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Abstract: Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a

partial N=2 supersymmetric (SUSY) extension of the standard model which has an N=2 SUSY sector and an N=1

SUSY sector. We point out that below the scale of the partial breaking of N =2 to N =1, the ratio of Yukawa to

gauge couplings embedded in the original N=2 gauge interaction in the N=2 sector becomes greater due to a fixed

point. Since at the partial breaking scale the sfermion masses in the N =2 sector are suppressed due to the N =2

non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced

masses for the sfermions in the N =2 sector are almost UV-insensitive due to the fixed point. Interestingly, these

masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting

phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar

component of the N =2 vector multiplet of U(1)Y . To obtain the correct dark matter abundance, the mass of the

sbino, as well as the MSSM sparticles in the N=2 sector which have a typical mass pattern of anomaly mediation, is

required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed

by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the

muon g−2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also

compatible with thermal leptogenesis.
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1 Introduction

The supersymmetric (SUSY) extension of the Stan-
dard Model (SM) is a leading candidate for new physics
above the TeV scale, and can explain the discrep-
ancy between soft SUSY breaking and the fundamen-
tal scales. Theoretically, SUSY is needed to construct a
self-consistent quantum gravity [1].

However, from a theoretical point of view, there is
no reason that the minimal SUSY extension of the SM
(MSSM) is the physics next to the electroweak (EW)
scale. The SUSY SM may include more particle content
than the MSSM. In particular, N=1 SUSY in higher di-
mensional space-time, such as the effective theory of su-
perstrings [1], with a simple toroidal compactification, is
represented as N=2 SUSY [2] in four-dimensional space-
time [3]2). Phenomenologically, N = 2 SUSY should be
partially broken down to N=1 and chirality appears at

a scale, say Mp ' 2×1016GeV. If the partial breaking
takes place only in one sector (the N = 1 sector), with
the other sector (the N=2 sector) sequestered, some of
the N = 2 SUSY partners (N = 2 partners) of the SM
in the N = 2 sector may have masses around the soft
SUSY mass scale, which is supposed to be around the
TeV scale.

This possibility gives several alternative experimental
features to the ordinary MSSM case [4]. In this paper,
we investigate the possibility that the N=2 vector and
hyper-partners all remain until the TeV scale. In partic-
ular, we will show that in this setup at a sufficiently low
energy scale the gauge and Yukawa (N=2 Yukawa) cou-
plings, originating from the N=2 gauge interaction for
an N=2 hypermultiplet (hypermultiplet), are related by
the fixed point of the renormalization group (RG). The
ratio of the Yukawa to gauge couplings is raised by the
RG effect towards this fixed point from the ratio at the
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N =2 SUSY limit. Namely, we predict typical Yukawa
couplings for these hypermultiplets, which depend less on
the partial breaking mechanism as well as the threshold
corrections at Mp.

Suppose that the soft breaking terms are generated
above the partial breaking scale. The soft breaking mass
squares of the hypermultiplets then vanish due to the
N = 2 non-renormalization theorem [5]. Then the soft
masses for the sfermions in the N = 2 sector below the
partial breaking scale are generated via radiative correc-
tions. One of the corrections is from the anomaly me-
diation effect [6, 7]. Since is a function of the particle’s
couplings and the gravitino mass, the anomaly-induced
masses in the N=2 sector are almost UV-insensitive due
to the fixed point. Interestingly, due to the large ratio of
the Yukawa and gauge couplings at the fixed point, the
anomaly-induced mass squares for the hypermultiplets
are positive. Namely, the tachyonic slepton problem1) in
the N = 2 sector is automatically solved near the fixed
point.

In a concrete partial N = 2 SSM, we confirm that
the N = 2 Yukawa couplings do converge to the fixed
point at 2-loop level, and also the corresponding posi-
tive anomaly-induced slepton mass squares. When the
typical soft mass scale in the N = 1 sector is around
O(10) TeV, the radiative corrections from the top loops
can be large enough to explain the Higgs boson mass [11].
Due to the light smuons and bino in the N = 2 sector,
we also find that the muon g−2 anomaly [12–14] can be
explained within its 1σ level error for the gravitino mass
of O(100) TeV2).

The aspect which is quite different from the ordinary
MSSM is dark matter. Ordinary neutralinos cannot be
candidates for dark matter because they are all heavier
than the smuon, due to the mass relation of anomaly
mediation with additional multiplets. The interesting
candidates are the N = 2 vector partners, which are
stabilized by a new Z2−parity introduced to solve the
tadpole problem. The scalar component of the N = 2

U(1)Y vector multiplet, the sbino, can explain the correct
dark matter abundance when its mass is up to 700 GeV,
and the annihilation products, some sleptons, are even
lighter. Due to these mass constraints, if these light slep-
tons are long-lived enough, they can be fully tested in the
LHC. The otherN=2 sector sparticles of the MSSM have
a typical mass pattern, which is related by anomaly me-
diation, with a scale smaller than ∼2 TeV. This typical
spectrum could be measured in the LHC. Furthermore,
depending on their mass range, the N=2 partners could
be tested in future colliders, such as SPPC, FCC, CLIC
and a Muon Collider Higgs Factory, which could further

confirm our scenario [16].
From the cosmological viewpoint, this scenario is fa-

vored because of the heavy gravitino, which relaxes the
gravitino problem [17]. In particular, the reheating tem-
perature can be large enough, while avoiding the over-
production of the produced dark matter. Thus, our sce-
nario is compatible with thermal leptogenesis [18] and
can produce the correct baryon asymmetry. CP and
FCNC problems in the ordinary MSSM are also relaxed
due to the heavy N=1 sector sfemions.

This paper is organized as follows. In Section 2, we
introduce the partial N = 2 SUSY models, and derive
the fixed point for the N=2 Yukawa couplings. In Sec-
tion 3, we explain the anomaly mediation effect on the
fixed point and show the absence of the tachyonic slepton
problem. The N = 2 non-renormalization theorem will
also be explained. In Section 4, we discuss a concrete
example of a partially SSM and its several phenomeno-
logical and cosmological aspects. Section 5 gives some
discussion and conclusions.

2 Fixed point in partial N=2 supersym-

metric model

We will focus on the possibility that the N=2 SUSY
is broken down to N = 1 at a high energy scale Mp in
the N=1 sector, while the N=2 sector remains approx-
imately N=2 SUSY at this scale. This possibility is not
peculiar because the following theoretical backgrounds
exist.

N=2 to N=1 partial SUSY breaking can take place
spontaneously as an N = 1 SUSY gauge theory can be
described by non-linear realized N = 2 SUSY theories
with chiral matter of any representation [19]. In partic-
ular, N=2 SUSY non-linear Abelian gauge models with
electric and magnetic N = 2 Fayet-Iliopoulos terms are
proved to have such breaking [20]. Thus, a sector which
does not directly couple to the N=2 SUSY gauge fields
inducing the partial breaking, has the partial breaking
only at the higher order and can be identified as the
N=2 sector.

The extra-dimensional theory with branes is also a
candidate to realize this possibility. For example, N=1
SUSY on R1,3×S1 spacetime can be compactified into
d = 4, N = 2 SUSY at low energy [3]. If “our world”
is localized on one of the four-dimensional branes per-
pendicular to the extra dimension, the brane fields have
d = 4, N = 1 SUSY while the compactified bulk fields
have d=4, N=2 SUSY. Ordinarily, these N=2 partners
of the MSSM particles are projected out by assuming
an orbifold parity, but this is not necessary. Therefore, at

1) There are typically two ways to solve this problem: (a) the anomaly mediation effect is canceled or negligible [5, 6, 8, 9], and (b)
the sfermions have large Yukawa interactions [10]. The solution here is of the latter type.

2) For other explanations of the muon g−2 anomaly with heavy stops and light smuons, see Refs. [9, 15].
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the compactification scale, we have two sectors, an N=2
sector composed of the bulk fields and an N =1 sector
composed of the brane fields.

In this section, we will introduce the partially N=2
SUSY model as the effective theory of the previous back-
grounds (or others) and study the RG behavior for the
dimensionless couplings in its N=2 sector.

2.1 Introduction to partial N=2 supersymmet-

ric model

To simplify the discussion, let us consider an U(Nc)=
SU(Nc)×U(1) Yang-Mills theory with partial N = 2
SUSY defined by the following Lagrangian as a toy
model.

L =

∫

d4θ(KN=2+KN=1)+

∫

d2θWN=2

+

∫

d2θWmass+

∫

d2θWH

+
1

2

(∫

d2θtr[WcWc]+
1

2

∫

d2θWW
)

+h.c. , (1)

KN=2 = 2tr[W †e−2gcVcW e2gcVc ]+|φY |2

+

NF
∑

i

(

L†
ie

2gcVc+2YigV Li+Lie
−2gcVc−2YigV L

i†
)

,

(2)

WN=2=−
NF
∑

i

(√
2ωigcLiWLi+

√
2ỸigLiφY Li

)

, (3)

KN=1=

NF
∑

i

S†
i e

2gcVc+2YigV Si+

Nf
∑

a

H†
ae2gcVc+2Y H

a gVHa,

(4)

Wmass=−MW tr[W 2]−Mφ2
Y −

NF
∑

i

MiLiS
i. (5)

Here, Wc (W) and Vc (V ) are the field strength and
the corresponding gauge multiplet of the SU(Nc) (U(1))
with gauge coupling, gc (g), respectively; W (φY ) is an
SU(Nc) adjoint (singlet) chiral multiplet which stands for
the N=2 vector partner (see Section 2.2) of the SU(Nc)
(U(1)) gauge particle. Li, Lj , Sk and Ha are chiral mul-
tiplets with representations of (ri,Yi),(rj ,−Yj), (rk,Yk)
and (rH

a ,Y
H

a ) under (SU(Nc),U(1)), respectively, where
Li stand for the MSSM matter multiplets or new mat-
ter multiplets embedded in hypermultiplets (see Section
2.2), X are the N =2 hyperpartners of chiral multiplet
X , SX are the spectators needed to cancel the chiral
anomaly, and Ha stand for the matter multiplets in the
N = 1 sector; NF is the number of Li, and also is that
of Li or Sj , i.e. i runs from 1 to NF ; Nf is the number
of Ha; MW and M are the Majorana SUSY mass for W
and φY , respectively; Mi is the Dirac SUSY masses for
Li and Si; and Ỹi and w̃i are the N=2 Yukawa couplings

(see Section 2.2) in units of the corresponding gauge cou-
plings.

KN=2 and WN=2 represent the Kähler potential and
super-potential respectively, of the same forms as those
in N = 2 SUSY QCD [2], while KN=1 and WH are
the ordinary N = 1 Kähler potential and super- poten-
tial, respectively. Here, WH =WH(Ha,Sj ;Li,Li,W,φY )'
WH(Ha,Sj) is a function of Ha and Sj , and is assumed
to depend weakly on Li, Li, W , and φY . Thus, we will
neglect the dependence on Li,Li, W and φY of WH . In
particular, we will neglect the Yukawa interactions for
Li, which can stand for the SM Yukawa couplings and
breaks the N = 2 SUSY explicitly. The definitions are
summarized in Table 1

2.2 N=2 SUSY limit and two sectors

With the decoupling of the multiplets, Ha and Sj ,

ωi→1, Ỹi→Yi, (6)

is the N = 2 SUSY limit [2]. To see the property at
this limit, let us focus on some of the Yukawa couplings
obtained from WN=2 and KN=2:

L ⊃
NF
∑

i=1

(

−i
√

2L̃†
i (gcλc+Yigλ)·ψLi

−
√

2L̃i(ωigcψW +Ỹigψ)·ψLi

)

. (7)

Here, ψW (ψ) and λc (λ) are the gaugini, the fermionic
component of W (φY ), and the gaugino in the adjoint
representation of the SU(Nc) (U(1)) gauge groups, re-
spectively, and X̃(ψX) are the scalar (fermion) compo-
nents of X . An SU(2)R symmetry manifests itself in
Eq. (7) with Eq. (6), under which {iλc,ψW}, {iλ,ψφY

}
and {L̃i,L̃

†
i} are doublets while the other fields partici-

pating in this limit are singlets. In the light of SU(2)R,
we have two kinds of enlarged multiplets in N=2 SUSY,
e.g. N = 2 vector multiplets {V,φY } and {Vc,W}, and
hypermultiplets {Li,Li}.

Since the first and second terms of Eq. (7) arise
from the Kähler and super-potentials, respectively, the
SU(2)R transformation mixes the terms in these two po-
tentials. Moreover, the Kähler potential and the SUSY
gauge kinetic term are mixed due to the rotation of the
components of {V,φY } or {Vc,W}. This fact will be es-
sential to derive the N=2 non-renormalization theorem
in Section 3.1.

The particles present in the N=2 SUSY limit com-
pose the N=2 sector, namely Vc,V,W,φY , Li, and Li are
the components. The multiplets decoupling at this limit
compose the N=1 sector, where Si and Ha are the com-
ponents. The gauge couplings of Si and Ha, and Yukawa
couplings in WH are hard breakings of the SU(2)R sym-
metry.
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Table 1. Particle contents of a partially N =2 SUSY model, Eq. (1). The representation ri is allowed to be unity.
“Vector” and “hyper-” denote that the corresponding particles are embedded in the vector and hyper- multiplets,
respectively. imax and amax denotes the maximum value of i and a, respectively.

sector N=2 sector N=1 sector

Chiral multiplets W φY Li Li Si Ha

N=2 partner Vc V Li Li / /

N=2 multiplet vector vector hyper- hyper- / /

SU(Nc) representation adjoint 1 ri ri ri rH
a

U(1) charge 0 0 Yi −Yi Yi Y H
a

imax/amax / / NF NF NF Nf

We will use the definition made here to explain the
phenomena in the N = 2 sector, even with an explicit
breaking of N=2 SUSY. The definitions made here are
summarized in Table 1.

2.3 Radiative corrections

The 1-loop RG equations for the dimensionless cou-
plings in the N=2 sector are given as follows [24, 25]:

d

dt
gc≡βc=

1

16π
2
g3

c(F2+F1−2Nc),
d

dt
g≡β=

1

16π
2
g3(f2+f1),

(8)
d

dt
(gcwi)=gcωi(γW +γLi+γLi), (9)

d

dt
(gỸi)=gỸi(γφY

+γLi+γLi), (10)

where the anomalous dimensions for W,φY , and Li,Li

are given as

γW =
1

16π
2

(

NF
∑

i

2T (ri)ω
2
i −2Nc

)

g2
c , (11)

γφY
=

1

16π
2

NF
∑

i

2d(ri)Ỹ
2

i g
2, (12)

and γLi=γLi=
1

16π
2

(

2(ω2
i −1)C(ri)g

2
c+2(Ỹ 2

i −Y 2
i )g2

)

,

(13)
respectively. Here t=log(µRG

GeV
); T (r), C(r) and d(r) de-

note the Dynkin index, the quadratic Casimir invariant
and the dimension of the representation r, respectively;
βc and β are the 1-loop β−functions for SU(Nc) and
U(1), respectively; and F2 (F1) and f2 (f1) are the sums
of Dynkin indices of SU(Nc) and U(1) in the N=2 (N=
1) sector, respectively:

F2≡
NF
∑

i

2T (ri), F1≡
NF
∑

i

T (ri)+

Nf
∑

i

T (rH
a ), (14)

and f2≡
NF
∑

i

2d(ri)Y
2

i , f1≡
NF
∑

i

d(ri)Y
2

i +

Nf
∑

i

d(rH
a )(Y H

i )2.

(15)
At the N =2 SUSY limit, where f1 =0, F1 =0 with

Eq. (6), we evaluate d
dt
ωi=

d
dt
Ỹj =γLi,Li=0 so that Eq. (6)

and the vanishing of Eq. (13) are satisfied perturbatively
at any scale.

2.4 A fixed point of the N=2 Yukawa couplings

Let us investigate the dimensionless couplings at low
energy analytically.

As shown in Sec.2.3, at the limit of N = 2 SUSY,
Eqs. (6) are satisfied at any scale. This implies that the
limit (6) represents a fixed point in the parameter space
characterized by {ωi,Ỹj}. We will show that in the pres-
ence of the degrees of Ha and Si, the IR fixed point still

exists and moves to a different position, {ωi,Ỹ j}.
First, for convenience, we divide NF into N s

F and
NF−N s

F , where N s
F is the total number of SU(Nc) sin-

glets in Li. Without loss of generality, we can rearrange
the indices of the N=2 sector, such that the superfields
labeled by i=1∼N s

F are SU(Nc) singlets, while those of
i=N s

F+1∼NF are not. We also divide f2 into

f s
2 ≡

Ns
F
∑

i

2Y 2
i , f

ns
2 ≡

NF
∑

i=Ns
F

+1

2d(ri)Y
2

i . (16)

In the calculation we assume

C(ri)g
2
c∼C(ri)g

2
cω

2
i �Y 2

i g
2∼Ỹ 2

i g
2. (17)

This condition stands for (4/3)g2
3 or (3/4)g2

2 � Y 2
i g

2
Y ,

where gY ,g2, and g3 are the SM gauge couplings of

U(1)Y ,SU(2)L, and SU(3), respectively.
A solution of the vanishing condition for d

dt
ωi,

d
dt

(gỸi)
is,

ω2
i−1' d(ri)

2T (ri)

F1
∑NF

i=Ns
F

+1
d(ri)+2(N 2

c−1)
+O(

g2Y 2
i

g2
cC(ri)

),

(18)

g2Ỹ
2

i '0 (i>N s
F ), (19)

The second equation is obtained by neglecting terms of
O(g2) while considering (f1+f2)g

2. This approximation
stands for (f1+f2)g

2
Y >g

2
2 ,g

2
3 due to the large coefficient

f1+f2>11 in the realistic case.
Hence we find a general relation,

ω2
i−1>0. (20)
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Now let us check whether {ωi,Ỹ i}(i > N s
F ) with

approximation Eq. (17) represents an IR fixed point.
Rewriting Eqs. (9) and (10) in terms of δω2

i ≡ ω2
i −ω2

i

and δỸ 2
i ≡ Ỹ 2

i −Ỹ
2

i , we obtain the RG equations for the
differences

d

dt
δω2

i '
NF
∑

j=Ns
F

+1

δω2
j

g2
c

8π
2
Aij ,

d

dt
(g2δỸ 2

i )'
NF
∑

j=Ns
F

+1

g2δỸ 2
j

g2
c

8π
2
Bij (i>N s

F ) (21)

at the leading order. Here Aij and Bij are positive-
definite matrices:

Aij =2ω2
i (T (rj)+2C(rj)δij), Bij =4(ω2

i−1)C(ri)δij . (22)

Employing the analytic solutions of Eqs. (8), we can solve
Eqs. (21) and obtain,

δω2
i (µRG)'

NF
∑

j=Ns
F

+1



















1

αp

4π

g2
c(µRG)









A
F1+F2−2Nc











ij

δω2
j (Mp),

(23)

δ(g2Ỹ 2
i )|µRG

'
NF
∑

j=Ns
F

+1



















1

αp

4π

g2
c(µRG)









B
F1+F2−2Nc











ij

δ(g2Ỹ 2
j )|Mp

(i>N s
F ), (24)

where X |µ denotes the variableX at the renormalization
scale µ and αp≡gc(Mp)

2/4π. Thus, for F1+F2−2Nc 6=0
Eqs. (18) and (19) represent an IR fixed-point.

Following the same procedure, the N=2 Yukawa cou-
plings for the SU(Nc) singlets have a fixed point,

Ỹi

2

−Y 2
i ' 1

2

(

f1+f
ns
2

N s
F +2

)

(i6N s
F ), (25)

where we have set Yi=Y i,wi=wi for i>N s
F . Hence,

Ỹi

2

−Y 2
i >0. (26)

The difference, δỸ 2
i ≡Ỹ 2

i −Ỹ
2

i , at the scale µRG is given
by

δỸ 2
i (µRG)'

Ns
F
∑

j



















1

α̃p

4π

g2(µ)









C
f1+f2











ij

δỸ 2
j (Mp) (i6N s

F ),

(27)
where

Cij =Ỹ
2

i (1+δij) (28)

is a positive-definite matrix, and α̃p≡g(Mp)
2/4π.

In summary, the position {ωi,Ỹ j} given by Eqs. (18),
(19), and (25) in the parameter space represents an IR
fixed-point at 1-loop order. Namely, at low energy the

N =2 Yukawa couplings approach to {ωi,Ỹ j} from the
value around {1,Yj} at the partially breaking scale.

Therefore, a partially N=2 SUSY model has a strik-
ing feature, the typical pattern of Yukawa couplings con-
trolled by IR physics and matter contents, which is insen-
sitive to the partial breaking mechanism or the threshold
corrections at Mp. The IR fixed point is easily reached in
the realistic case because the additional matter contents

enhance the gauge couplings at Mp through the RG run-
ning and thus Eqs. (23), (24), and (27) are suppressed.

3 N = 2 to N = 0 SUSY breaking and

anomaly mediation

TheN=2 SUSY breaking toN=0 is turned on in this
section, and we will show that if SO(2)R remains after
the SUSY breaking, the sfermion masses are forbidden
by the N=2 non-renormalization theorem. The anomaly
mediation effect at the previously discussed fixed point
will be investigated. In particular, the tachyonic slepton
problem is resolved automatically near the fixed point.
We will also discuss the condition that suppresses the RG
running effect so that the spectrum in the N =2 sector
is mostly induced by anomaly mediation.

3.1 N = 2 Non-renormalization theorem and

splitting mass spectra

Before a general discussion, let us consider a concrete
model for N=2 SUSY breaking to N=0: an N=2 gauge
mediation model [5, 21]. Suppose that the SUSY break-
ing is mediated by N = 2 messengers, {φm,φm}, which
are introduced as hypermultiplets charged under U(Nc).
The N=2 messengers are characterized by the superpo-
tential,

WSB =
√

2φm(ỸmgφY +ωmgcW+Z)φm, (29)

where Z ≡ M + θ2FZ is a SUSY breaking field with
M�

√
FZ , where M (FZ) represents the messenger scale

(SUSY breaking F−term), and Ỹm,ωm are the N = 2
Yukawa couplings for the messengers. Z can be identi-
fied as the vacuum expectation value for the chiral com-
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ponent of an abelian N = 2 vector multiplet1). The
N=2 SUSY limit of the Yukawa couplings is given as

Ỹm→Ym, ωm→1, (30)

where Ym is the U(1) charge of φm.
The soft mass squares for Li at the N=2 SUSY limit,

induced by radiative corrections from the messengers, are
given by [21]

m2
i =

1

2

∣

∣

∣

∣

FZ

Z

∣

∣

∣

∣

2(
d

dt
γ−

i −
d

dt
γ+

i

)

, (31)

where i denotes Li,Ha; +(−) denotes the value evaluated
above (below) M . Since Eqs. (6) and (30) are satisfied,
from Eqs. (8)-(13), we find

m2
Li=m

2
Li

=0. (32)

In fact, these vanishing masses are the consequence
of symmetry and holomorphy. From the non-vanishing
expectation value, FZ , in Eq. (29), the potential acquires

δV = FZ φ̃mφ̃m+h.c.

= (φ̃∗
m,φ̃m)∗·(<[FZ ]σ1−=[FZ ]σ2)·(φ̃∗

m,φ̃m)T , (33)

where σ1 and σ2 are the Pauli matrices while T denotes
the transpose. Since Eq. (33) represents an isovector in
SU(2)R∼SO(3)R space, non-vanishing FZ breaks SUSY
but preserves a U(1)R ∼ SO(2)R symmetry, which is a
subgroup of SU(2)R with rotating axis {<FZ ,−=FZ ,0}
in isovector space. Thus, this symmetry must mix

φ̃∗
m and φ̃m, which are anti-chiral and chiral scalar fields,

respectively. The effective theory at low energy has this
SO(2)R symmetry.

In fact, the soft breaking mass squares from the
Kähler potential, like

δK∼|Z|2
M 2

(

L†
ie

2gcVc+2YigVLi+Lie
−2gcVc−2YigV L

i†
)

, (34)

are forbidden by the SO(2)R symmetry and the holomor-
phy. This is because with the SO(2)R symmetry the po-

tential should include the term Eq. (7) multiplied by |Z|2
M2

while the second term |Z|2
M2 L̃i(ωigcψW+Ỹigψ)·ψLi is never

generated from the superpotential due to holomorphy.
Thus, SO(2)R symmetry and holomorphy forbid soft
breaking mass squares for hypermultiplets. This is noth-
ing but the consequence of theN=2 non-renormalization

theorem for the wave function renormalization and is in-
dependent of the mediation mechanism.

Now we come back to the setup of Section 2. Suppose
that the soft SUSY breaking terms are generated pre-
serving the SO(2)R symmetry above the partial break-
ing scale. Since is sequestered from the partially break-
ing sector at Mp

2), the N=2 sector has an approximate
SO(2)R symmetry. Therefore, the soft mass squares from
the SUSY breaking of the sfermions are suppressed in the
N=2 sector at Mp.

As a consequence of the approximate SO(2)R sym-
metry in the N=2 sector at Mp, the following relations
among the parameters are obtained,

ωi(Mp)'1, Ỹi(Mp)'Yi, (35)

and
m2

Li,Li
(Mp)'0. (36)

Throughout this paper, we do not specify the param-
eters in the N=1 sector.

3.2 Anomaly mediation and Tachyonic Slepton

problem in the N=2 sector

Since the SM is chiral, such an SO(2)R symmetry3)

should be broken by radiative corrections, and the
sfermion masses in theN=2 sector are generated. One of
the radiative corrections, which must be considered from
supergravity, is anomaly mediation [6, 7]. The scalar and
gaugino masses induced by the anomaly mediation effect
are given as

m2
Li,Li,W,φY

=
1

2
m2

3/2

d

dt
γLi,Li,W,φY

, (37)

Mc=m3/2

βc

gc

, M=m3/2

β

g
. (38)

where m3/2 is the gravitino mass. Interestingly, this re-
lation is a renormalization invariant of N=1 SUSY, and
hence the anomaly induced mass is UV-insensitive. No-
tice that the anomaly induced mass squares of the slep-
tons in the MSSM, which have asymptotically non-free
gauge interactions with small Yukawa couplings, are neg-
ative, i.e. the tachyonic slepton problem [6].

Substituting Eqs. (8) and (13) with the N=2 Yukawa
couplings at the fixed point into Eq. (37), the anomaly-
induced mass for the partially N = 2 SUSY model is
obtained as

1) For example, in a simple model where the N = 2 vector multiplet has an N = 2 Fayet-Iliopoulos term, W = ξZ can induce an
F−term to Z spontaneously while the messenger scale is the scalar component of Z. (See Ref. [20] for reference.) If the messengers carry
the charge of this abelian gauge group, then Eq. (29) is obtained.

2) We are assuming that the SO(2)R breaking Yukawa couplings for the fields in the N=2 sector are small enough to be neglected,
e.g. Li are likely to be the first two generation sfermions, which have small SM Yukawa couplings.

3) It is difficult to introduce the chiral partners of the SM fermions to have an exact SO(2)R symmetry. Since a fermion of the N=2
partner is charged under the SM gauge group, it should be heavier than O(100)GeV due to the LEP and LHC constraints [22]. A Dirac
mass term between fermions of the SM and the N=2 partner is forbidden, otherwise the SM fermion would become too massive. A mass
term between two chiral fermions in the N=2 partners is likely to be forbidden because the mass in this case should be generated via the
EW symmetry breakdown, and cannot be too large due to the constraint from the precision measurement of the S parameter [22, 23].
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m2
Li,Li

|fp ' 1

16π
2
m2

3/2(ω
2
i−1)C(ri)

d

dt
g2

c+
1

16π
2
m2

3/2(Ỹ
2

i−Y 2
i )

d

dt
g2

=
1

16π
2
m2

3/2

(

(N 2
c −1)F1

∑NF

i=Ns
F

+1
d(ri)+2(N 2

c −1)
gcβc−2Y 2

i gβ

)

' 1

16π
2
m2

3/2

(

(N 2
c −1)F1

∑NF

i=Ns
F

+1
d(ri)+2(N 2

c −1)
gcβc

)

,

(39)

for non-singlets of SU(Nc), while

m2
Li,Li

∣

∣

∣

fp
' 1

16π
2
m2

3/2(Ỹi

2

−Y 2
i )

d

dt
g2

=
1

16π
2
m2

3/2

(

f1+f
ns
2

N s
F +2

)

gβ, (40)

for singlets of SU(Nc). These masses are functions of
g,gc,m3/2 and the model constants, independent of the
UV physics.

We can see that these mass squares are always pos-
itive for positive β,βc. Therefore, the sleptons in the
N=2 sector do not have the tachyonic slepton problem
near the fixed point.

We note that instead of the tachyonic slepton prob-
lem, the negative anomaly induced mass squared for the
scalar component of W may be generated. However,
this is not so problematic as the case of the sleptons
since we are allowed to have a tree-level SUSY mass as
in Eq. (5)1).

3.3 Anomaly induced N=2 sector

An interesting possibility is that the masses of
sfermions in the N=2 sector are dominantly induced by
anomaly mediation and their spectrum becomes almost
UV-insensitive. Since the anomaly mediation effect for
the sfermion mass is at 2-loop order, we would like to find
the condition suppressing the 1-loop and 2-loop RGE ef-
fects [24, 25]. The 1-loop RG effect can be suppressed if
the following is satisfied,

m2
W (Mp)'m2

φY
(Mp)'0, (41)

A−terms|Mp
'0, Mc(Mp)'M(Mp)'0, (42)

S≡
Nf
∑

i

d(rH
a )m2

Ha
Y H

a +

NF
∑

i

d(ri)(m
2
Li
−m2

Li
+m2

Si
)Yi'0,

(43)
where m2

X is the soft mass of scalar X̃; Mc and M are
Majorana masses for the gaugino of SU(Nc) and U(1),
respectively; and S is the D−term of the U(1) gauge
interaction.

Eqs. (41) and (42) can be obtained by simply assum-
ing that the SUSY breaking spurion field Z=M+θ2FZ

is charged under some hidden symmetry. Obviously, the

gaugino mass terms, e.g.

Z

Mp

tr[WcWc], (44)

are forbidden. Furthermore, the soft scalar masses of
W and φY are also suppressed due to the approximate
SO(2)R symmetry. This is because the soft scalar mass
square for a vector partner, restricted by the SO(2)R

symmetry (similarly to the discussion in Sec.3.1), can
only originate from a kinetic term, like

δK=
Z

Mp

tr[W †e−2gcVcW e2gcVc ], (45)

which is forbidden by the hidden symmetry.
A vanishing D−term of U(1) is quite general in sev-

eral mediation mechanisms, e.g. the gauge mediation
model, mSUGRA, etc. We do not discuss this further.

To suppress the 2-loop RG effect characterized by
( 1

16π
2 )2m2

Ha,Si
,

m2
Ha,Si

�m2
3/2, (46)

should be satisfied. If m2
Ha,Si

are generated via partial
breaking of N =2 to N =1 at Mp, m

2
Ha,Si

may be sup-
pressed to the gravitino mass, m2

Ha,Si
∼εm2

3/2, by assum-
ing the order parameter of the partial breaking to be
ε= (

Mp

Mpl
) or assuming further sequestering between the

visible and the N=2 to N=0 SUSY breaking sectors.
In summary, we have explained a possible setup in

which the sfermion and gaugino masses are dominantly
induced by anomaly mediation in the N=2 sector. Since
the N=2 Yukawa couplings are controlled by the fixed
point at low energy, light sfermions and gauginos in the
N=2 sector have a typical spectrum that is almost UV-
insensitive.

4 A partial N=2 SSM

We will calculate the 2-loop RG running of the cou-
plings and the corresponding anomaly induced masses in
a partial N=2 SSM numerically to confirm the previous
fixed point phenomena at higher loop level. In particular,
we take the condition discussed in Sec.3.3, and suppose
that the soft masses in the N=2 sector are dominantly
induced by anomaly mediation.

1) In fact, Eq. (5) includes the Majorana mass term for the gaugini, which breaks the SO(2)R symmetry. This term may arise
from supergravity without spoiling the approximate SO(2)R symmetry at the global limit. This is because a holomorphic Käher term,
like K = ctr[WW ], vanishes and does not break SO(2)R in global SUSY, while in supergravity a gaugini Majorana mass term, like
W =cm3/2 tr[WW ], is generated.
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We consider an example model where the additional
particle content satisfies gauge coupling unification at
1-loop level and the perturbativity of dimensionless cou-
plings. We will take this restriction, but we do not im-
pose that the additional particles or the N = 2 multi-
plets in the N=2 sector should be embedded into com-
plete GUT multiplets. This is because, as proposed by
Ref. [26] as a solution to the doublet-triplet and pro-
ton decay problems, GUT breaking may be due to an
orbifold projection in extra dimensions which leads to
missing GUT partners. We take this possibility because
an extra dimension scenario is one of the leading candi-
dates for the partial breaking. This is also the reason
why we set the partial breaking scale to the GUT scale,

Mp=2×1016GeV. (47)

4.1 An example model

Now let us introduce a partial SSM model. The two
sectors are composed by

N=2 sector {e1,e1},{e2,e2},{L2,L2},{V2,W}, {VY ,φY }.

N=1 sector SL2,Se1,Se2,G,
Q1,2,3,u1,2,3,d1,2,3,L1,3,e3,Hu,Hd,V3.

Here, Xi are the ith generation chiral multiplets in-
cluding the SM fermion ψXi

; VY ,V2, and V3 are the
MSSM gauge multiplets of U(1)Y ,SU(2)L, and SU(3), re-
spectively; Hu and Hd are the MSSM Higgs multiplets;
X denotes the hyperpartner of the chiral multiplet X ;
SX are the spectators; φY and W are the N =2 vector
partners of the gauge multiplets, VY and V2, respectively;
and G, which is an octet of the SU(3) and a singlet un-
der SU(2)L×U(1)Y , is introduced to satisfy the gauge
coupling unification at Mp. The N =2 sector fields are
chosen to be the first two generation sfermions because
they have small SM Yukawa couplings, which may be due
to the SO(2)R symmetry. L2,e2 are assigned to be within
the N=2 sector because there is a hint from the discrep-
ancy of the muon g−2 [12–14] suggesting that L̃2,ẽ2 are
light, while the absence of the electron electric dipole
moment implies that one of the selectrons, L̃1, may be
heavy. To summarize, other than the MSSM particle
contents, there are chiral multiplets of L2,e2,e1 as the hy-
perpartners of some of the leptons, the vector partners of
φY ,W to guarantee the partial N=2 SUSY, the specta-
tors of SL2,Se1,Se2 for cancelling the chiral anomaly, and
an SU(3) octet of G for the gauge coupling unification.
The superpotential is given as follows.

W=WN=2+Wmass+WMSSM, (48)

WN=2=
√

2L2(ωLg2W+ỸLgY φY )L2+
√

2
2
∑

i

eigY Ỹei
φY ei,

(49)

Wmass = −MGtr[G2]−MW tr[W 2]

−Mφ2
Y −MLL2SL2

−
2
∑

i

Mei
eiSei

, (50)

WMSSM'ytHuQ3u3+ybHdQ3d3+yτHdL3e3+µHuHd. (51)

Here yt,yb, and yτ are the ordinary MSSM Yukawa
couplings for top, bottom, and tau, respectively; µ is the
Higgs mixing parameter; and the other parameters are
defined in analogy to those in Eq. (1). We have neglected
the Yukawa couplings including the first two generation
fermions.

Following Sec.3.2, the SO(2)R symmetry and a hid-
den charge for the SUSY breaking field imply the follow-
ing boundary conditions for the parameters at Mp,

ωL=1, ỸL=1/2, Ỹe1
=Ỹe2

=1, (52)

m2
e1

=
1

2
m2

3/2

d

dt
γe1,

m2
e2

=
1

2
m2

3/2

d

dt
γe2,

m2
L2

=
1

2
m2

3/2

d

dt
γL2, (53)

m2
W =

1

2
m2

3/2

d

dt
γW , m2

φY
=

1

2
m2

3/2

d

dt
γφY

, (54)

M1=m3/2

βY

gY

, M2=m3/2

β2

g2

. (55)

and the A−terms in the N =2 sector are also assumed
to be induced by anomaly mediation. βY and β2 are the
β−functions of gY and g2, respectively; M1 and M2 are
the bino and wino masses. We do not specify the param-
eters in the N=1 sector except for the assumption of the
vanishing D−term as discussed in Section 3.2. We also
do not specify the SUSY Dirac and Majorana masses in
Eq. (50).

We assume the unification condition at the scale Mp

with
3

5
4π/g2

Y =4π/g2
2=4π/g2

3=1/αp'11.5. (56)

4.2 Low energy mass parameters and Yukawa

couplings

We calculate the 2-loop RG equations with the
boundary conditions of Eq. (52) where the 2-loop anoma-
lous dimensions and the β−functions are derived follow-
ing Ref. [24]. The RG runnings of the relevant dimen-
sionless couplings are illustrated in Fig. 1.

The gray solid lines represent the scale dependence

of the SM gauge couplings {
√

5
3
gY ,g2,g3}, and the {red

dotted (black dotted), green dashed (zero-axis line), blue
dot-dashed (black dot-dashed)} lines represent that of

{g2ωL,2
√

5
3
gY ỸL,gY

√

5
3
Ỹe1,e2} (at the fixed point), re-

spectively. We can see that the N=2 Yukawa couplings
approach their fixed point values.
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Fig. 1. (color online) The 2-loop RG running of
the gauge and Yukawa couplings. See the text for
details.

The convergence of the N =2 Yukawa couplings to-
ward a fixed point is shown in Fig. 2.
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Fig. 2. (color online) The UV-insensitivity of the
N = 2 Yukawa couplings. For illustrative pur-
poses, we flip the signs for some parameters shown
in the figure.

The red solid, green dotted and blue dashed
lines are obtained with the boundary conditions:
{ωL,ỸL,Ỹe1,Ỹe2} = {0.8, 1

2
,1,1},{1, 1

2
,1,1},{1.2, 1

2
,1,1},

{ωL,ỸL,Ỹe1,Ỹe2} = {1,0.4,1,1},{1,0.5,1,1},{1,0.6,1,1},
and {ωL,ỸL,Ỹe1,Ỹe2}={1, 1

2
,1,0.8},{1, 1

2
,1,1},{1, 1

2
,1,1.2},

respectively. The black solid line denotes the fixed point
values of the N = 2 Yukawa couplings evaluated by
Eqs. (18), (19), and (25). Therefore, we find that the
N=2 Yukawa couplings, especially ωL, are almost UV-
insensitive. Even if Eqs. (52) in the N = 2 sector are
more or less violated at Mp, the N=2 Yukawa couplings
at low energy are approximated well by these fixed point
values, Eqs. (18), (19), and (25).

The numerically evaluated values (fixed point values
at 1-loop order) of the couplings at the renormalization
scale, µRG= 10 TeV, are

ω2
L'2 (

11

4
), g2

Y Ỹ
2

L '0.05 (0), Ỹ 2
e1
'Ỹ 2

e2
∼2 (

5

2
), (57)

with
g2

Y '0.1, g2
2'0.4, g2

3'0.9. (58)

Since the third generation and Higgs fields are in the
N = 1 sector, these values depend less on yt,yb and yτ

and hence we do not specify tanβ.
In Fig. 3, the scale dependence of some relevant

anomaly-induced masses is shown withm3/2=100 TeV at
the 3-loop level (gaugino masses are evaluated at 2-loop
level). The gray solid and dotted lines represent the scale
dependence of bino and wino masses, respectively. The
red solid (black solid) and green dashed (black dashed)
lines represent sign(m2

L2)|mL2|, and −sign(m2
e1)|me1

|'
−sign(m2

e2)|me2
| (at the fixed point), respectively. Here,

the sign of the vertical axis denotes the sign of the mass
squared. We can see that below µRG =109 GeV all the
slepton mass squares become positive.

Sign[m2L2]|mL2|

-Sign[m2e2]|me2|

Sign[m2L2]|mL2|@fixed point

-Sign[m2e2]|me2|@fixed point

Bino Mass

Wino Mass
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-2000
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s
s
[G
e
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Fig. 3. (color online) The 2-loop RG running of the
anomaly-induced masses for the MSSM particles
in the N =2 sector. The sign of the vertical axis
represents the sign of the mass squared. See the
text for details.

In Fig. 4, we express the UV-insensitivity of these
anomaly induced masses. The red solid and green dashed
lines represent the runnings of the anomaly induced
masses with the boundary conditions:

{ωL,ỸL,Ỹe1,Ỹe2}={0.8,1
2
,1,1},{1,1

2
,1,1},{1.2,1

2
,1,1},

and {ωL,ỸL,Ỹe1,Ỹe2}={1,1
2
,1,0.8},{1,1

2
,1,1},{1,1

2
,1,1.2},

respectively. The black solid (dashed) line represents the
anomaly induced mass at the fixed point, Eqs. (39) and
(40).

Therefore, we have shown that by using a concrete
model the tachyonic slepton problem in the N=2 sector
is solved in an UV-insensitive manner.

In particular, the numerical values of the relevant
anomaly-induced masses in the N = 2 sector are eval-
uated at µRG=10 TeV,

me1=me2'0.004m3/2, mL2
'0.006m3/2, (59)
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M1'0.01m3/2, M2'0.01m3/2. (60)

Notice that the bino and wino are both heavier than the
sleptons, and they cannot be the dark matter particles
as in the ordinary MSSM.

m
2
L2 with wL(MGUT)=(0.8,1,1.2)

m
2
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-m2e2 with Y
�
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Fig. 4. (color online) The UV-insensitivity of the
anomaly-induced mass squares in the N =2 sec-
tor. For illustrative purposes, we flip the signs for
some parameters shown in the figure.

4.3 Phenomenological aspects

Tadpole problem and dark matter candidates

Before discussing the phenomenology, let us focus on
a tadpole problem due to the existence of the gauge sin-
glet φY [27]. Since cubic radiative divergences are not
forbidden in the softly broken SUSY theory, a fundamen-
tal singlet scalar has a large tadpole term ∼m2

3/2MpφY ,
which would lead to a large vacuum expectation value of
〈φY 〉∼Mp. This is quite problematic for our scenario be-
cause the SM fermions embedded in the hypermultiplets
become fairly massive through the N = 2 Yukawa cou-
plings. A simple way to solve this problem is to impose
an exact Z2 symmetry1), under which φY is odd, and
this term is forbidden. Then, we can find that W should
also be Z2-odd. Thus, if a component of φY or W is the
lightest Z2-odd particle, it can be the dark matter par-
ticle. Since this Z2 is not necessarily an R−parity, the
light sfermions can be even lighter than the dark mat-
ter, while with R-parity violation the lightest sfermion
decays. This possibility provides a significant feature of
our scenario differing from the MSSM. Therefore, we will
consider that R-parity is violated, while Z2 symmetry is
exact and a component of φY or W , the lightest Z2-odd
particle, is stable. From the superpotential (48), the ad-
ditional particles to the MSSM except for G are all odd,
to guarantee the Z2 symmetry.

The dark matter physics will be discussed later in
detail.

Muon g−2

The sleptons in this scenario might be excluded up
to 250 GeV (350 GeV) for right-handed (left-handed)
ones [28]2). Therefore, we may have a constraint,

m3/2>70 TeV. (61)

If the µ−term, and the ratio of the vacuum expecta-
tion value of H0

u to H0
d , i.e. tanβ, are large enough, the

muon g−2 contribution can be evaluated as [30, 31] at
the 1-loop level3),

δαµ'
(

1

1+∆µ

)

g2
Y

16π
2

m2
µµtanβM1

m2
L2
m2

e2

fN

(

m2
L2

M 2
1

,
m2

e2

M 2
1

)

,

(62)

=25×10−10

(

1.4

1+∆µ

)(

µtanβ

300 TeV

)(

80 TeV

m3/2

)2

, (63)

where,

∆µ'µtanβ
g2

YM1

16π
2
I(M 2

1 ,m
2
L2
,m2

e2
)

=0.4

(

µtanβ

300 TeV

)(

80 TeV

m3/2

)

, (64)

and we have substituted the anomaly-induced masses
for the sfermions and the gauginos. Here, I(x,y,z) and
fN(x,y) are loop functions which can be found in the
references. If we quote [12, 13]

δαexp=(26.1±8.0)×10−10. (65)

as a reference value of the experimental deviation from
the SM prediction, the muon g−2 anomaly can be ex-
plained within the error at the 1σ level (2σ level) with
m3/2 .100 TeV (120 TeV) for µtanβ=300 TeV, for in-
stance.

Higgs boson mass

The mass scale, mN=1, of the N = 1 sector can be
much larger than that of the N=2 sector, depending on
the detail of the partial SUSY breaking. Such a heavy
scalar mass may raise the sfermion masses in the N=2
sector via 2-loop RG running, the contribution of which
can be approximated by [24, 25]

δm2
L1,e1,2

∼ (g2
2 or g2

Y )

(16π
2)2

ln

(

mN=1

Mp

)

(g2
3 or y2

t )m
2
N=1

∼(400 GeV)2
( mN=1

40 TeV

)2

. (66)

1) This symmetry could also be approximate but precise enough.

2) The process we consider can be either a slepton decaying to lepton and neutrino (R−parity violation) or slepton decaying to
lepton and lightest singlet (it might be bini or wini). We have assumed the decoupling of the other particles absent in the process. For the
left-handed smuon, the bound should be over-estimated, as we have only one light flavor. For the case of long-lived slepton see Ref. [29].

3) The additional particles contribute to the muon g−2 effective vertex at more than 2-loop level due to Z2 parity conservation. This
is the reason we have used the formula for the MSSM.
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Here we have used the fact that the N =2 sector fields
are color singlets of SU(3), and hence the RG effect must
contain EW gauge couplings or the N =2 Yukawa cou-
plings which are of the same order.

Therefore, the parameter region, where the N=2 sec-
tor sfermion masses are dominantly induced by anomaly
mediation, can be roughly characterized as

mN=1.40 TeV
( m3/2

100 TeV

)

. (67)

Since there is a small threshold correction due to the
suppressed mixing term of the stops, the Higgs mass is
mainly raised by the RGE effect through the top-loop,
which is cut off by the stop mass [11], and thus a large
stop mass scale is predicted. By using FeynHiggs [32],
we found that mstop & 6 TeV is obtained for tanβ� 10
for the typical spectra where squarks, higgsino, MSSM
Higgs are heavy while gauginos are light1). Thus, the
stops in the N=1 sector are allowed to give a large quan-
tum correction to explain the correct Higgs boson mass
[11]. Unfortunately, a large stop mass implies we have
several amount of fine tuning to obtain the correct EW
vacuum.

Constraints from particle physics and cosmology

Paying the cost of the tuning, we can obtain several
relaxations for the ordinary problems of the MSSM sim-
ply due to the heavy N=1 sfermions and the gravitino.
In the light of the heavy sfermions in the N = 1 sec-
tor, SUSY contributions to the FCNC and CP-violating
processes are suppressed2). Furthermore, the heavy
gravitino, m3/2 ∼ 100 TeV, decays much earlier than
the BBN era and the cosmological gravitino problem is
alleviated [17]. Also, the SUSY breaking field is not
a singlet, and we do not have the cosmological mod-
uli/Polonyi problem [33].

One may worry about the vacuum decay problem
because we have large trilinear terms proportional to
µtanβ, which implies the existing of charge breaking
deeper minima than the EW vacuum of the potential.
Since the fields in the N = 1 sector are heavy and can
be neglected in the discussion, the EW vacuum domi-
nantly decays into the smuon number violating one. This
was studied in Ref. [34], from which we get µtanβ <
1140 TeV(1400 TeV) with m3/2 =100 TeV(120 TeV) in
our case.

Let me comment on a problem due to the additional
color octet and its possible solutions. The anomaly-
induced mass for the gluino vanishes at 1-loop level, and
is generated at 2-loop level as

M3∼0.002m3/2, (68)

at µRG =10 TeV. The gluino mass, if given by this for-
mula, is too small to survive the experimental constraints
with m3/2=O(100) TeV [35].

There are two ways to tackle this problem. One is to
introduce a Dirac gluino mass term, asW= Da

Mp
tr[GW (3)

a ],

where Da=DZθ
a and W (3)

a are a spurion SUSY breaking
field3) and the field strength of the SU(3) gauge inter-
action, respectively. Notice that such a Dirac mass term
is not allowed for the bino or wino due to the Z2 parity,
and our prediction would not change unless DZ is ex-
tremely large. The other way is to have a large MG with
a supergravity induced “b−term”, V =MGm3/2tr[GG].
Then the decoupling of G induces a gauge mediation ef-
fect Eq. (29) to raise the gluino mass to be the MSSM
anomaly-induced one, & 2 TeV, with m3/2 & 100 TeV.
The N = 2 sector spectrum does not change at leading
order. In the Higgs mass calculation, we have taken the
latter possibility.

Dark matter and leptogenesis

For simplicity, suppose that the lightest Z2-odd par-
ticle is much lighter than the other Z2-odd particles, so
we can discuss the dark matter physics in a generic man-
ner. If the dark matter particle is a wini (bini), i.e.
the fermionic component of φY (W ), it does not have
any Yukawa interactions, due to this assumption. The
physics of wini dark matter is similar to the pure wino
case [36], the difference of which will be discussed in Sec-
tion 5, while the bini is decoupled from the SM sector.

The interesting candidates for dark matter are the
sbino and swino, i.e. the scalar components of the φY

and W , respectively. For instance, let us consider the
imaginary part of the sbino, φ≡ 1√

2
=φ̃Y . It has a quartic

potential only with the N=2 sector sfermions given by

Vφ∼
2
∑

i=1

(

m2
Sei

mS2
ei

+M2
Sei

)

g2
Y

∣

∣

∣
Ỹei

ẽiφ
∣

∣

∣

2

+

(

m2
SL

m2
SL

+M 2
SL

)

g2
Y

∣

∣

∣ỸLL̃2φ
∣

∣

∣

2

(69)

The ratio of the mass terms denotes the effect of the
non-SUSY decoupling of the spectators (we have ne-
glected the “b−terms” for illustrative purposes), and at
the SUSY limit, this vanishes. However, this becomes
an O(1) coefficient in general due to the SUSY breaking
terms.

Now let us discuss the abundance of dark matter. At
the fixed point ỸL=0, the first term of Eq. (69) denotes
the dominant interaction for the sbino and thus controls

1) In the estimation, we have not included the effect of the additional particles, which is at 2-loop order.

2) We have assumed flavor symmetry conservation for the N=2 sector field for this example model.

3) This is a natural introduction when the SUSY breaking N =2 multiplet is a vector multiplet, as Da can be recognized as field
strength for the vector partner of the chiral SUSY breaking field, Z.
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the annihilation process represented by

φ+φ→ẽi+ẽ
†
i . (70)

Since in the early universe the annihilation of dark mat-
ter occurs only when ẽi is lighter than the dark matter
particle,

mei
<mφ (71)

is required. The thermal averaged total cross section is
approximated by

〈σφφ |v|〉∼
1

8π

∑2

i

∣

∣

∣g2
Y Ỹ

2
ei

∣

∣

∣

2

m2
φ

'(0.1/TeV)2
(

700 GeV

mφ

)2

,

(72)
where we have used the fixed point value of Ỹ 2

ei
=5/2 in

the second approximation. Thus, the thermal abundance
given is approximated by

Ωthh
2'0.1

(

0.01 TeV−2

〈σφφ |v|〉

)

∼0.1
( mφ

700 GeV

)2

, (73)

compared with the observed dark matter abundance
ΩDMh

2'0.12 [37]. Notice that the over-abundance prob-
lem, which needs to be addressed in the ordinary case of
bino-like neutralino dark matter, is avoided in the sbino
case due to the light annihilation products of sleptons
and the large quartic couplings.

A heavy gravitino can decay into dark matter,
which contributes to the dark matter abundance non-
thermally [36]. The contribution in our scenario is

Ωnth
2'2BrZ2

Ω3/2h
2 mφ

m3/2

(74)

∼0.16

(

2nodd
χ /12

nV +nχ/12

)

( mφ

300GeV

)

(

TR

1010GeV

)

. (75)

Here TR is the reheating temperature; BrZ2
is the branch-

ing ratio of the gravitino decay to the Z2 odd particles;
and Ω3/2 is the energy density of the gravitino before
its decay. nV (nχ,n

odd
χ ) is the effective number of the

vector (chiral, Z2-odd chiral) multiplet, and is 1+3+8,
(49+12+8, 12). There is a suppression factor of BrZ2

because the gravitino is Z2-even and it rarely eventually
decays into dark matter when the direct decay products
are Z2-even particles. Thus, the abundance should be
multiplied by 2BrZ2

1).
In summary, we find that for

mφ.700GeV (76)

the correct dark matter abundance ΩDMh
2 = Ωthh

2 +
Ωnth

2 can be obtained with a certain TR&2×1010 GeV.
In particular, thermal leptogenesis [18] requires TR&

109.5 GeV [36]. We conclude that our scenario is com-
patible with thermal leptogenesis.

Predictions

The direct detection constraints should not be strin-
gent. This is because the sbino couples to a nucleon
with a spin-dependent suppressed interaction through a
Z-boson coupling induced by a slepton loop. The di-
rect and indirect detections will be discussed in detail
elsewhere.

Since the annihilation of the sbino dark matter is vi-
able only when an N=2 slepton is lighter than its mass,
the dark matter mass range turns to be a robust predic-
tion of our scenario, that is

me1,e2
.700 GeV. (77)

Notice that the muon g−2 anomaly can be explained at
the 1σ level with a certain µtanβ in this mass range satis-
fying all the constraints discussed above. If the R-parity
violating decay of the light slepton occurs out of the de-
tector, this mass range can be fully tested in the LHC
with Drell-Yang production in a spectrum-independent
manner [39]. If they decay within the detector they could
be also tested as the R−parity violating scenario [28].

From the relation of the anomaly mediation, we pre-
dict the upper bound of

mL2
.1.1 TeV and M1,2.1.8 TeV. (78)

The chargino with this mass range could also be pro-
duced in the LHC and would be followed by a typical
decay to smuon and muon neutrino (χ−

1 → µ̃−
2 +ν2), or

smuon neutrino and muon (χ−
1 → ν̃2+µ

−
2 ). In this case,

our scenario could be confirmed by measuring the typi-
cal mass pattern, especially for that for wino and light
sleptons.

Furthermore, the N=1 sector sfermions as well as the
N = 2 partners, if are light enough, could be produced
in high energy future colliders, such as FCC, SPPC,
CLIC, or a Muon Collider Higgs Factory [16]. In par-
ticular, if the mass of a fermionic hyperpartner of the
electron (muon) is within reach in the electron (muon)
collider, the hyperpartners are pair-produced via a sbino-
propagating t-channel process, e−+e+→e++e−(µ−+µ+→
µ++µ−). In this case, the production rate is proportional
to the fourth power of the N=2 Yukawa coupling. Thus,
the typical Yukawa coupling controlled by the fixed point
can be obtained if the production rate is carefully mea-
sured, which could be striking evidence for our scenario.

5 Discussion and conclusions

Since we are essentially relying on the behavior
around an IR fixed point, several discussions can apply
to models without partial N=2 SUSY but with adjoint
chiral multiplets. We may also consider the possibility

1) The additional chiral multiplets do not change the thermally produced gravitino abundance at leading order, because the produc-
tion is dominated by the dimension-5 gravitino-gauge interaction [38] which does not differ from the MSSM interaction in our scenario.
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that some of the quarks are within the N = 2 sector,
which can lead to light squarks and gluinos.

I would like to mention the difference between pure
wini and pure wino dark matter in the light of leptoge-
nesis. The thermal abundance estimation of pure wini
dark matter is quite similar to the pure wino case, the
mass of which is bounded up to 2.7 TeV from the correct
abundance. It is known that ordinary pure wino dark
matter should have M2 . 1 TeV to be compatible with
thermal leptogenesis [36]. This is bounded from the non-
thermal production of dark matter abundance. In our
case, thanks to the suppression factor in Eq. (74), the
pure wini dark matter has a larger mass range compat-
ible with thermal leptogenesis, which is MW . 2.7 TeV
for the example model.

We have investigated partial N = 2 supersymmetric
(SUSY) extensions of the standard model, composed of
two sectors with almost N=2 SUSY and N=1 SUSY at
the partial breaking scale, respectively. Since the global
N =2 SUSY is expected from the simple toroidal com-
pactification of extra-dimensional SUSY theory, includ-
ing the effective theory of superstrings, the SM may orig-
inate from N=2 SUSY. If the partial breaking of N=2
to N =1 takes place in a sequestered sector, the N =2
partners in the N = 2 sector may be light enough to
give interesting low energy phenomena. In particular,
we have shown that the light N=2 partners in the N=2
sector have almost UV-insensitive significant Yukawa in-
teractions due to an IR fixed point.

From these interactions, the typical anomaly induced
masses for the sfermions and the gauginos in the N=2
sector are almost UV-insensitive. In fact, we have clari-

fied that the anomaly mediation goes well with the par-
tial N=2 SSMs in two aspects: (a) partial N=2 SUSY
can provide a good condition for the anomaly mediation
to be effective in the N=2 sector due to the N=2 non-
renormalization theorem, and (b) the tachyonic slepton
problem is automatically solved due to the large N =2
Yukawa couplings around the IR fixed point.

In a concrete model of a partialN=2 SSM with gauge
coupling unification, we have shown that the muon g−2
anomaly can be explained within its 1σ level error by the
light smuons and gauginos. The masses are anomaly-
induced and are 1-loop suppressed to the gravitino mass
of O(100) TeV. We have discussed the phenomenological
and cosmological aspects. In particular, we have con-
sidered the dark matter candidate as a sbino, the scalar
component of the singlet N = 2 vector multiplet. To
explain the dark matter abundance, the sbino and right-
handed smuon are required to be lighter than 700 GeV.
Then from the anomaly mediation relation we predict
that all the sparticles of the MSSM in the N=2 sector
have masses below ∼2 TeV, with a pattern. These are
robust predictions that can be tested and could be con-
firmed in the LHC or in future colliders. If the N = 2
partners are also reachable in future colliders, the pre-
dicted N = 2 Yukawa couplings might be measured as
striking evidence for the scenario.

I thank Tetsutaro Higaki and Kazuhiro Endo for care-

fully reading this manuscript and for helpful sugges-

tions. I am also grateful to Tetsutaro Higaki and Norimi

Yokozaki for useful discussions.
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