
Chinese Physics C Vol. 41, No. 9 (2017) 094101

Mass differences and neutron pairing in Ca, Sn and Pb isotopes
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Abstract: Various estimates of the even-odd effect of the mass shell of atomic nuclei are considered. Based on the

experimental mass values of the Ca, Sn, and Pb isotopes, the dependence of the energy gap on the neutron number

is traced and the relationship of this characteristic to the properties of external neutron subshells is shown. In nuclei

with closed proton shells, effects directly related to neutron pairing and effects of nucleon shells are discussed.
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1 Introduction

The creation of the shell model of the atomic nu-
cleus [1, 2] is one of the most significant achievements
of theoretical nuclear physics. The first attempts at its
development were based on the model of atomic elec-
tron shells. The prospects for this approach were not
that obvious, since there is a significant difference be-
tween the electrons in the atom and the nucleons in the
atomic nucleus. In the case of an atom, the electrons
are in the strong Coulomb field of the atomic nucleus,
and the interactions of electrons with one another are a
correction to the total potential (the “screening” of the
nuclear field by the electrons is very important). In the
case of an atomic nucleus, the total self-consistent field is
the result of nucleon-nucleon interactions and effectively
takes its properties into account. Accordingly, the total
atomic nucleus potential changes with transitions from
isotope to isotope.

For a correct description of the properties of atomic
nuclei, in addition to changing the mean-field potential
it is also necessary to take into account the residual in-
teraction. This, in spite of its small value, is crucial in
determining the specific properties of the system of nu-
cleons. In the first approximation, the so-called pairing
forces are considered as the residual interaction — an ef-
fective short-range interaction, which leads to an increase
of the binding energy of a pair of nucleons when summa-
tion of their spins gives the total moment J = 0. The
pairing of identical nucleons makes it possible to explain
many experimental facts, including the spin JP =0+ of
all even-even nuclei and the enhanced stability of even-
even isotopes [3–5].

2 Even-odd staggering and nucleon pair-
ing

The increasing of stability of even-even nuclei leads
to the stratification of the mass surface on three compo-
nents: one for even-even nuclei, one for odd-odd nuclei
and one intermediate for nuclei with odd mass number
A. A systematic study of the binding energies of a nu-
cleus B(A) shows that for even-even nuclei the following
rule is fulfilled:

B(A)>
1
2

[B(A+1)+B(A−1)]. (1)

The observed even-odd mass staggering (EOS) has been
extensively explored in the literature [6–10]. The EOS
effect is generally associated with the pairing gap ∆, as
suggested by BCS theory. To estimate its value various
more or less averaged equations are used: three-, four-
or five-point [4, 11–14] formulas (so-called indicators):

∆(3)
n (N)=

(−1)N

2
[Sn(N)−Sn(N+1)], (2)

∆(4)
n (N)=

(−1)N

4
[−Sn(N+1)+2Sn(N)−Sn(N−1)], (3)

∆(5)
n (N) =

1
2
[∆(4)

n (N)+∆(4)
n (N+1)]

=
(−1)N

8
[3Sn(N+1)−3Sn(N)

+Sn(N−1)−Sn(N+2)], (4)

where Sn(N) = B(N)−B(N−1) is the neutron separa-
tion energy of a nucleus (N,Z). In the formulas (2–4)
for neutron EOS, the proton number Z is fixed. Similar
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formulas (here and below) for protons can be obtained
by fixing the neutron number N and replacing N by Z.
It is seen from the formulas above that the expression (3)
is also an averaging between ∆(3)

n (N) and ∆(3)
n (N−1).

The relations (2) and (3) were originally obtained in
order to get an analytic dependence of EOS on A to
introduce it as an additional pairing term to the semi-
empirical Bethe-Weizsäcker mass surface formula. From
this point of view, the values of ∆(3)

n fluctuate much more
strongly depending on A, but the result of their approx-
imation differs slightly from the results for ∆(4)

n [4]. So,
the four-point formula (3) became the basis for describ-
ing the EOS effect, and consequently for describing the
pairing effect, for a long time. In some modern calcu-
lations even more smoothing formulas are used, taking
into account five [12, 13, 15] or six experimental bind-
ing energies of isotopes [11]. An increase of the number
of isotopes does not significantly affect the EOS calcu-
lation result, but the expansion of the range of experi-
mental data in the region far from stability can lead to
the usage of experimental data with significant errors.
Modern mass formulae use more complicated pair ap-
proximations depending not only on power of A but also
on isospin relations [17, 18]. The relationship between
different variants of the EOS estimation, as well as var-
ious variants of the ∆(4)(A) approximation for protons
and neutrons, are considered in Refs. [10, 19–21].

Many studies are devoted to the evaluation of both
the direct nucleon pairing contribution to the EOS and
the contributions of other microscopic effects [6, 8, 22–
25]. It is shown [8, 23] that the best estimation for
identical nucleons pairing in the even N nucleus is the
three-point indicator (2) for neighbor odd neutron num-
ber ∆(3)

n (N+1). This conclusion corresponds to the di-
rect determination of the two-neutron pairing ∆nn(N) as
the difference between the two-neutron separation energy
S2n(Z,N) from the even-even nucleus and the doubled
neutron separation energy Sn(Z,N−1) from the neigh-
boring odd nucleus (N−1,Z) [26]:

∆nn(N) = S2n(N)−2Sn(N−1)
= Sn(N)−Sn(N−1)
= 2∆(3)

n (N−1), (5)

where S2n(N)=B(N)−B(N−2). This definition considers
the nucleus as a core with a pair of external “valence” nu-
cleons, and does not take into account how the mean-field
potential changes when “valence” nucleons are added or
removed.

It is known that the ∆nn(N) dependence for even-
even nuclei is much smoother, and it produces an EOS
estimate lower than that given by other formulas. Also,
unlike the others, this characteristic is diminished for
closed-shell nuclei, which corresponds to the common ex-
pectation that the pairing at shell closure should decrease

in connection with the level density reduction. It can be
expected that ∆nn(N) includes the mean field contribu-
tions to the least extent, but it is apparently impossible
to completely exclude their influence [8, 10]. In Ref. [20]
it was noted that, as ∆nn(N) includes the second differ-
ences of the binding energies, its value may be non-zero
even without EOS.

3 Seniority model

With the pairing phenomena taken into account, the
A-nucleon system Hamiltonian is:

Ĥ=Ĥ0+Ĥpair, (6)

where Ĥ0 is the intrinsic singe-particle Hamiltonian, de-
termined by the nucleus mean-field, and the residual in-
teraction corresponds to the monopole pairing:

Ĥpair=−GP̂ †P̂ . (7)

Here G is the pairing strength parameter, and P̂ † and P̂
denote the pair creation and annihilation operators. A
rough experimental estimate gives Gn = 25/A MeV for
neutrons and Gp=17/A MeV for protons [3].

The seniority model [27, 28] is one of the simplest
models. It describes the filling of a shell with the to-
tal angular momentum j over a closed core. Following
Ref. [8], let us consider n nucleons moving in a 2Ω-fold
degenerated shell (2Ω=2j+1), described by the Hamilto-
nian in Eq. (7). The energy eigenvalues in the seniority
model can be expressed in terms of nucleon number n and
seniority ν (the number of unpaired nucleons (quasipar-
ticles) in the configuration considered):

E(n,ν)=−1
4
G(n−ν)(2Ω−ν−n+2). (8)

The nuclear ground state has seniority ν = 0 for even
nucleon number n (all nucleons are paired), and ν = 1
for odd number n. The value of EOS according to the
formula for the three-point indicator (2) is:

∆(3)
τ (n)=





1
2
GΩ+

1
2
G for even n,

1
2
GΩ for odd n.

(9)

The index τ =n,p denotes the nucleon type. Since this
result depends only on whether the number of particles
n is even or odd and does not depend on the absolute
value of n, the average four- and five-point indicators (3)
and (4) in the seniority model are the same:

∆5
τ (n)=∆4

τ (n)=
1
2
GΩ+

1
4
G, for all n. (10)

The pairing energy direct estimation ∆ττ (5) for an
even neutron number will be smaller than the doubled
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three-point indicator 2∆(3)
τ :

∆ττ (N)=

{
GΩ for even n,
GΩ+G for odd n.

(11)

In this case the pairing value is equal to the doubled EOS
effect ∆ττ (n)=2∆(3)

τ (n−1) and does not depend on the
absolute value of n.

4 Nucleon separation energy

In the simplest case of two neutrons pairing over the
closed core, the pairing energy ∆nn(N) (5) corresponds
to the doubled EOS effect ∆(3)

n (N−1). Hereafter we con-
sider the corresponding doubled indicators:

∆(3)
nn(N)=2∆(3)

n (N), (12)

∆(4)
nn(N)=2∆(4)

n (N), (13)

∆(5)
nn(N)=2∆(5)

n (N). (14)

Since relations (12 - 14) depend on the nucleon sep-
aration energies, let us consider the neutron separation
energy as a function of the neutron number N in isotopes
Z = Const. In Fig. 1(a), the measured neutron separa-
tion energy Sn in Ca isotopes (Z =20) is plotted. The
dependence Sn shows a saw-tooth form, as a consequence
of the pairing effect.

The values Sn(N) for even and odd N are divided
into two groups lying well on two straight parallel lines.
Sharp leaps between groups of Sn values for N= 20, 28,
32 correspond to subshell transitions. Since the distance
between single-particle levels is large in light nuclei, a
consistent filling of the subshells 1d3/2−1f7/2−2p3/2 in Ca
isotopes is traced well.

Figure 1(a) also gives the proton separation energy
Sp(N). Despite the fact that the number of protons re-
mains constant at Z = 20, this dependence has a saw-
tooth shape as well. Although it is not so pronounced
as that for Sn(N), it nevertheless reflects the influence
of the neutron pairing on the total mean-field potential
changes.

The measured two-neutron separation energy S2n(N)
(see Fig. 1(b) does not show the effect of neutron pairing,
because only even N or odd N isotopes are used for its
calculation.

In Refs. [28, 29] it was shown that in seniority model
the energy of n valence nucleons in the field of the closed
core B(jn) can be expressed as

B(jn) = Bcore(n=0)+nεj+
n(n−1)

2
α

−1
2

[
n−1−(−1)n

2

]
β. (15)

So the single nucleon separation energy

Sn(N) = B(jn)−B(jn−1)

= εj+(n−1)α+
1+(−1)n

2
β (16)

includes the energy εj , and depends on the kinetic energy
of the nucleon on the j shell and on the energy of inter-
action of an external nucleon with the core. The third
term, proportional to β, corresponds to to the pairing
effect, and the second one, proportional to α, provides
a common gradient of the curve Sn(N). The values of
the coefficients α and β can be determined from the two-
body matrix elements of “valence” nucleon interactions,
so the pairing interaction not only determines the saw-
tooth shape of Sn(N), but makes a contribution to the
self-consistent mean field changes too. Sharp leaps be-
tween groups of Sn values for N = 20, 28, 32 are deter-
mined by the difference εj1−εj2 in the transition between
subshells j1 and j2.
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Fig. 1. Neutron Sn(N), proton Sp(N) (a) and two-
neutron S2n(N) (b) separation energies in Ca iso-
topes. Data from Ref. [30].

5 Identical nucleon pairing

Due to the total gradient of the Sn(N) dependence in
one subshell, the pairing energy ∆nn, obtained from (5),
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is always less than the result obtained from the three-
point formula (2) for even N :

∆nn<∆(3)
nn,

which is consistent with the seniority model (9, 11).
In Fig. 2, values of pairing energy indicators ∆nn from

(5), ∆(3)
nn (2) and ∆(4)

nn (3) in the Ca isotopes are plotted.
All calculations were made on the base of measured nu-
clear masses from Ref. [30]. If even and odd N are con-
sidered together one can clearly see that ∆nn and ∆(3)

nn

values coincide accurarely on the N=1 shift (Fig. 2(a)),
and the ∆(4)

nn values are their average. The leap in Sn(N)
dependence due to the closure of the 1d2s subshell and
the start of the f7/2 subshell filling occurs at N=20 and
N +1 = 21. As a result the three-point pairing energy
indicator ∆(3)

nn (2) has a sharp leap even at N =20, but
for ∆nn (5) the corresponding change is at odd N+1=21.
That is why for even-even nuclei the three-point indica-
tor ∆(3)

nn has significant fluctuations near the magic num-
bers, while the dependence of ∆nn(N) has a smoother
behavior (see Fig. 2(b)). The values of the averaged in-
dicators ∆(4)

nn and ∆(5)
nn are almost the same, but it should

be noted that an increase in the number of points used to
calculate the averaged characteristics narrows the range
of isotopes under consideration.
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Fig. 2. Neutron pairing energy indicators ∆
(i)
nn (12

- 14) in Ca isotopes for N = 16−38 (a) and for
even N (b). Data from Ref. [30].

It of interest is to consider the behavior of the dif-
ference between ∆nn and ∆(3)

nn, formally coinciding with
the pairing strength parameter G in the simplest senior-
ity model (9):

δe(N)=(−1)N
(
∆(3)

nn−∆nn(N)
)
.

At the same time, the definitions (2, 5) imply

δe(N)=Sn(N−1)−Sn(N+1).

As the behavior of the Sn(N) dependence (Fig. 1(a))
shows, the value δe(N) excludes the pairing effect and
can be regarded as a correction associated with the core
polarization and/or the contribution of the three-body
interaction [31].

6 Results for semimagic nuclei

In Fig. 3 the dependencies ∆(3)
nn, ∆nn and δe in even-

even Ca isotopes are plotted. In Fig. 3(a), in addition to
∆(3), the experimental values of the first excited states
Jπ=2+ are also given. In the 40Ca case, which is typical
for doubly magic nuclei, the 2+ state is not always the
first excited state, which is associated with increasing of
the rigidity and spherical symmetry of nuclei with filled
shells [4].

The spectroscopy of Ca isotopes was considered in
detail in Ref. [32]. The low-energy spectra of odd Ca iso-
topes and the single-particle structure demonstrate the
isolation of the subshell f7/2 with respect to the closed
core 40

20Ca, leading to a pronounced sequential filling of
neutron subshells. In Fig. 3 the vertical dashed lines
denoting the subshells filling correspond strictly to the
maxima in the ∆(3)

nn, δe and Ex(2+) dependencies on the
neutron number in the Ca isotopes. Thus, all three char-
acteristics strongly correlate with each other.

As mentioned above, the ∆nn(N) value for even nu-
clei has a more smoothed character, but, nevertheless, it
is rather complicated and undergoes significant changes
at the shell boundaries. One should note the similarity
of values of ∆(3)

nn and ∆nn (and, correspondingly, small δe
value) for isotopes 42,44,46Ca. An approximation which
considers the closed core 40

20Ca with f7/2 shell filled con-
sequently fits well for these isotopes [33–35] and one can
assume that in this case the indicators ∆(3)

nn and ∆nn

(and respectively their averaging four- and five-point in-
dicators ∆(4)

nn and ∆(5)
nn) reflect the neutron pairing ef-

fect most accurately. The values ∆nn(N) more clearly
demonstrate the dependence of the pairing energy on j
quantum number. The ratio between the values for dif-
ferent subshells corresponds to the ratio of the number
of projections for the corresponding j [36]:

∆nn

2j+1
=

∆nn(22)
8

≈∆nn(30)
4

≈∆nn(36)
6

≈0.35

A value of 0.35 agrees well with the accepted ap-
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proximation of the neutron pairing strength parameter
Gn∼25/A MeV (denoted in Fig. 3, 4 by a blue dashed
line).
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Fig. 3. (color online) Neutron pairing energies in
Ca even-even isotopes. (a) The solid line corre-

sponds to the three-point indicator ∆
(3)
nn, and cir-

cles mark the experimental data Ex(2+
1 )[40], [41].

For comparison, the values ∆
(3)
n =∆

(3)
nn/2 are in-

dicated by the dashed line. (b) The values ∆nn

(dashed line) and δe (solid line) are plotted. For
comparison, the values δe(N) = 25/A (MeV) are
indicated by the dashed blue line.

The behavior of indicators ∆(3)
nn and δe for semi-magic

isotopes Sn and Pb with Z = 50,82 have the same fea-
tures. Figure 4 (a, b) shows the dependencies of ∆(3)

nn and
Ex(2+) on the neutron number N in tin isotopes. For
clarity, the dotted line also plots the value ∆(3)

n =∆(3)
nn/2,

which corresponds with good accuracy to the excitation
energy Ex(2+) for most isotopes in the chain.

From the single-particle structure point of view, the
consequential filling of subshells does not exist in tin iso-
topes. Occupations of single-particle orbitals rise rather
smoothly with neutron number from N = 50 to N = 80
[37]. Consequently, the Sn(N) and S2n(N) dependencies
have a smoothed variation without significant gaps as-
sociated with transitions between the subshells. In the
∆(3)

nn(N) dependence, there is a small leap at N = 66,
indicating the presence of a gap between the (d5/2,g7/2)
and (s1/2,d3/2,h11/2) subshell groups. One should also
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Fig. 4. (color online) Neutron pairing energies in
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note the proximity of the values and the explicit cor-
respondence of the form of ∆(3)

nn and ∆nn dependencies
throughout the shell. Nevertheless, δe values have pro-
nounced changes, but they are minimal for N > 70. In
this region, the subshells with large values of j, 1h11/2

and 2f7/2, are filled, which leads to the characteristic
spectra of the low-energy excited states in these isotopes
[38]. A sharp leap in the three-point indicator ∆(3)

nn(N)
for N =82 values corresponds to the transition to a new
shell, and the decrease in the pairing effect that occurs
can be related to a decrease in the number of projections
j on the outer shells [39], 16 on the subshell (d3/2,h11/2)
compared to 8 on the more isolated subshell f7/2:

∆nn(76)
16

≈∆nn(84)
8

≈0.15

The same regularities can be traced in the ∆(3)
nn, ∆nn

and δe dependencies for lead isotopes (Fig. 5 a, b). The
behavior of ∆(3)

nn and ∆nn is almost the same, which
leads to δe ≈ Const for most Pb isotopes. A general
decrease in the pairing effect ∆nn can be associated with
the transition from filling the high-momentum subshell
group (i11/2,p3/2) to states with a smaller value of j, up
to j = 1/2 for N = 124. Of course the behavior of the
characteristics under consideration for neutron-rich iso-
topes with N >132 is very interesting. For example, in
Ref. [31] it was shown that negative values of δe may
indicate a sharp change in the type of deformation of
the nucleus during the transition from one isotope to an-
other. However, the error in determining the neutron
separation energies for these isotopes amounts to tens of
percentages and it is somewhat premature to make un-
ambiguous conclusions about the magnitude of the char-
acteristics based on the difference of separation energies
Sn.

7 Summary

The main features of various atomic nucleus charac-

teristics based on the mass differences, the neutron sep-
aration energy and various options for calculating the
mass-surface EOS effect have been considered in this pa-
per. For semi-magic isotopes with Z = 20, 50 and 82,
for example, the complex nature of the even-odd effect,
which includes both the nucleon pairing and other mean-
field effects such as shell and subshell filling or symmetry
effects, has been shown. The behavior of the character-
istics involving the neutron separation energies from two
neighboring isotopes, ∆(3)

nn and ∆nn, strongly depends on
the properties of the external nucleons and reflects not
only the nucleon correlations in the middle of the shell
filling, but also the closed shells and subshell formation
as the nucleon number goes through the magic numbers.

The ∆nn value for even-even nuclei has a smooth N
dependence, since it involves isotopes with the numbers
N and N−1 and in the case of even N does not include
the leap associated with a change in the neutron single-
particle energy upon transition to the next subshell.
The systematic underestimation of the EOS value calcu-
lated by the formula ∆nn, compared with other three-,
four- and five point indicators (∆(3)

nn, ∆(4)
nn, ∆(5)

nn) is in
accordance with the conclusions of the simplest seniority
model. The smallest discrepancy between the various
variants of the calculation is observed in the middle of
the subshell filling. In this case the EOS value corre-
sponds most closely to the pairing energy ∆≈GΩ, and
the difference between the ∆(3)

nn−∆nn corresponds to the
pairing strength parameter G = 25/A. In this area, far
from magic numbers, pairing is most vividly manifested.
A characteristic manifestation of the pairing effect is the
low-lying 2+ states of collective nature, which form an
energy gap 1–2 MeV between the ground and first exited
state in even-even nucleus spectra.

The authors would like to thank Dr. D. Lanskoy,
M. Stepanov and L. Imasheva for useful discussions and
technical support.
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