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Abstract: The democracy of quark flavors is a well-motivated flavor symmetry, but it must be properly broken in

order to explain the observed quark mass spectrum and flavor mixing pattern. We reconstruct the texture of flavor

democracy breaking and evaluate its strength in a novel way, by assuming a parallelism between the Q=+2/3 and

Q=−1/3 quark sectors and using a nontrivial parametrization of the flavor mixing matrix. Some phenomenological

implications of such democratic quark mass matrices, including their variations in the hierarchy basis and their

evolution from the electroweak scale to a super-high energy scale, are also discussed.
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1 Introduction

In the standard electroweak model the origin of quark
masses is attributed to the Yukawa interactions and the
Higgs mechanism. However, the model gives no quantita-
tive prediction for the structures of the Yukawa coupling
matrices Y+2/3 and Y−1/3 in the Q=+2/3 and Q=−1/3
quark sectors, respectively. That is why there is no expla-
nation of the observed strong hierarchies of quark masses,
namely mu/mc ∼mc/mt ∼λ4 and md/ms ∼ms/mb ∼λ2

with λ ' 0.2 [1], within the standard model. In other
words, why are the three eigenvalues of the Yukawa cou-
pling matrix Y+2/3 or Y−1/3 (i.e., fα=mα/v with v'174
GeV being the vacuum expectation value and α running
over u, c and t for Y+2/3 or d, s and b for Y−1/3) so
different in magnitude? This remains a highly puzzling
question.

As first pointed out by Harari, Haut and Weyers
in 1978 [2], it should be very natural to conjecture
that quark fields of the same electric charge initially
have identical Yukawa interactions with the Higgs field,
namely,

Y (0)
Q =

C(0)
Q

3




1 1 1

1 1 1

1 1 1


 , (1)

where C(0)
Q is a dimensionless coefficient, and Q=+2/3

for the up-quark sector or Q=−1/3 for the down-quark
sector. Such a form of Y (0)

Q means that the correspond-

ing quark mass matrix M (0)
Q must have the same “flavor

democracy”,

M (0)
Q =

m3

3




1 1 1

1 1 1

1 1 1


 , (2)

where m3 ≡ vC(0)
Q , equal to the top-quark mass mt for

Q = +2/3 or the bottom-quark mass mb for Q =−1/3.
The corresponding quark mass term can be written as

m3

3

∑

α

∑

β

αL βR+h.c., (3)

and it is completely invariant under the permutation of
all the three left-handed quark fields and all the three
right-handed quark fields, where α,β=u,c,t for Q=+2/3
or α,β = d,s,b for Q =−1/3. That is to say, the flavor
democracy of Y (0)

Q or M (0)
Q implies that the quark mass

term in Eq. (3) has exact S(3)L×S(3)R symmetry. This
symmetry must be broken, since two of the three eigen-
values of MQ are vanishing. The breaking of this flavor
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democracy leads to the flavor mixing effects between the
two quark sectors [3–5].

How to break the democracy of quark flavors and to
what extent to break it are two highly nontrivial ques-
tions for model building in this regard [6]. In the present
work we are going to address ourselves to these two ques-
tions by assuming a structural parallelism between the
mass matrices of Q=+2/3 and Q=−1/3 quarks. Such
a phenomenological assumption makes sense if the gen-
eration of quark masses in the two sectors is governed
by the same dynamics, and combining it with a nontriv-
ial parametrization of the Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing matrix proposed by Fritzsch and
Xing [7] allows one to figure out the texture and strength
of flavor democracy breaking in each quark sector in
terms of the observed values of quark masses and fla-
vor mixing parameters. Some interesting implications of
such flavor-democratized quark mass matrices, including
their variations in the hierarchy basis and their evolution
with the energy scales, are also discussed.

2 Flavor democracy breaking

Let us begin with diagonalizing the flavor-
democratized quark mass matrix M (0)

Q as follows:

V †
0 M

(0)
Q V0=m3




0 0 0

0 0 0

0 0 1


 , (4)

where

V0=




1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3




. (5)

We therefore arrive at m1 = m2 = 0, which is qualita-
tively consistent with the experimental facts mu,mc�mt

or md,ms � mb. However, there is no flavor mixing
in this special case, because the resulting CKM matrix
V =V †

0 V0=1 is an identity matrix.
The realistic CKM quark mixing matrix

V =V †

+2/3V−1/3=(V0V+2/3)
†(V0V−1/3) (6)

measures a mismatch between the diagonalization of the
Q = +2/3 quark mass matrix M+2/3 and that of the
Q = −1/3 quark mass matrix M−1/3, and thus it pro-
vides a natural description of the observed phenomena
of quark flavor mixing. Notice that M+2/3 and M−1/3 can
always be arranged to be Hermitian, thanks to a proper
choice of the flavor basis in the standard model or its
extensions which have no flavor-changing right-handed
currents [8]. So let us simply focus on Hermitian quark
mass matrices in the following and take into account the
corresponding flavor democracy in such a basis, namely,

(V0VQ)†MQ(V0VQ)=M̂Q≡




m1 0 0

0 m2 0

0 0 m3


 , (7)

where m1 =±mu, m2 =±mc and m3 =mt for Q=+2/3,
or m1=±md, m2=±ms and m3=mb for Q=−1/3. Here
the sign ambiguity of m1 or m2 is attributed to the fact
that the eigenvalues of the Hermitian matrix MQ can be
either positive or negative under the above unitary trans-
formation. To reconstruct the pattern of MQ in terms of

V0, VQ and M̂Q, however, one must specify the form of
VQ with the help of the parameters of V .

We find that the most suitable parametrization of the
CKM matrix V for our purpose is the one advocated by
two of us in Ref. [7]:

V =




sinθusinθdcosθ+cosθucosθde
−iφ sinθucosθdcosθ−cosθusinθde

−iφ sinθusinθ

cosθusinθdcosθ−sinθucosθde
−iφ cosθucosθdcosθ+sinθusinθde

−iφ cosθusinθ

−sinθdsinθ −cosθdsinθ cosθ


 (8)

with the subscripts “u” and “d” denoting “up” (Q = +2/3) and “down” (Q =−1/3), respectively. The reason is
simply that this form of V can be decomposed into V+2/3 and V−1/3 in an exactly parallel way as follows:

V+2/3=




1 0 0

0 cos

(
+

2

3
θ

)
−sin

(
+

2

3
θ

)

0 sin

(
+

2

3
θ

)
cos

(
+

2

3
θ

)







exp

(
+i

2

3
φ

)
0 0

0 1 0

0 0 1







cosθu −sinθu 0

sinθu cosθu 0

0 0 1


 ,

V−1/3=




1 0 0

0 cos

(
−1

3
θ

)
−sin

(
−1

3
θ

)

0 sin

(
−1

3
θ

)
cos

(
−1

3
θ

)







exp

(
−i

1

3
φ

)
0 0

0 1 0

0 0 1







cosθd −sinθd 0

sinθd cosθd 0

0 0 1


 . (9)
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Since all four parameters in this parametrization of V
can be determined to a good degree of accuracy by us-
ing current experimental data, one may therefore fix the
patterns of V+2/3 and V−1/3. Of course, the decompo-
sition made in Eq. (9) depends also on a purely phe-
nomenological assumption: the up- and down-type com-
ponents of the flavor mixing angle θ are demanded to be
proportional to the corresponding charges of these two
quark sectors, and so are the components of the CP -
violating phase φ. Such an assumption is another reflec-
tion of the up-down parallelism, which has been taken as
the main guiding principle of our treatment, although it
is very hard to argue any potential connection between
the quark mass textures and the quark charges at this

stage1). One is certainly allowed to try some other pos-
sibilities of decomposing V into V+2/3 and V−1/3 [5], but
the key point should be the same as ours — to minimize,
within reason, the number of free parameters, at least at
the phenomenological level.

Given Eqs. (7) and (9), we are now in a position to
reconstruct the quark mass matrices M+2/3 and M−1/3

based on the flavor democracy. The texture of MQ can
be expressed as

MQ=A2
QM (0)

Q +M (1)
Q +M (2)

Q , (10)

where AQ =−sin(Qθ)/
√

2+cos(Qθ), M
(0)
Q has been de-

fined in Eq. (2), and

M (1)
Q =C(11)

Q




1 1 −rQ

1 1 −rQ

−rQ −rQ r2
Q


+C(12)

Q




0 0 rQ

0 0 rQ

rQ rQ 2+rQ


 ,

M (2)
Q =C(21)

Q


cos(Qφ)




1 0 −1

0 −1 1

−1 1 0


+isin(Qφ)




0 1 −1

−1 0 1

1 −1 0







+C(22)
Q




1 −1 0

−1 1 0

0 0 0


+C(23)

Q


cos(Qφ)




2 0 1

0 −2 −1

1 −1 0


−isin(Qφ)




0 −2 −1

2 0 1

1 −1 0





 ,

(11)

in which rQ =2AQ/BQ with BQ =
√

2sin(Qθ)+cos(Qθ),
and

C(11)
Q =

1

6

(
m1sin

2θq+m2cos2θq

)
B2

Q ,

C(12)
Q =

1

2
√

2
m3sin(Qθ)BQ ,

C(21)
Q =

1

2
√

3
(m1−m2)cos(Qθ)sin2θq ,

C(22)
Q =

1

2

(
m1cos2θq+m2sin

2θq

)
,

C(23)
Q =

1

2
√

6
(m1−m2)sin(Qθ)sin2θq

(12)

with q = u for Q = +2/3 and q = d for Q =−1/3. The
matrices M (0)

Q , M (1)
Q and M (2)

Q perform the S(3)L×S(3)R,
S(2)L×S(2)R and S(1)L×S(1)R flavor symmetries, respec-

tively. Among the five coefficients of M (1)
Q and M (2)

Q in

Eq. (12), C(12)
Q is proportional to m3sin(Qθ) and the oth-

ers are all dominated by the terms proportional to m2.
Hence their ratios to the coefficient of M (0)

Q (i.e., m3/3)
are suppressed at the levels of sin(Qθ) and m2/m3, re-
spectively. Because θ ∼ λ2 [7] and |m2/m3| ∼ λ4 (for
Q = +2/3) or λ2 (for Q = −1/3) [1], the relevant sup-
pression is at least at the percent level. In other words,
the strength of flavor democracy breaking must be at or
below the percent level.

To see this point more clearly, let us take account of
the strong quark mass hierarchy and the smallness of the
three flavor mixing angles to make a reasonable analyti-
cal approximation for the expression of MQ in Eq. (10).
Then we arrive at

MQ ' 1

3
m3








1 1 1

1 1 1

1 1 1


+


1

2

m2

m3




1 1 −r

1 1 −r

−r −r r2


+

3
√

2

4
Qθ




0 0 r

0 0 r

r r 2+r







−
√

3 θq

m2

m3


cos(Qφ)




1 0 −1

0 −1 1

−1 1 0


+isin(Qφ)




0 1 −1

−1 0 1

1 −1 0







1) However, it has been argued that the origin of some differences between the up- and down-quark sectors might simply represent
a difference between their charges in a dynamical model which can explain the observed family structure, rather than a fundamental
difference between the two sectors [9].
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−
√

6

2
Qθθq

m2

m3


cos(Qφ)




2 0 1

0 −2 −1

1 −1 0


−isin(Qφ)




0 −2 −1

2 0 1

1 −1 0







+
3

2

(
m1

m3

+θ2
q

m2

m3

)



1 −1 0

−1 1 0

0 0 0








, (13)

in which the subscript of rQ has been omitted. In fact,

rQ'2−3
√

2 Qθ is not very sensitive to the value of Q due
to the smallness of θ. The result in Eq. (13) shows a hier-
archical chain of flavor democracy breaking in the quark
sector. First, the S(3)L×S(3)R symmetry is broken down
to the S(2)L×S(2)R symmetry, and the strength of this
effect is characterized by the small quantities m2/m3 and
θ. Second, the S(2)L×S(2)R symmetry is further broken
down to S(1)L×S(1)R, and the corresponding effect is fur-
ther suppressed because it is characterized by the much
smaller quantities θqm2/m3, θθqm2/m3, θ2

qm2/m3 and
m1/m3. In particular, the CP -violating phase φ comes
in at the second symmetry-breaking stage and hence the
effect of CP violation is strongly suppressed.

We proceed to evaluate the strength of flavor democ-
racy breaking in a numerical way. To do so, we make use
of the central values of six quark masses renormalized to
the electroweak scale characterized by the Z-boson mass
[1]:

mu'1.38 MeV, mc'638 MeV, mt'172.1 GeV;

md'2.82 MeV, ms'57 MeV, mb'2.86 GeV.
(14)

The values of the flavor mixing parameters θu, θd, θ and
φ can be obtained by establishing their relations with
the well-known Wolfenstein parameters [10], whose val-
ues have been determined to an impressively good degree

of accuracy [11, 12]:

θu'arctan
(
λ
√

ρ2+η2
)
'0.086,

θd'arctan

(
2λ

√
(1−ρ)2+η2

[λ2(1−2ρ)−2]
2
+4λ4η2

)
'0.206,

θ'arcsin

(
Aλ2

√
1+λ2(ρ2+η2)

)
'0.042,

φ'arccos

(
sin2θucos2θdcos2θ+cos2θusin2θd−λ2

2sinθucosθusinθdcosθdcosθ

)
'1.636,

(15)

where the best-fit values A'0.825, λ'0.2251, ρ'0.160
and η'0.350 [12] have been input. Namely, we have

θu'4.951◦, θd'11.772◦, θ'2.405◦, φ'93.730◦,(16)

implying θu ∼ 2λ2, θd ∼ λ and θ ∼ λ2 in terms of the
expansion parameter λ ' 0.2. The fact that φ is very
close to π/2 proves to be quite suggestive in quark flavor
phenomenology, as already discussed in Ref. [13].

With the help of the central values of six quark
masses and four flavor mixing parameters given in Eqs.
(14) and (16), one may start from Eq. (10) to numeri-
cally calculate the elements of M+2/3 and M−1/3 for two
typical possibilities:

(a) (m1,m2) = (−mu,+mc) for Q = +2/3 and
(−md,+ms) for Q=−1/3, leading to

M+2/3 ' 55.07 GeV×








1 1 1

1 1 1

1 1 1


+


3.2×10−2




0 0 1.89

0 0 1.89

1.89 1.89 3.89


−2.07×10−3




−1 −1 1.89

−1 −1 1.89

1.89 1.89 −3.56







−


2.65×10−4




1 0 −1

0 −1 1

−1 1 0


−3.03×10−5




1 −1 0

−1 1 0

0 0 0


+5.24×10−6




2 0 1

0 −2 −1

1 −1 0







−i


5.09×10−4




0 1 −1

−1 0 1

1 −1 0


−1.01×10−5




0 −2 −1

2 0 1

1 −1 0











, (17)

and

M−1/3 ' 0.97 GeV×








1 1 1

1 1 1

1 1 1


−


1.43×10−2




0 0 2.06

0 0 2.06

2.06 2.06 4.06


+8.98×10−3




−1 −1 2.06

−1 −1 2.06

2.06 2.06 −4.25






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−


6.08×10−3




1 0 −1

0 −1 1

−1 1 0


+1.63×10−4




1 −1 0

−1 1 0

0 0 0


−6.02×10−5




2 0 1

0 −2 −1

1 −1 0







+ i


3.69×10−3




0 1 −1

−1 0 1

1 −1 0


+3.65×10−5




0 −2 −1

2 0 1

1 −1 0











; (18)

(b) (m1,m2)=(+mu,+mc) for Q=+2/3 and (+md,+ms) for Q=−1/3, leading to

M+2/3 ' 55.07 GeV×








1 1 1

1 1 1

1 1 1


+


3.2×10−2




0 0 1.89

0 0 1.89

1.89 1.89 3.89


−2.07×10−3




−1 −1 1.89

−1 −1 1.89

1.89 1.89 −3.56







−


2.64×10−4




1 0 −1

0 −1 1

−1 1 0


−5.52×10−5




1 −1 0

−1 1 0

0 0 0


+5.22×10−6




2 0 1

0 −2 −1

1 −1 0







− i


5.06×10−4




0 1 −1

−1 0 1

1 −1 0


−1.00×10−5




0 −2 −1

2 0 1

1 −1 0











, (19)

and

M−1/3 ' 0.97 GeV×








1 1 1

1 1 1

1 1 1


−


1.43×10−2




0 0 2.06

0 0 2.06

2.06 2.06 4.06


+9.01×10−3




−1 −1 2.06

−1 −1 2.06

2.06 2.06 −4.25







−


5.51×10−3




1 0 −1

0 −1 1

−1 1 0


−2.62×10−3




1 −1 0

−1 1 0

0 0 0


−5.45×10−5




2 0 1

0 −2 −1

1 −1 0







+ i


3.34×10−3




0 1 −1

−1 0 1

1 −1 0


+3.31×10−5




0 −2 −1

2 0 1

1 −1 0











. (20)

Some comments on the implications of these results are
in order.

1) The other two possibilities, corresponding to
(m1,m2)=(+mu,−mc) and (−mu,−mc) in the Q=+2/3
quark sector or (m1,m2)=(+md,−ms) and (−md,−ms)
in the Q=−1/3 quark sector, are numerically found to
be very similar to cases (a) and (b) shown above. Hence
they will not be discussed separately.

2) The S(2)L×S(2)R terms of MQ are not sensitive
to the sign ambiguities of m1 and m2, but the latter
can affect the S(1)L×S(1)R terms of MQ to some ex-
tent. In other words, a specific model-building exercise
should take into account the fine structure of MQ which
is associated with both the lightest quark mass and the

CP -violating phase in each quark sector.
3) It is always possible to combine the two S(2)L×

S(2)R terms of MQ, and such a combination does not
violate the S(2)L×S(2)R symmetry. Since the coeffi-
cients of five S(1)L×S(1)R terms are very different in
magnitude, it is reasonable to neglect the most strongly
suppressed ones when building a phenomenologically vi-
able quark mass model. In particular, Eqs. (17)—(20)
suggest that C(22)

Q '0 and C(23)
Q '0 should be two good

approximations, which can also be observed from their
analytical expressions in Eq. (12) or (13) by considering
|m1|�|m2|�m3 and the smallness of θ and θq. In this
situation the analytical approximation of MQ in Eq. (13)
is further simplified to

MQ ' 1

3
m3








1 1 1

1 1 1

1 1 1


+


1

2

m2

m3




1 1 −2

1 1 −2

−2 −2 4


+

3
√

2

4
Qθ




0 0 2

0 0 2

2 2 4






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−
√

3 θq

m2

m3


cos(Qφ)




1 0 −1

0 −1 1

−1 1 0


+isin(Qφ)




0 1 −1

−1 0 1

1 −1 0











, (21)

where r'2 has been taken into account.
In short, the strength of S(3)L×S(3)R→S(2)L×S(2)R

breaking is at the percent level for both up- and down-
quark sectors, while the effects of S(2)L×S(2)R→S(1)L×
S(1)R breaking are at the percent and ten percent levels
for the up- and down-quark sectors, respectively.

3 On the hierarchy basis

It is sometimes convenient to ascribe the hierarchy
of the quark mass spectrum directly to the hierarchy of
the corresponding quark mass matrix. In the latter ba-
sis, which is usually referred to as the hierarchy basis,
the quark mass matrix M ′

Q is related to its democratic
counterpart MQ via the following transformation:

M ′
Q=V †

0 MQV0 , (22)

where V0 and MQ have been given in Eqs. (5) and (10),
respectively. To be explicit, we obtain

M ′
Q=




2C(22)
Q

√
3 C(21)

Q eiQφ
√

6 C(23)
Q eiQφ

√
3 C(21)

Q e−iQφ XQ YQ√
6 C

(23)
Q e−iQφ YQ ZQ


 ,(23)

where

XQ=
2

3

[(
rQ+1

)2
C(11)

Q −
(
rQ−2

)
C(12)

Q

]
,

YQ=−
√

2

3

(
rQ+1

)[(
rQ−2

)
C(11)

Q +2C(12)
Q

]
,

ZQ=
1

3

[(
rQ−2

)2
C(11)

Q +
(
5 rQ+2

)
C(12)

Q

]
+A2

Qm3 .(24)

The exact expression of M ′
Q in Eq. (23) can be simpli-

fied, if the analytical approximation made in Eq. (13)
for MQ is taken into account. In this case,

M ′
Q'




m1+θ2
qm2 −θqm2e

iQφ −Qθθqm2e
iQφ

−θqm2e
−iQφ m2+Q2θ2m3 −Qθm3

−Qθθqm2e
−iQφ −Qθm3 m3


 .

(25)

The hierarchical structure of M ′
Q is therefore determined

by the hierarchy |m1|�|m2|�m3 and the smallness of
θ and θq.

Corresponding to the numerical illustration of MQ in
Eqs. (17)—(20), the results of M ′

Q with the same inputs
are give below.

(a) (m1,m2) = (−mu,+mc) for Q = +2/3 and
(−md,+ms) for Q=−1/3, leading to

M ′
+2/3'




3.337 −54.695e1.091i −1.532e1.091i

−54.695e−1.091i 767.678 −4798.559

−1.532e−1.091i −4798.559 171965.605


MeV, (26)

and

M ′
−1/3'




−0.317 −11.976e−0.545i 0.168e−0.545i

−11.976e0.545i 55.047 39.272

0.168e0.545i 39.272 2859.450


MeV; (27)

(b) (m1,m2)=(+mu,+mc) for Q=+2/3 and (+md,+ms) for Q=−1/3, leading to

M ′
+2/3'




6.077 −54.458e1.091i −1.525e1.091i

−54.458e−1.091i 767.698 −4798.559

−1.525e−1.091i −4798.559 171965.605


MeV, (28)

and

M ′
−1/3'




5.087 −10.847e−0.545i 0.152e−0.545i

−10.847e0.545i 55.283 39.269

0.152e0.545i 39.269 2859.450


MeV. (29)
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One can see that the sign ambiguities of m1 and m2

mainly affect the magnitude of the (1,1) element of M ′
Q.

The smallness of this matrix element is especially guaran-
teed if m1 and m2 take the opposite signs, as numerically
shown in Eqs. (26) and (27).

In the hierarchy basis the language of texture “zeros”
has proved to be very useful in establishing some exper-
imentally testable relations between the ratios of quark
masses and the flavor mixing angles [14, 15]. Those ze-
ros dynamically mean that the corresponding matrix ele-
ments are sufficiently suppressed as compared with their
neighboring counterparts, and this kind of suppression
may reasonably arise from an underlying flavor symme-
try [16]. In this sense Eqs. (26)—(29) motivate us to
conjecture the well-known four-zero textures of Hermi-
tian quark mass matrices [17] as the fairest extension of
the original Fritzsch ansatz which contains six texture
zeros [15]:

M ′
Q=




0 ♦Q 0

♦∗
Q ♥Q 4Q

0 4∗
Q �Q


 , (30)

where the relevant symbols denote the nonzero matrix
elements. In fact, the pattern of MQ with an approxi-
mate flavor democracy obtained in Eq. (21) just leads
us to the four-zero textures of M ′

Q in the hierarchy basis,

if one takes r'2−3
√

2 Qθ instead of r'2:

M ′
Q'




0 −θqm2e
iQφ

0

−θqm2e
−iQφ m2+Q2θ2m3 −Qθm3

0 −Qθm3 m3


 , (31)

which can also be read off from Eq. (25) if similar ap-
proximations are made. As pointed out in Refs. [18, 19],
current experimental data require that the (2,2) and
(2,3) elements of M ′

−1/3 be comparable in magnitude.
In any case the pattern of MQ in Eq. (21) or the texture
of M ′

Q in Eq. (31) can be very helpful for building a
viable quark mass model.

4 On the scale dependence

In the above discussions we have restricted ourselves
to the quark mass matrices at the electroweak scale char-
acterized by µ=MZ. Since the flavor democracy might
be realized at a much higher energy scale MX , where a

kind of fundamental new physics may occur, it makes
sense to study the scale dependence of MQ by means
of the one-loop renormalization-group equations (RGEs)
for the Yukawa coupling matrices and the CKM flavor
mixing matrix [20]. For the sake of simplicity, here
we work in the framework of the minimal supersym-
metric standard model (MSSM) and calculate the rel-
evant RGEs by taking account of the strong hierarchies
of charged fermion masses and that of the CKM param-
eters. The approximate analytical results turn out to be
[21]

mt(MZ)'mt(MX)(ζuξ
6
t ξb) ,

mb(MZ)'mb(MX)(ζdξtξ
6
bξτ ) ; (32)

and

mu(MX)

mt(MX)
'mu(MZ)

mt(MZ)
(ξ3

t ξb) ,

mc(MX)

mt(MX)
'mc(MZ)

mt(MZ)
(ξ3

t ξb) ,

md(MX)

mb(MX)
'md(MZ)

mb(MZ)
(ξtξ

3
b) ,

ms(MX)

mb(MX)
' ms(MZ)

mb(MZ)
(ξtξ

3
b) ;

(33)

and

θu(MX)'θu(MZ), θd(MX)'θd(MZ),

θ(MX)'θ(MZ)(ξtξb) , φ(MX)'φ(MZ),
(34)

where

ζq≡exp

[
1

2

∫ ln(M
X

/M
Z
)

0

3∑

i=1

cq
i g

2
i (0)

8π
2−big

2
i (0)χ

dχ

]
,

ξα≡exp

[
− 1

16π
2

∫ ln(M
X

/M
Z
)

0

f 2
α(χ)dχ

] (35)

with q = u or d, α = t, b or τ , and χ = ln(µ/MZ). In
Eq. (35) cq

i and bi are the model-dependent coefficients
whose values can be found in Ref. [20].

With the help of Eqs. (13) and (32)–(34), one can
then express the democratic quark mass matrices at MX

by using the quark masses and flavor mixing parame-
ters at MZ and taking into account their RGE evolution
effects:

M+2/3(MX) ' mt

3ζuξ
6
t ξb








1 1 1

1 1 1

1 1 1


+ξtξb


1

2
ξ2
t

mc

mt




1 1 −2

1 1 −2

−2 −2 4


+

√
2

2
θ




0 0 2

0 0 2

2 2 4







−
√

3ξ3
t ξbθu

mc

mt


cos

(
+

2

3
φ

)



1 0 −1

0 −1 1

−1 1 0


+isin

(
+

2

3
φ

)



0 1 −1

−1 0 1

1 −1 0






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−
√

6

3
ξ4
t ξ

2
bθθu

mc

mt


cos

(
+

2

3
φ

)



2 0 1

0 −2 −1

1 −1 0


−isin

(
+

2

3
φ

)



0 −2 −1

2 0 1

1 −1 0







+
3

2
ξ3
t ξb

(
mu

mt

+θ2
u

mc

mt

)



1 −1 0

−1 1 0

0 0 0








, (36)

and

M−1/3(MX) ' mb

3ζdξtξ
6
bξτ








1 1 1

1 1 1

1 1 1


+ξtξb


1

2
ξ2
b

ms

mb




1 1 −2

1 1 −2

−2 −2 4


−

√
2

4
θ




0 0 2

0 0 2

2 2 4







−
√

3ξtξ
3
bθd

ms

mb


cos

(
−1

3
φ

)



1 0 −1

0 −1 1

−1 1 0


+isin

(
−1

3
φ

)



0 1 −1

−1 0 1

1 −1 0







+

√
6

6
ξ2
t ξ

4
bθθd

ms

mb


cos

(
−1

3
φ

)



2 0 1

0 −2 −1

1 −1 0


−isin

(
−1

3
φ

)



0 −2 −1

2 0 1

1 −1 0







+
3

2
ξtξ

3
b

(
md

mb

+θ2
d

ms

mb

)



1 −1 0

−1 1 0

0 0 0








, (37)

where rQ'2 has been taken. Typically taking MX =1016 GeV, MZ=91.187 GeV and tanβMSSM=10 for illustration,
we numerically obtain ζu'3.47, ζd'3.38, ξt'0.854, ξb'0.997 and ξτ '0.998 from the one-loop RGEs [21]. In this
case the expressions of M+2/3 and M−1/3 at MX turn out to be

M+2/3(MX) ' 0.75·1
3
mt








1 1 1

1 1 1

1 1 1


+0.85


0.73·1

2

mc

mt




1 1 −2

1 1 −2

−2 −2 4


+

√
2

2
θ




0 0 2

0 0 2

2 2 4







−0.62·
√

3θu

mc

mt


cos

(
+

2

3
φ

)



1 0 −1

0 −1 1

−1 1 0


+isin

(
+

2

3
φ

)



0 1 −1

−1 0 1

1 −1 0







−0.53·
√

6

3
θθu

mc

mt


cos

(
+

2

3
φ

)



2 0 1

0 −2 −1

1 −1 0


−isin

(
+

2

3
φ

)



0 −2 −1

2 0 1

1 −1 0







+0.62·3
2

(
mu

mt

+θ2
u

mc

mt

)



1 −1 0

−1 1 0

0 0 0








, (38)

and

M−1/3(MX) ' 0.35·1
3
mb








1 1 1

1 1 1

1 1 1


+0.85


1.00·1

2

ms

mb




1 1 −2

1 1 −2

−2 −2 4


−

√
2

4
θ




0 0 2

0 0 2

2 2 4







−0.85·
√

3θd

ms

mb


cos

(
−1

3
φ

)



1 0 −1

0 −1 1

−1 1 0


+isin

(
−1

3
φ

)



0 1 −1

−1 0 1

1 −1 0






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+0.72·
√

6

6
θθd

ms

mb


cos

(
−1

3
φ

)



2 0 1

0 −2 −1

1 −1 0


−isin

(
−1

3
φ

)



0 −2 −1

2 0 1

1 −1 0







+0.85·3
2

(
md

mb

+θ2
d

ms

mb

)



1 −1 0

−1 1 0

0 0 0








, (39)

from which one can clearly see the RGE-induced correc-
tions to the relevant terms in each quark sector. Hence
such quantum effects should not be ignored when build-
ing a specific quark mass model based on the flavor
democracy at MX and confronting its predictions with
the experimental data at MZ.

At this point it is worth mentioning that the ap-
proximate four-zero textures of M+2/3 and M−1/3 in the
hierarchy basis are essentially stable against the RGE
running effects. Here the stability of the texture zeros
means that the (1,1), (1,3) and (3,1) elements of each
quark mass matrix at MX remain strongly suppressed
in magnitude as compared with their neighboring coun-
terparts, and thus it is a reasonable approximation to
take them to be vanishing at any energy scale between
MZ and MX from a phenomenological point of view [19].
Such an observation makes sense because the four-zero
textures of Hermitian quark mass matrices or their varia-
tions are especially favored by current experimental data
and deserve some special attention in the model-building
exercises.

5 Summary

It has been known for quite a long time that the
democracy of quark flavors is one of the well-motivated
flavor symmetries for building a viable quark mass
model, but how to break this symmetry and to what
extent to break it are highly nontrivial. To minimize
the number of free parameters, in this work we have
assumed structural parallelism between Q = +2/3 and
Q=−1/3 quark sectors, and proposed a novel way to re-
construct the texture of flavor democracy breaking and
evaluate its strength in each sector with the help of the
Fritzsch-Xing parametrization of the CKM flavor mix-
ing matrix. Some phenomenological implications of such
flavor-democratized quark mass matrices, in particular
their variations with possible texture zeros in the hierar-
chy basis and their RGE evolution from the electroweak
scale to a super-high energy scale, have also been dis-
cussed. We hope that this kind of study will be useful to
more deeply explore the underlying correlation between
the quark flavor structures and the observed quark mass
spectrum and flavor mixing pattern.
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