∞
∑

N=0

P (N)

N
∑

n=0

(

N

n

)

(ǫs)n(1−ǫ)N−n (A4)

The last line can be simplified using the binomial theorem to
give:

N
∑

n=0

(

N

n

)

(ǫs)n(1−ǫ)N−n=[ǫs+(1−ǫ)]N

We then have

Gf (s)=

∞
∑

N=0

P (N)[1+ǫ(s−1)]N

=

∞
∑

N=0

P (N)s′
N
=GF (s

′) (A5)

where s′ = [1+ǫ(s−1)]. We then have the relation between
the measured factorial moments fr and the original factorial
moments Fr

fr=
∂r

∂sr
Gf (s)

∣

∣

∣

∣

s=1

=
∂r

∂sr

∞
∑

N=0

P (N)[1+ǫ(s−1)]N

∣

∣

∣

∣

∣

s=1

=
∞
∑

N=r

ǫrP (N)N (N−1)···(N−r+1)=ǫrFr (A6)

Multivariate factorial moments

In the report, we use multivariate factorial moments to
describe the net-proton number. The net-proton factorial
moments has 2 dimensions which describe the proton and
anti-proton number respectively. The generating function
of q-dimensional factorial moments is an extension to equa-
tion (A1)

GF (t)=
∏

q

∞
∑

nq=0

Pq(nq)t
nq
q (A7)

Therefore

F r=
∏

q

∂rq

∂t
rq
q

∞
∑

nq=0

Pq(nq)t
nq
q

∣

∣

∣

∣

∣

∣

tq=1

=

〈

∏

q

(tq)rq

〉

(A8)
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where the symbol (tq)rq is a falling factorial

(tq)rq =tq(tq−1)(tq−2)···(tq−rq+1)

The detecting probability density function for each kind of
particle is identical to equation (A3)

pq(nq)=
∞
∑

Nq=nq

Pq(Nq)BNq (nq ,ǫq) (A9)

Therefore, the generating function for measured factorial mo-
ments is given by equation (A4)

Gf (t)=
∏

q

∞
∑

nq=0

pq(nq)t
nq
q

=
∏

q

∞
∑

nq=0

∞
∑

Nq=nq

Pq(Nq)BNq (nq,ǫq)

=
∏

q

Pq(Nq)[1+ǫq(tq−1)]Nq−nq (A10)

Thus, the efficiency correction relation is similar to equa-
tion (A6)

fr=

(

∏

q

ǫ
rq
q

)

Fr (A11)

The conversation from q-dimensional factorial moments to
q-dimensional moments is similar to equation (3)

〈

∏

q

N
rq
q

〉

=

r1
∑

i1=0

···
rq
∑

iq=0

s2(r1,i1)···s2(rq,iq)Fr1,r2,...,rq

(A12)
With q-dimensional moments, we can write down the mo-
ments of any combination of q kinds of particles, for example,
the moments of net-proton number is given as:

〈(N1−N2)
r〉=

〈

r
∑

i=0

(

r

i

)

(−1)iNr−i
1 N i

2

〉

=
r
∑

i=0

(

r

i

)

(−1)i
〈

Nr−i
1 N i

2

〉

=

r
∑

i=0

(

r

i

)

(−1)i
r−i
∑

k1=0

i
∑

k2=0

s2(r−i,k1)s2(i,k2)Fk1k2

(A13)

The cumulants of the net-proton number is given by equa-
tion (1) directly.
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