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Stagnancy of the pygmy dipole resonance *
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Abstract: The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase

approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between

the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between

PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation

rate of about 0.27 fm−1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance

is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in

the nuclei 70−78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to

the photo-absorption cross section.
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1 Introduction

The emergence of the pygmy dipole resonance (PDR)
has been studied for decades, and experimental evidence
has been found in many neutron-rich nuclei [1–3]. The-
oretically, this low lying dipole excitation is often ex-
plained as excess neutrons at the surface region oscil-
lating against the isospin saturated core [4, 5]. Unlike
the giant dipole resonance (GDR), which is caused by
highly collective coherent superposition of particle-hole
excitations, the PDR appears in a much more compli-
cated manner. The lifetime of the soft dipole mode found
in 11Li is much shorter than that expected for a resonance
peak, and this low-lying structure has been shown to be
the single particle excitation of loosely bound neutrons
outside the 9Li core [6]. With the increase of valence neu-
trons, the PDR becomes more and more collective, but
it still differs from the GDR in many aspects and should
not be considered as the low-energy tail of the GDR. In
fact, it has been found that in the pygmy energy region,
the excited states split into two different groups [7–9].
One of them has isoscalar character and can be obtained
both through (γ,γ ′) and (α,α′γ) experiments, while the
other is of isovector nature and cannot be observed in
α scattering. Whether this implies that the PDR has a
fine structure or that the isovector part should just be
considered as the low-energy tail of the GDR [10] is still
an open question. In recent years, some experiments and
analyses have used β decay as a probe to study the low-
lying E1 excitation [11–13]. Such attempts can provide

additional information for this question.
The PDR has been related to much neutron-rich

physics, symmetry energy and nucleosynthesis. The oc-
currence of the PDR is thought to enhance neutron cap-
ture rates in the r-process of nucleosynthesis and plays
an important role in astrophysics [14]. The experimen-
tal results relating to the PDR can be used to constrain
the slope parameter of symmetry energy [15] and further
on, rule out interactions that predict too-stiff equations
of state [16]. As the neutron skin thickness is sensitive
to the density dependence of symmetry energy [17], it is
interesting to study the correlation between the PDR
and the thickness of the neutron skin. Several stud-
ies have confirmed that the fraction of EWSR (energy-
weighted sum rule) exhausted by the PDR increases with
the growth of neutron skin thickness [18, 19], but the cor-
relation is not always positive. In ultra neutron excess
cases, a bending structure has been suggested in many
articles [16, 20].

This paper is organized as follows. We start by intro-
ducing the method we used in our investigation, namely,
the axial random phase approximation, and, briefly, the
formalism relating to electrical dipole excitation. Then
the validation of our numerical approach and conver-
gence checks are presented. We discuss the emergence
of the pygmy dipole resonance in nickel isotopes and
compare PDR and GDR in different aspects, e.g., their
isospin character and collectivity. The correlation be-
tween the fraction of PDR integral cross section and
neutron skin thickness is studied. The phenomenon of
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PDR stagnancy is discussed and its physical mechanism
is shown in the last part.

2 Method

In the relativistic meson-exchange model, the mean
field is provided by the cancellation between the scalar
potential provided by the σ meson and the vector po-
tential provided mainly by the ω meson. Isospin and
electrical information are interpreted by the iso-vector
meson ~ρ and the photon. In the mean field approxima-
tion, the two-body interaction reads

V (r1,r2)=−gσβ1Gσ(r1,r2)gσβ2+gωGω(r1−r2)gω

+gρτ
1
3 Gρ(r1−r2)gρτ

2
3

+e2 1−τ 1
3

2
Gγ(r1−r2)

1−τ 2
3

2
, (1)

where gσ,ω,ρ is the coupling constant of the related in-
teraction vertex, and can be obtained by fitting the bulk
properties of infinite nuclear matter and finite nuclei.
The meson propagators have the Yukawa form except
for σ, because it is crucial to introduce its self-coupling
in order to get reasonable nuclear incompressibility [21].
The propagator of σ meson can be calculated from the
Klein-Gordon equation (assuming the self interaction of
the σ meson is U(σ)):

(−∆+m2
σ
+U ′′(σ))Gσ(r1,r2)=−δ(r1−r2). (2)

The energy density functional of the nucleus is

E[ρ]=Tr(ερ)+
1

2
TrTr(ρV ρ), (3)

where ε is the kinetic energy. In the small amplitude
limit, the density operator reads

ρ(t)=ρ0+δρ(ω)e−iωt+δρ†(ω)eiωt (4)

and its time evolution obeys [22]

i∂tρ̂=[ĥ0,δρ̂]+[δĥ,ρ̂0]. (5)

The static Hamiltonian and density have extremely sim-
ple forms in single particle space, i.e., h0

kl = εkδkl, ρ0
kl =

ρkδkl, where ρk=1 for ‘hole’ states, and ρk=0 for ‘parti-
cle’ states. As a projector operator, ρ̂2 = ρ̂ holds all the
time, which means the non-vanishing transition densities
are δρph and δρhp. Substituting the explicit expression
of

δh=
∂h

∂ρ
δρ=

∑

ph

∂h

∂ρph

δρph+
∑

hp

∂h

∂ρhp

δρhp, (6)

into Eq. (5), we can get coupling equations for δρph and
δρhp, which can be expressed in a much more compact
form

(

A B

B∗ A∗

)(

X

Y

)

=ω

(

1 0

0 −1

)(

X

Y

)

, (7)

if we introduce

Aphp′h′≡(εp−εh)δpp′δhh′+Vph′hp′

Bphp′h′≡Vpp′hh′

, (8)

where X,Y denote δρph and δρhp respectively, and the
matrix elements of residual interaction are defined by

Vabcd≡
∂hac

∂ρdb

. (9)

In the above equations, we have included the antiparti-
cle states as ‘p’ for simplicity, which is essential for the
consistent description of excitation states.

Pairing correlations have important effects on su-
perfluid nuclei [23]. A consistent framework based on
Hartree-Bogoliubov ground states, the quasiparticle ran-
dom phase approximation (QRPA) model, has previ-
ously been developed [24]. Due to huge configurations in
the deformed case, QRPA calculations are mostly imple-
mented in spherical symmetry [25], except for the work
by Arteaga et al. [26]. A severe energy cutoff for the two
quasiparticle pairs (typically less than 60 MeV) has to
be used to limit the configurations. The price to pay is
that the spurious states cannot be decoupled completely.
Since the PDR is seemingly the interplay of the neutron
excess, shell effects, deformation and pairing, early rela-
tivistic RPA calculations tend to neglect the pairing [16],
as does a recent systematic RPA study of the PDR in
light to medium nuclei with Skyrme interaction [20]. In-
deed, a canonical QRPA calculation has shown that the
pairing correlations do not significantly affect the soft E1
strength distribution [25]. Therefore we choose the de-
formed framework and neglect the pairing interaction in
this work.

After diagonalizing Eq. (7) we will get the energy and
transition density of each excited state, which enables us
to access the transition amplitude of a particular opera-
tor F̂

〈0|F̂ |ν〉=
∑

ph

F̂hpX
ν
ph+F̂phY ν

ph. (10)

The electrical dipole operator is [22]

Ê1µ=
N

N+Z

Z
∑

p=1

rpY1µ−
Z

N+Z

N
∑

n=1

rnY1µ, (11)

and the excitation strength can be evaluated by the re-
duced transition probability

B(E1,ων)=3|〈ν||Ê1||0〉|2. (12)

The photo absorption cross section reads [27]

σ(ω)=
16π

3e2

9~c
ωR(ω), (13)

where the response function R(ω) is often smeared by a
Lorentzian function with width Γ .

R(ω)=
∑

ν

B(E1,ων)
1

π

Γ/2

(ω−ων)2+(Γ/2)2
. (14)
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In our calculations, Γ is taken to be 1 MeV.

3 Validation of numerical implementa-

tion

Although the random phase approximation (RPA)
method has been established and developed for
years [28–30], only in the last decade has application in
non-spherical symmetry become practical [31]. In the ax-
ial symmetry case, the angular momentum projection K
and parity π are conserved, and the configuration space
of particle-hole pairs can be built according to the selec-
tion rule Ωp−Ωh=K, πpπh=π, where Ωπi

i is the quantum
number of a single particle state.

In relativistic models, although the antiparticle states
are neglected when calculating nucleus densities, i.e., no
sea approximation [32], they are essential ingredients for
describing the excitation properties, including the de-
coupling of spurious states from physical ones. The spu-
rious states correspond to the restoration of rotational
and translational symmetry broken by mean field treat-
ment. They are Nambu-Goldstone bosons accompanied
by spontaneous symmetry breaking and have vanishing
energies if the numerical approach is precise. However,
such an ideal situation never happens in real calculations.
The spurious state always stay a little higher than 0 and
can be regarded as an indicator of numerical veracity.

Besides the energies of spurious states, it is very im-
portant to know whether they are mixed with physical

states. The nature of these states make them the domi-
nant contributors to the corresponding symmetry oper-
ators. Meanwhile, the ratio of forward amplitude and
backward amplitude d ≡ |X |2/|Y |2 is close to zero for
physical states because the RPA ground state is not far
from the relativistic mean field (RMF). However, for spu-
rious states, which represent the collective motion of the
nucleus as a whole, d≈ 1. Figure 1 shows the response
to the Goldstone boson generator P̂0, P̂+ (linear momen-
tum operator) and Ĵ+ (angular momentum operator) in
the nucleus 76Ni. The quantum number and position of
spurious states Es as well as the amplitude ratio d are
labeled in each panel. The energies of the Goldstone
bosons are very close to zero. In this particular calcu-
lation they are 0.076 MeV, 0.057 MeV and 0.049 MeV
for translation and rotation spurious states respectively.
For the rest of the Ni isotopes, the positions of spuri-
ous states are no higher than 0.2 MeV, and are all well
separated from physical ones in our calculation. In the
lower right corner of Fig. 1, we give a convergence check
of the only truncation used in our calculation, i.e., the
maximum quantum number of major shell NF , which
remains the same in RMF and RPA levels in order to
keep self-consistency. It is clear that, as NF changes
from 16 to 18, the strength function varies in a negli-
gible way, especially in the PDR region. Therefore, we
choose NF = 16 in our calculation, and in such a case,
the number of 1p1h pairs is roughly ten thousand.
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Fig. 1. The response of the nucleus 76Ni to translation and rotation operators as well as the convergence check of
maximum oscillator quantum number NF . The strength functions for the E1 operator in the Kπ=0− channel are
smeared with Γ =2 MeV.
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Fig. 2. (a) The deformation effect on photo-absorption cross section. (b) Potential-energy surface expressed with
contours spaced by 0.5 MeV (β,γ are Hill-Wheeler coordinates). (c) Deformation and neutron skin thickness of
nickel isotopes. The former (squares) is scaled on the left axis, and the latter (circles) on the right.

In our calculations, the deformations of nuclei are de-
termined from a self-consistent procedure by using dif-
ferent initial basis parameters, which is equivalent to set-
ting the initial potential to a particular shape. Such a
procedure will reach a local minimum in the potential-
energy surface/curve (PES), and for most nuclei, this is
their ground state. For the Ni isotopes we study, besides
the ground state, there exists a secondary minimum in
some nuclei. If the RPA calculation are performed on
such a state, the strength function will be very different
from that performed on a true ground state. In Fig. 2(a)
we show the results of such a case in 66Ni, which has
a prolate shape-coexistence isomeric state with β≈0.45
besides the ground state with β≈−0.08. The cross sec-
tions change in a significant way in these two geometries.
The PDR is severely hindered in the isomeric case. Such
a comparison shows that the deformation has a promi-
nent effect on the PDR and should not be omitted. In our
calculation, the deformation of nuclei is carefully checked
and guaranteed to be the ground state predicted by the
model. In nickel isotopes, only 56Ni, 68Ni and 78Ni are
spherical. The deformation parameter β of the others
range from -0.2 to 0.1. We have illustrated explicitly the
deformation values as well as the neutron skin thickness
of Ni isotopes in Fig. 2(c). The PES in Fig. 2(b) shows
the ground state as well as the shape isomeric state in
66Ni, which is generated by using the triaxial constraint
RHB solver DIRHB [33]. The deformations of ground
and isomeric states (marked by ’+’ and ’X’, respectively)

are compatible with the results of the non-linear meson
model we used.

4 Results

4.1 Isospin Characteristics of PDR

In Fig. 3(a) we show our calculated photo-absorption
cross section for 60Ni. Apart from the wide peak of the
GDR, a small peak emerges at the energy region about
10 MeV, which is the PDR. Besides the amplitude and
energy region, the isospin characteristics of the GDR and
PDR are different. Here we use the IS percentage to in-
dicate the isospin character of a excited state, which can
be obtained by counting the percentage of in-phase os-
cillation region of neutrons and protons [34]. When a
partial cross section contains excitations with 0<IS<x,
we label it by IS < x. As x decreases, IS < x rules out
isoscalar components, while IS > x has the opposite ef-
fect. The peaks of the GDR and PDR can easily be
picked out through different IS curves. The wide peak
of the GDR, centered at about 18 MeV, mainly consists
of the superposition of excited levels with IS<0.6, which
means this resonance structure originates from the out-
phase-oscillation of neutrons and protons. Meanwhile,
the pygmy resonance is in-phase-oscillation dominant. It
survives even under the stringent restriction IS > 0.75,
which strongly indicates the isoscalar character of the
pygmy resonance.
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Fig. 3. (a) Photo-absorption cross section for 60Ni.
Cross sections with different isospin character are
expressed with different IS curves. The inset fig-
ure focuses on the pygmy resonance region, con-
taining the electrical dipole transition probabili-
ties of 60Ni. The solid lines represent the results in
the Kπ=1− configuration, while dashed lines are
for Kπ=0−. (b) Radial distribution of transition
densities of dominant excited levels in the energy
region of PDR and GDR in 60Ni. The quantum
number of each level (Kπ) and excited energy in
MeV are shown in the upper right corner of each
panel. The solid (dashed) line indicates the tran-
sition density of neutrons (protons).

In the inset of Fig. 3(a), we show the E1 transition
probabilities in the PDR region. In the case of axial sym-
metry, the response involves the K=±1 and K=0 chan-
nels, where K is the angular momentum projection on
the z-axis. For spherical nuclei, the response of the three
different channels are coincident, while for deformed nu-
clei, the dipole strength splits into different parts. In
60Ni, the prominent PDR peak originates from the 10.14
MeV and 10.40 MeV states in the Kπ=1− channel and
10.09 MeV in the Kπ =0− channel. Although there are
other excited levels, their transition strengths are much
smaller. For a given excited state ν, the contribution of
a particular particle-hole pair can be measured through

Cν
ph=|Xν

ph|
2−|Y ν

ph|
2. (15)

The levels mentioned above can be explained as ex-
citations of the excess neutrons in orbits 3

2

−
[301] and

5
2

−
[303] (the digits in brackets are the quantum numbers

of the major oscillator component [32]), contributing a
great proportion, about 70%–80%(

∑

p
Cν

ph). The tran-
sition densities of leading states in the PDR and GDR
have typical radial distribution patterns, i.e., in-phase or
out-of-phase. From Fig. 3(b), in the PDR case, the neu-
tron density and proton density mostly have the same
sign all over the region, and in the surface region, there
is a large tail from excess neutrons. This is the reason
that the PDR is sometimes called ‘skin mode’ [35]. In the
GDR case, the situation is completely opposite: protons
and neutrons oscillate out-of-phase against each other.

4.2 Stagnancy of PDR in Ni isotopes

In the nickel isotopic chain, the significant PDR first
appears in 60Ni. When neutron number increases, the
amplitude of the PDR grows accordingly, as shown in
Fig. 4(a). However, for nuclei 70−76Ni, the peak of the
PDR cannot be separated nicely from the whole spec-
trum. There is a transition region where the PDR and
the low energy tail of the GDR may overlap. To date,
the energy region of the PDR lacks a conclusive def-
inition. Some researchers use 10 MeV as the upper
limit [4, 20, 26], but others defines the ‘pygmy transi-
tion energy’ as 11.25 MeV [27], or restrict it to below
the neutron emission threshold [36]. Therefore, in our
calculation, when there is a transition area, the PDR
will be checked by using different intervals.

Here, we introduce a coefficient

Rk
h=

∑

ν∈E
B(E1,ων)ε

k
ν

∑

p
Cν

ph
∑

ν∈E
B(E1,ων)εk

ν

(16)

to indicate the contribution of a ‘hole’ state to the kth
energy weighted sum rule in the energy region ν ∈E =
[Emin,Emax]. It is easy to see the normalization condition
is
∑

h
Rk

h=1. The square sum is defined as

Sc=
∑

h

(R1
h)2. (17)

In extreme conditions, for a single particle excitation,
Sc=1, while for a fully collective resonance the strength
is averaged over each nucleon equally, Sc ≈

∑

(1/A)2 =
1/A, where A is the mass number. In this manner, the
smaller Sc is, the more collective a resonance should be.
Therefore, Sc can be regarded as an indicator of a res-
onance’s collectivity. In Fig. 4(b), we compare the col-
lectivity of the GDR and PDR in nickel isotopes. In the
GDR region, the resonance is highly collective, with a
small Sc which lies below 0.1, while in the PDR case,
Sc is larger. Pygmy resonances are less collective than
giant resonances. This result is consistent with Ref. [37],
although different indicators are used. With the increase
of excess neutrons, the Sc value belonging to PDR de-
clines from 0.52 to about 0.2, which means the resonance
becomes more and more collective. However, we also
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Fig. 4. (a) Photo-absorption cross section for Ni isotopes. The smearing width is taken to be 1 MeV. (b) Sc of PDR
are expressed by squares and PDR by circles. (c) The relationship between neutron skin thickness and pygmy
cross section fraction in nickel isotopes. The isotopes with pygmy resonance are grouped into two chains. The
first is marked by circles and contains 58−68Ni. The second, marked by diamonds/squares, contains 70−78Ni. Nia

represents the result corresponding to energy cutoff 10 MeV, and Nib to that for 11 MeV, see text for details. The
dashed straight line represents a linear fit between neutron skin thickness and fraction of PDR related integral
cross section.

notice that in nuclei 70−78Ni, Sc floats in a narrow region
near 0.2, and the collectivity of pygmy resonance does
not increase. To some extent it shows that some excess
neutrons in these nuclei do not participate actively in the
pygmy dipole resonance. We call them ‘pygmy inertial
excess neutrons’ (PIEN).

A strong correlation between the energy weighted
sum rule being exhausted by the pygmy resonance
and neutron excess has been suggested in some stud-
ies [18, 27]. In order to investigate the effect of PIEN, in
Fig. 4(c), we illustrate the evolution of the PDR’s inte-
gral cross section with the growth of neutron skin thick-
ness. When the excess neutrons increase, the evolution
exhibits two distinct patterns. In the nickel isotope chain
58−68Ni, a linear correlation between the fraction of PDR
integral cross section and the thickness of neutron skin
has been confirmed in our calculation

σPDR

σTotal

≈0.27δr, (18)

where δr is neutron skin thickness and the coefficient
has dimension fm−1. A similar phenomenon has been
reported in theoretical research on Sn isotopes [16],

wherein a linear correlation between the ratio of energy
weighted sum rule exhausted by PDR over GDR and
neutron skin thickness is found in 106−120Sn. In Ref. [20],
the PDR fraction of photo-absorption cross section is
linearly correlated to neutron skin thickness with a uni-
versal slope 0.18–0.20 fm−1 in ultra neutron-rich nuclei,
which is smaller than our result. This discrepancy is
mainly because they adopt the Skyrme functional SkM*
interaction [38] with incompressibility K0≈217MeV [39],
which is softer than the relativistic non-linear meson-
exchange model we used (NL3), with K0≈271MeV [40].

While in the second isotopic chain 70−78Ni the PDR
peak is not well-defined, there is an overlap region be-
tween the PDR and GDR. Therefore, the value of in-
tegral cross section depends on the cutoff. In Fig. 4(c)
the diamonds represent the result corresponding to cut-
off 10 MeV, and squares for 11 MeV. The two sets of
cross sections differ by about 1% of the total value. Nev-
ertheless, they both break away from the linear correla-
tion found in 58−68Ni, namely, although the neutron skin
thickness increases with the number of valence neutrons
monotonously, see Fig. 2(c), the growth of the PDR is
stagnant.
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The excess neutrons in nickel isotopes are filled in the
major shell pf with the intruder 1g9/2. The E1 transi-
tions have negative parity, which limits the final states of
in-shell excitation to intruder orbits only, which have the
desired opposite parity. That is the situation in 58−68Ni.
Neutrons in 2p3/2,2p1/2,1f5/2 orbits can be excited to
1g9/2. With the increasing number of valence nucleons,
the gap between the outermost nucleons and the intruder
orbit 1g9/2 becomes smaller, and the transition gets eas-
ier. When the pf orbits are filled, i.e., nuclei 66,68Ni, the
transition reaches a maximum. As a result, in the first
group of Fig. 4, namely, 58−68Ni, the fraction of PDR in-
tegral cross section increases linearly with neutron skin
thickness. As for nuclei 70−78Ni, the weakest bound nu-
cleons lie in 1g9/2. For these neutrons, in-shell excitation
is impossible, and the lowest available final state is the
intruder orbit 1h11/2 of the next major shell sdg, which
often corresponds to large gaps and restrains the transi-
tion. In such a case, the pygmy dipole resonance consists
of a competition between pf →1g9/2 and 1g9/2→1h11/2

excitations. The gap between 1g9/2 and 1h11/2 is larger
than that between pf and 1g9/2; the former is a 1~ω ex-
citation while the latter is 0~ω. The neutrons in 1g9/2

are not active when compared with lower levels; they
play the role of PIEN. This is why neutron skin thick-
ness increases but the growth of the pygmy resonance is
stagnant.

Table 1. R1
h of different nuclei. The second column

is the outermost orbit l (in brackets is the number
of neutrons in this orbit nl). The contributions of
the neutrons in l are added up in the third col-
umn. The fourth and fifth columns contain the
contribution of other valence neutrons and core
neutrons, while the last column contains the con-
tribution from proton excitation.

l Rl(%) RV/l(%) Rcore(%) Rpro(%)

Ni58 1f5/2(2) 68.64 0.00 12.50 18.86

Ni60 1f5/2(4) 61.14 0.00 6.76 32.10

Ni62 1f5/2(6) 71.62 0.00 13.00 15.38

Ni64 2p3/2(2) 19.50 68.48 4.84 7.18

Ni66 2p3/2(4) 50.79 43.50 3.19 2.53

Ni68 2p1/2(2) 40.13 51.76 4.74 3.37

Ni70 1g9/2(2) 2.56 92.10 2.65 2.69

Ni72 1g9/2(4) 5.66 85.60 2.43 6.31

Ni74 1g9/2(6) 4.89 91.25 0.91 2.95

Ni76 1g9/2(8) 14.91 80.27 1.34 3.47

Ni78 1g9/2(10) 13.01 82.41 0.00 4.58

The contribution of a hole state h to the PDR can
be measured using Eq. (16) by restricting the sum in
the PDR energy region. In nickel isotopes with mass 70-
78, the outermost neutrons occupy orbit 1g9/2 sequen-
tially. From Table 1, in these nuclei the contribution
of neutrons in core 56Ni to the PDR are quite small, in
general less than 3%, while the protons contribute no

more than 6.5%, so the PDR is mainly aroused by ex-
citation of excess valence neutrons. What is important
to the stagnancy is the sudden drop in the 1g9/2 orbit’s
contribution. When the number of excess neutrons in-
creases, the resonance becomes more and more collective.
The transition strength is distributed over each excess
neutron, but neutrons in 1g9/2 are exceptional. The av-
eraged contribution of each neutron in 1g9/2(Rl/nl) is
about 0.81%–1.86%, far less than that of other lower or-
bit valence neutrons, which have average values about
6.69%–7.67% (nV/l = 12). The transition contributions
relating to 1g9/2 participating p-h pairs are relatively
small. In other words, they form an inertial skin cov-
ering the outside of the nucleus that cannot be excited
easily.

Similarly, the contribution of a hole state h to the
whole dipole excitation can be measured by counting all
the excited states in Eq. (16), i.e., letting ν∈[0,∞]. The
corresponding results are listed in Table 2. The nucle-
ons in the 56Ni core are still suppressed, mainly because
of the large gaps, and the protons have a larger con-
tribution. The averaged transition contribution of 1g9/2

neutrons is 1.95%–4.34%, while that for other valence
neutrons is 2.84%–4.02%, namely, there’s no significant
preference between these two groups. From Fig. 3(c)
we can also learn that the collectivities of the GDR in-
crease continuously in 70−78Ni, and the suppression effect
of 1g9/2 does not show up. Therefore, we can conclude
that the inertial skin only matters in the PDR. The neu-
trons in the 1g9/2 orbital are PIEN, but are not inertial
in the whole dipole excitation.

Table 2. The same as Table 1, except the excita-
tion levels are summed up over the whole spec-
trum.

l Rl(%) RV/l(%) Rcore(%) Rpro(%)

Ni70 1g9/2(2) 8.67 39.28 15.17 36.89

Ni72 1g9/2(4) 12.14 48.26 15.76 23.84

Ni74 1g9/2(6) 17.93 35.61 16.05 30.41

Ni76 1g9/2(8) 18.64 36.19 12.53 32.64

Ni78 1g9/2(10) 19.52 34.11 9.77 36.60

5 Conclusion

The RPA method is an important tool in the study
of nuclear low-lying excitation properties. In this work,
we have finished a new numerical implementation of
an axial-deformed random phase approximation method
based on the relativistic meson-exchange model. Under
such a formalism, we studied the pygmy dipole excita-
tion of even-even neutron-rich nickel isotopes. The PDR
is of isoscalar nature and can be explained as the exci-
tations of excess neutrons against the isospin saturated
core. In this mode, neutrons and protons are oscillating
in-phase in the inner region, while in the surface area,
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only neutrons oscillate. The collectivity of the PDR
is much weaker than that of the GDR. With our in-
troduced indicator, we also found when the number of
excess neutrons increases, the PDR becomes more col-
lective, but in 70−78Ni the degree of collectivity does not
increase further, which implies there is an inactive part
in those valence neutrons (PIEN). The magnitude of the
PDR is related to neutron skin thickness. In our study,
a linear correlation between neutron skin thickness and
PDR integral photo-absorption cross section has been
found when the excess neutrons lie in pf orbits. How-
ever, when the nucleus become more neutron-rich, e.g.,
70−78Ni, despite the neutron skin increasing monotoni-

cally, the PDR growth is stagnant. This is because for
these nuclei, neutrons in orbit 1g9/2 are less active and
form an inertial skin, preventing in-phase excitations
of neutrons and protons. This can be understood by
noticing the sudden drop of the transition contributions
belonging to 1g9/2 valence neutrons.

Our RPA program requires the single particle wave-
functions of the RMF code RMFAXIAL developed by P.
Ring et al. [32] as inputs. We accessed the RMF code
from the Computer Physics Communications Program
Library under the non-profit use licence agreement, and
really appreciate their work.
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