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Abstract:

We investigate instanton effects on the heavy-quark potential, including its spin-dependent part, based

on the instanton liquid model. Starting with the central potential derived from the instanton vacuum, we obtain

the spin-dependent part of the heavy-quark potential. We discuss the results of the heavy-quark potential from

the instanton vacuum. Finally, we solve the nonrelativistic two-body problem, associated with the heavy-quark
potential from the instanton vacuum. The instanton effects on the quarkonia spectra are marginal but are required

for quantitative description of the spectra.

Keywords:
PACS: 12.38.Lg, 12.39.Pn, 14.40.Pq

1 Introduction

Heavy-quark physics has evolved into a new phase.
Charmonium-like states, which are known as XYZ
states [1-13] and quite possibly include exotic states,
conventional bottomonia including the lowest-lying state
My [14-20], and heavy pentaquark states [21] have been
newly reported by various experimental collaborations
(see also recent reviews [22-25]). These novel findings
of heavy hadrons have renewed interest in heavy-quark
spectra and have subsequently triggered a great deal
of experimental and theoretical work (see for example
the reviews in Refs. [26-30]). Among these newly ob-
served heavy hadrons, conventional bottomonium 7, (15)
is placed in a crucial position. Even though it is the
lowest-lying bottomonium, it has been observed only
very recently [14-18] and the precise measurement of
its mass provides a subtle test for any theory about
heavy quarkonia, based on quantum chromodynamics
(QCD) [31-33].

Various theoretical methods for the quarkonium spec-
tra have been developed over recent decades (see recent
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reviews [27-29, 34]), among which the potential model
has been widely used for describing the properties of
quarkonia [35, 36]. The form of the potential at short
distances is governed by the Coulomb-like interaction
arising from perturbative QCD (pQCD). At the lowest
order, one-gluon exchange between a heavy quark and
a heavy anti-quark is responsible for this Coulomb-like
attraction [37-40]. The running coupling constant for
the Coulomb-like interaction has been considered with
higher order corrections in pQCD [41-45]. However,
when the distance between the quark and the anti-quark
increases, certain nonperturbative contributions should
be taken into account in the potential. Quark confine-
ment [46] is shown to be the most essential nonpertur-
bative part, obtained at least phenomenologically from
the Wilson loop for the heavy-quark potential, which
rises linearly at large distances [35, 36]. This linearly
rising potential has been studied extensively in lattice
QCD [47-54].

There is yet another nonperturbative effect on the
heavy-quark potential from instantons [55], which are
known to be one of the most important topological ob-
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jects in describing the QCD vacuum. These instanton ef-
fects on the heavy-quark potential were already studied
many years ago [56-58], spin-dependent aspects of the
heavy-quark potential being emphasized. The central
part of the heavy-quark potential was first derived [59],
based on the instanton liquid model for the QCD vac-
uum [60-62]. In Ref. [59], the Wilson loop was averaged
in the instanton ensemble to get the heavy-quark poten-
tial, which rises almost linearly as the relative distance
between the quark and the antiquark increases, then it
starts to get saturated. The results of Ref. [59] have also
been simulated in lattice QCD [63-65]. Though the in-
stanton vacuum does not explain quark confinement, it
will play a certain role in describing the characteristics of
quarkonia. The features of the instanton vacuum will be
recapitulated briefly in the present work in the context
of the quarkonium hyperfine mass splittings.

In this work, we will examine the instanton effects
on the heavy-quark potential from the instanton vac-
uum, including the spin-dependent parts in addition to
the central one. In fact, Eichten and Feinberg [58] de-
rived an analytic form of the instanton contributions to
the spin-dependent potential but were not able to com-
pute them due to the difficulties of deriving the static
energy or the central static potential induced from in-
stantons. Diakonov et al. [59] calculated this central
part of the heavy-quark potential from the instanton
vacuum, as mentioned previously. Thus, in the present
work, we want to obtain the instanton-induced spin-
dependent parts of the heavy-quark potential, follow-
ing closely Refs. [58, 59]. To derive the spin-dependent
potential from the instanton vacuum, we first expand
the matter part of the QCD Lagrangian for the heavy
quark with respect to the inverse of a heavy-quark mass
(1/mgq), as is usually done in heavy-quark effective the-
ory (HQET). As was obtained from Ref. [59], the central
part comes from the leading order in the heavy-quark ex-
pansion. The heavy-quark propagator or the Wilson loop
being averaged over the instanton medium, the central
part can be derived. The spin-dependent contributions
arise from the order of 1/mg,. As we will show in this
work, the heavy-quark propagator is given as an integral
equation. Expanding it in powers of 1/mg, we are able
to compute the spin-dependent part of the heavy-quark
potential as was first shown in Ref. [58]. We will eval-
uate these spin-dependent potentials and examine their
behaviour. Then we will proceed to compute the instan-
ton effects on the hyperfine mass splittings of quarkonia.
Assuming that the interaction range between a heavy
quark and a heavy anti-quark is smaller than the inter-
instanton distance, we can easily deal with the effects
of the instantons on the hyperfine mass splittings of the
quarkonia. We find at least qualitatively that the in-
stantons have definite effects on those of the charmonia,

while those of the bottomonia acquire tiny effects from
the instanton vacuum because of the heavier mass of the
bottom quark.

The paper is organized in the following way. In Sec-
tion 2, we explain how to derive the instanton effects
on the heavy-quark potential systematically. We first
review the results of Ref. [59] within the heavy-quark
expansion. Then we show the corrections to the spin-
dependent heavy-quark potential, which come from the
1/mg, order. In Section 3 we discuss the results of the
instanton effects on the heavy-quark potential in de-
tail and present the numerical method used to solve the
Schrédinger equation. We also present the spectrum of
low-lying charmonium states and the estimates of the
hyperfine mass splittings of these states. Finally, in Sec-
tion 4 we summarise the results and give a future outlook
related to the present work.

2 Formalism

2.1 Heavy-quark propagator

We start with the matter part of the QCD Lagrangian
for the heavy quark, given as

Lo =¥ (x)(iD—mq)¥(z), (1)

where i) =i@+ A denotes the covariant derivative, mq
stands for the mass of the heavy quark, and ¥(z) repre-
sents the field corresponding to the heavy quark. As was
done in HQET [66, 67], we assume that the heavy-quark
mass mq goes to infinity with the velocity v of the heavy
quark fixed (v?=1). Then we can decompose the heavy-
quark field into the large component h,(z) and the small
one H,(z) as follows

¥ (z)=e""""" h,(z)+H,(z)], (2)

which is just the Foldy-Wouthuysen transformation [68,
69] used in the nonrelativistic expansion in QED. The
h,(z) and H,(z) fields are defined respectively as

() =eimar <#) W (z), (3)
phy () =ho(z),

i,w)=ees (E ) wio), (@
$H, () =, (x).

The velocity vector allows one also to split the covariant
derivative into the longitudinal and transverse compo-
nents as

D=yp(v-D)+D ., ()
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where 1), =v*(g,.,—v,v,)D". The transverse component
of the covariant derivative satisfies the relations

(iml)2:—D2+%a~G:P2+a~B, i, (iv-D)ilp |
=FE-D+o-(ExD), (6)

where GG, stands for the gluon field strength tensor. E
and B denote the chromoelectric and chromomagnetic
fields, respectively. Using the equations of motion, we
can remove the small field H,(z) by the relation

1
H,=————iD  h, 7
2mQ+w-DllpJ‘ )
or equivalently we can integrate out the H, fields [67].
Thus, we arrive at the effective action expressed only in
terms of the h, fields

Suslhe, A]= / d'zh, [w-D—um ip,|h

2mq+iv-D
(8)

where the first term will provide the central contribution
to the heavy-quark potential while the second term is
responsible for the spin-dependent part.

Using the effective Lagrangian given in Eq. (8), we
can define the heavy quark propagator as

DA | ———————i, | S(z,y;A)=6* (z—y). (9)

2mQ+ vD'
If we assume that the heavy-quark mass is infinitely
heavy, then the heavy-quark propagator in the leading
order satisfies the following equation

(iv-D) S (w,y; A) =6 (z—y) (10)

and its solution in the rest frame v=(1,0) is found to be

Y4
So(%l/;AAL):PeXP (1/ dZ4A4) 5(3)(“3_?/)’ (11)
T4

where A, is the time component of the gluon field in
four-dimensional Euclidean space. Note that since we
consider the instanton field, which is the classical solu-
tion in Kuclidean space, we work in Euclidean space from
now on. Equation (11) implies that the heavy quark
propagates along the time direction. The full propaga-
tor S(z,y;A) is then expressed as an integral equation as
follows

Sy A) =Sy, A)— / 4250 (2,7 A)

[um nzzn} Seyid). (12)

2mq+iv-D
Since mq is rather heavy, we can expand the full propa-
gator (12) iteratively in powers of 1/mq, when we derive
the spin-dependent heavy-quark potential.

2.2 Heavy-quark potential from the instanton
vacuum

The static heavy-quark potential is defined as the ex-
pectation value of the Wilson loop in a manifestly gauge-
invariant manner

V)= lim Z{OT(We[AD)0),  (13)

where Wi [A] denotes the Wilson loop expressed as

We[A]=Pexp <1 j{c dzuAu(z)). (14)

The path is usually taken to be a large rectangle (7'xr)
as drawn in Fig. 1 with r=|z;—z:|=|y:—ya|.

(x,~T/2) ¥,772)
r A \4
(x,~T/2) < ,.T/2)
T
Fig. 1. The rectangular Wilson loop.

We first consider the central potential from the
instanton vacuum, restating briefly the results from
Ref. [59]. The leading-order expectation value of the
Wilson loop in Euclidean space is defined as

)= / DA, TrPexp (i fc dquu(x)) e” ™, (15)

where Sy is the Yang-Mills action for the gluon field.
The Wilson loop in the instanton medium can be written
as

(Wel4]

We (I, I]=Pexp i]{dtzaz,f : (16)
¢ I

where Cl]j:(buAij((E). I (I) denotes the instanton (anti-
instanton). Ai’f represent the instanton (anti-instanton)
solutions of which the explicit expressions can be found
in Appendix. The sum ) ;.01 stands for the superpo-
sition of N, instantons and N_ anti-instantons for the
classical gluon background field flu, which is written as

A=Y 0O+ alwd, ()

where & represents the set of collective coordinates for
the instanton, consisting of its center z;,,, the size p;, and
SU(N.,) orientation matrix with the number of colors N..

The integration over the gluon fields given in Eq. (15) is
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then replaced with the integrations over the set of collec-
tive coordinates of the instantons (anti-instantons) [59-
61] such that Eq. (15) can be understood as an average
over the instanton ensemble.

The leading-order heavy-quark propagator in the rest
frame is written in terms of the superposition of the in-

stantons
—1

S$ (@ ysar.0)=(y E—Zaﬁ,)ﬁle lz),  (18)
INg

where ay;)f represents the gluon field projected onto the
corresponding ith Wilson line. Since T — oo, we can
neglect the short sides of the rectangular path. The sep-
aration between the two long Wilson lines is given as r,
as shown in Fig. 1. Using Eqgs.(11) and (18), we can write
the Wilson loop along the rectangle shown in Fig. 1 as

TI'WC:<<TI' [S(gl) (mla_T/27y17T/2;aI,f)

XS (@2, T/2,2.T/2:01,0)] ) (19)
The double angle bracket {--) emphasizes the average
over the instanton ensemble. Each heavy-quark prop-
agator in Eq. (19) is expanded in powers of the instan-
ton and anti-instanton fields a%}z). Then the sum of the
planar diagrams is carried out, which is the leading or-
der in the 1/N, expansion [70]. Note that the instanton
vacuum has two parameters characterizing the dilute in-
stanton liquid [60, 71]: the average size of the instanton
p~0.33fm and the average separation between instan-
tons R=(N/V)~Y*~1fm, where the instanton density is
given as N/V ~(200MeV)*. It allows one to use N/V N,
as a small perturbation parameter. We refer to Ref. [59]
for further details of the calculation.

Using Eq. (A2), we can obtain the explicit form of
the central potential from the instanton vacuum as

N T/2 T/2 -
Vo= /d3zITrC [1—Pexp (1/ dx4A§i)> Pexp <—i/ dx4Aﬁ))] +(I—1)
2VNC —-T/2 —T/2

2N

| Z+7]

274=0

2

VN,

where z denotes the position of the instanton, which is
one of the collective coordinates for the instantons. The
trace Tr. runs over the colour space and r is the distance

d%z [1—cos 7?751 cos — —Z(E;FF_), sin — sin —
VIEE+72 VIgrrR+e2 | [ElET T VIER+? VIFHTR 4

7| 2471 ) (20)

|rewrite the potential in terms of the dimensionless inte-
gral I(z)

between the quark and antiquark. Further introducing v (7")*47TN p’ (r (21)
the dimensionless variables y=z/p and x=r/p, one can TUVN, p)’
oo 1 2 2
422422yt
I(z) = 2d / dt [1—cos ﬂi) cos | 7y | LT
() /O vy [ ( NEs) Yt +2ayt+1
y+at : y . y2+a2+2zyt
- s | — | |. 22
Vet ouyt Sm< N > Sm( \ 22yt 22)
As r goes to infinity, the potential is saturated to be a constant
hm Vc(’l"):2AMQ, (23)
where AMy, is the correction to the heavy-quark mass from the instanton vacuum [59]
AM, N /d3Tr 1-P '/ood A +(I—1)
= — —
Q 2VNC Z 1T, exp |1 LaAgy
- z4=0
8N p? T T 47N p? 1
= dyy®( 1 =— J —J 24
o [[an? (1reos )= RE (w4 L (24)
0

calculated using again Eq. (A2). The average size of the
instanton is regarded as the renormalization scale of the
instanton vacuum [61, 72]. Keeping in mind the fact

that the current quark mass is scale-dependent and its
value is usually given at u=m,, certain scaling effects
arising from the renormalization group equation for the

083102-4



Chinese Physics C  Vol. 41, No. 8 (2017) 083102

quark mass should be taken into account in order to es-
timate the effects on the heavy-quark mass from the in-
stanton vacuum. The instanton effects should be slightly
decreased when one matches the scale of AMq to the
charmed quark mass given in Ref. [73].

We are now in a position to consider the spin-
dependent parts of the heavy-quark potential. The
general procedure is very similar to what was done in
Eq. (19). Since we consider now the finite heavy-quark
mass, we need to use the full propagator given in Eq. (12)
instead of the leading one. That is, we calculate the two
Wilson lines as

TI'WC:<<TI' [S(l) (m27 _T/2ay2aT/2;aI,f)

xSO (@, ~T/2y0,T/2a)] ). (25)

Considering the fact that 1/mq can be regarded as a
small parameter, we can expand the full propagators in
Eq. (25) iteratively in powers of 1/mq. Using the rela-
tions given in Eq. (6), we first expand the term between
So and S in powers of 1/mq

1 1
. 7. m— _D2 .B
llDLQmQ-Fi’U-DlmL Smg D toB)
1
+ oz B+ (EXD)]. (20

Then, the heavy-quark propagator for the ith Wilson
loop can be iteratively expressed in powers of 1/mq as

; i 1 i i
S (z,y; A)~S§ )(:c,y;A)—W/d“nSé '(z,m;A4)(—~D*+0,-B)S§” (n,y; A)

Q

L / 'S (2., A)(D-D+0,-(Ex D))S (1,5 A)

2
4mg,

+

2
4mg,

/d477d477’9(772—774)53”(:vm;A)(—DzﬂLai-B)Séi)(n,n’;A)(—DerU@--B)Séi)(nﬁy;A)-

Replacing the full propagator in Eq. (25) with Eq. (27), we obtain the following expression

Tch:<<Tr [Sg” (@1,~T/2,9:,T/2;a,1)S (:cQ,—T/z,yQ,T/z;a,,,—)ﬂ >>

2
4mj

/ atndy (Tr[S§0 @1, —~T/2,mm0500,0)(~D*+01-B)S( (s, T/ 2501,1)

x S5 (@2,~T/2,m,m1301,1)(~D*+05-B)S;” (n7n4,y17T/2;a1f)} >>

_ 1
4mg,
X 5(52)(7%774792711/2;@1,17‘)} >>
_ 1
4mg,
X S (@2, ~T/2,9.T/2a1.0)] )

—<<Tr SN (@1, —T/2,91,T/2;a; 1) / d*nS$? (@y,—T/2,m,m4;01.1)(E-D+05-(Ex D))

—<<T / d*n 8§ (x,—T/2,m,m550,.1) (B-D+0,-(ExD))S" (n,m:,y1,T/2%a1.1)

1 [ ,
+1 <<Tr Sél)(wl—T/2,y1,T/2;az,f)/d477d477 S§ (@2,—~T/2,m,ms301.1)(— D*+02-B)

4mj

X S(g2) (77a774a77/7774/;§a1,f)(_D2+‘72'B)S(52) (nlvnzllay2aT/2;an):| >>

1

+—
4mg,
(_

X D2+0-1B)S(gl) (,’7,7774,17 7y17T/2;aI,I_)S(gz) ($27 _T/27y27T/2;aI,I_):| >> .

Note that here we consider only the spin-dependent
parts. For example, we can exclude the spin-independent
term D?/2mgq, which is just the kinetic energy, and that
proportional to o-B, which disappears because of parity

<<r:[‘r [/d477d477/5(gl) (wlu_T/27nun4>a1,f)(_D2+o'1B)S(gl)(n7n4unl7n:pal,f)

(28)

| invariance [68]. We can further simplify Eq. (28), leaving

all spin-independent parts out, which are just part of the
relativistic corrections to the potential. Taking only the
spin-dependent parts into account, we obtain
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TrVVé/m2Q =

Q

1 ’
4m2 /d4"7d4"7 <<TI‘ [Sél)(mla_T/27nan4;a’1,f)(_D2)S(gl)(77?7745y17T/2;a1,f)

X Séz)(wza—T/QJNM;al,f)(Uz'B)Séz)(7777747y1aT/2;a1,f)}

+Tr [551)(%—T/27nm4;az,f)(01-B)Sé” (M:04,y1,T/2;01.1)
% S (@2,~T/2,mm03a1,0) (=D)SE (M. ya, T/ 2ia1.)| )
+Tr [Sél)(mla—T/2777ﬂ]4§af,1’)(‘71'B)Sél) (m,n4,91,T/2;a51)

X S(SZ) ($27_T/27nan4;aI,I_)(GTB)S(SQ) (,’777747y17T/2;aI’I_):| >>

- 2
4mg,

<<Tr [Sé” (1,—T/2,91,T/2;a; 1)

< / A0S (@0—T /2301 1) (02 (ExD))SE <n,n4,y2,T/2;a,,,—>] >>

1

T A2
4mg,

X S’éz)(wQ,—T/27y2,T/2;an)] >>

The final expression for Wé/mé contains 1/mg, so that
we can expand the exponential of Eq. (13) in powers of
1/mg,. Then, Eq. (29) will lead to the spin-dependent
parts of the heavy-quark potential from the instanton
vacuum. The derivation of the potential from Eq. (29) is
lengthy but straightforward. In Ref. [58], it was shown
in detail how one can obtain the spin-dependent parts
of the heavy-quark potential in QCD. Since the form
of Eq. (29) is very similar to the corresponding one in
Ref. [58], we will closely follow the method of Ref. [58]
and refer to it. The leading-order propagator given in
Eq. (11) is identified as the path-order exponential along
the time direction apart from the Dirac delta function.
Using the identities for the path-ordered exponentials
given in the Appendix, we can proceed to compute each
term in Eq. (29). Note that the instanton satisfies the
self-duality condition G2, =+G¢, (B=+E), which plays
an essential role in deriving the spin-dependent potential
from the instanton vacuum. It makes it possible to re-
late several independent potentials to the central poten-
tial given in Eq. (21). As a result, all the spin-dependent
potentials are expressed in terms of the central potential

1 1dVe(r) o0
VSD(T):%(Ll'Uz—Lz'OH); e 12m3 V2Ve(r)
1d d2
+3mé (3o, moyn—0,-0;) (;E—ﬁ) Vo (r),

(30)

where L; and o; represent respectively the orbital angu-
lar momentum and the Pauli spin operator of the corre-
sponding heavy quark, and n designates the unit radial
vector. The potential Vi (r) denotes the central part of

<<’I‘I‘ [/d4775(gl) (wl—T/277Ia774,G1j)(0'1(EXD))S(SU(77;7747917T/2»a1j)

(29)

the potential that we already have shown in Eq. (21). We
have used mqg=mgq. If one considers two heavy quarks
with different masses, we can simply replace m2Q with
mqmg in Eq. (30).

The spin-dependent potential Vsp can be now de-
composed into three different parts, i.e., the spin-spin
interaction Vsg(r), the spin-orbit coupling term Vi 5(r),
and the tensor part Vi (r):

Vaq(r)=Ve(r)+Vss(r)(SqSq)+Vis(r)(L-S)
+Vr(r)[3(Sqm)(Sqn)—Sq-Sql, (31)

where Sqq) stands for the spin of a heavy quark (heavy
anti-quark) Sqq) = 01(2)/2, S is their total spin S =
S1+4+S,, and L represents the relative orbital angular
momentum L =L, —L,. Each potential of Eq. (31) is
defined respectively as

1
Vss(’r):3mé VQVC(’I"),
1 1dVe(r)
VLS(T)_QmQQ r dr
1 1 dVC (7") d2VC (T)
‘/:‘F(r):3m(2Q (; dr  dr? ' (82)

Thus, all three components of the spin-dependent poten-
tial are expressed in terms of the central potential V(7).

3 Numerical calculations, results and

discussions
3.1 Instanton potential
In the instanton liquid model for the QCD vac-

uum, we have two important parameters, i.e., the av-
erage size of the instanton p~ 0.33fm and the average
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distance R ~ 1fm between instantons, as we have al-
ready mentioned. These numbers were first proposed by
Shuryak [71] within the instanton liquid model and were
derived from Az by Diakonov and Petrov [60]. Thus,
it is also of great interest to look into the dependence
of the heavy-quark potential from the instanton vacuum
on these parameters. Moreover, the values given above
should not be considered as the exact ones. For exam-
ple, Refs. [80-82] considered 1/N, meson-loop contribu-
tions in the light-quark sector and found it necessesary
to readjust the values of the parameters as p~0.35fm
and R~ 0.856fm. Lattice simulations of the instanton
vacuum suggested p = 0.36fm and R~ 0.89fm [83-86],
which is almost the same as those with the 1/N, meson-
loop corrections. Thus, we want to examine the depen-
dence of the heavy-quark potential from the instanton
vacuum on three different sets of parameters, that is,
Set I [60, 71], Set IIa [80-82], and Set IIb [83-86]. The
parameter dependence of the potential can be easily un-
derstood from the form of the leading-order potential
expressed in Eq. (21). While the prefactor p°/R'N,,
which includes both the parameters, governs the over-
all strength of the potential, its range is dictated only by
the instanton size p through the dimensionless integral
1(r/p).

When the quark-antiquark distance is smaller than
the instanton size, i.e., r<p (x<1), one can expand the
dimensionless integral I(z) with respect to x

30720 80

which yields the central potential in the form of a poly-
nomial

[_ 7 (438+7m%) J2(2“)} 2'+0(2%),  (33)

T R*N.,
As the distance between the quark and the antiquark

grows larger than the intstanton size, i.e. r>p (x>>1),
we again get an analytic expression as follows

1@):-%”2 [ﬂJo(n)—i-Jl (n)] —;‘—;w(ﬂ). (35)

Amp® 2 ’
Ve(r)~ tp 1_3457:——0.5017:— . (34)
p* p

Consequently, the central potential at large r can be ap-
proximately written as

V(r)~2AMy— 22 (36)

r

The second term behaves like a Coulomb-like poten-
tial. So, crudely speaking, this can be understood as
a nonperturbative contribution to the perturbative one
gluon exchange potential from the instanton vauum at
large r. The coupling constant gye in Eq.(36), which
is defined as gnp := 2mp*/(N.R*), could be regarded

as a nonperturbative correction to the strong coupling
constant a,(r). When r goes to infinity, r — oo, the
potential is saturated at the value of 2AMq. As dis-
cussed already in Ref. [59], this implies that the instan-
ton vacuum cannot explain quark confinement. In the
case of parameter Set I, which is often considered in
the light-quark sector, the value of AMq is found to be
AMqg~66.6MeV. However, if one chooses Set Ila, then
the result becomes AMq~143.06MeV. The Set IIb pro-
duces AMq~135.72MeV.

Figure 2 shows the r dependence of each term of the
heavy-quark potentials from the instanton vacuum. We
consider the charm quark sector as an example. We
also show the dependence of each term of the potential
on two different sets of parameters, that is, Set I and
Set IIb. One can see that the central part of the po-
tential increases monotonically at small distances r < p
and later becomes almost linear at distances compara-
ble with the instanton size r ~ p, as already discussed
in Ref. [59]. At large r > p it starts to get saturated
at the value Vo (r — o0) ~ 133.2MeV with Set I and
Vo (r—o00)~271.44 MeV with Set ITb. The spin-spin in-
teraction part is of particular interest among these con-
tributions to the spin-dependent potential. In pQCD,
it is given as a point-like interaction [87] at leading or-
der. The spin-spin interaction from the instanton vac-
uum, though, looks similar to a Gaussian-type interac-
tion. The spin-orbit potential behaves in a similar way
to the spin-spin potential. The tensor interaction, how-
ever, shows a different r dependence. As r increases,
the tensor potential vanishes at » =0 and then starts
to increase until r~0.4fm, from which it begins to fall
off. The strength of each part of the potential become
stronger when a smaller value of R is employed, since all
terms turn out to be very sensitive to R on account of
the prefactor p®/R*N.. This implies that a less dilute
instanton medium yields stronger interactions between a
heavy quark and a heavy antiquark. However, one has
to keep in mind that the value of R should not be con-
tinually decreased, because the whole framework of the
instanton liquid model is based on the diluteness of the
instanton medium, where the packing parameter propor-
tional to (p/R)* must be kept small.

The change of the p value seems less effective in the
spin-dependent parts of the potential, however. This is
again due to the fact that all spin-dependent parts have
the prefactor p/R*N,, where instanton size appears in
the first order, after rewriting the spin-dependent parts
in terms of the dimensionless integral I(z) (see Eq. (22))
and its derivatives. As mentioned in the previous section,
the average size of the instanton has a physical meaning
as the renormalization scale [61, 72], which is a crucial
virtue of the instanton liquid model. Thus, p=0.33fm
indicates a renormalization scale =600 MeV. Bearing
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Fig. 2. Each contribution to the heavy-quark potential as a function of r for the two different sets of instanton
parameters p and R. The upper-left panel depicts the central part of the potential, the upper-right panel the
spin-spin interaction, the lower-left panel the spin-orbit part, and the lower-right one the tensor interaction. The
solid curve corresponds to Set I with p=0.33 fm and R=1fm from the phenomenology [60, 71], whereas the dashed
one corresponds to Set IIb with p=0.36 fm and R=0.89fm from the lattice simulations [83-86]. The mass of the
charm quark is chosen to be m.=1275 MeV.

in mind this meaning of p, we should not take the value of  values. In the case of the bottom quarks and anti-quarks,
p freely. Note that the value of p~'=600MeV implies the  the instanton effects are highly suppressed because of the
strong coupling constant is frozen at p~*. Thus, Fig. 2  large bottom quark mass.

shows the dependence of the heavy-quark potential on For completeness, we provide the expression for the
both p and R within the range of constraints on theirl matrix elements of the QQ potential in Eq. (31)

1
3[J(J+1)~L(L4+1)—S(S+1)][J(J+1)~L(L+1)—S(S+1)+1]
X{_ 22L—1)(2L+3)
25(S+1)L(L+1)
(2L—1)(2L+3) }VT(T)’

(57 L Vo) 7 L) =V ()4 5 S(S1)= 3 Vas(r) 4 3 UU+D - LE41) - S(S+1]Vis (1)

(37)

where we have used the conventional spectroscopic nota- |3.2 Gaussian expansion method
tion 2°*1L ; given in terms of the total spin S, the orbital
angular momentum L, and the total angular momentum

J satisfying the relation J—=IL+S. In order to evaluate the bound states in the spectrum

of quarkonia, we need to solve the Schrodinger equation
with the potential from the instanton vacuum given in
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Eq. (31)
R,
——V +VQQ(T)—E !pJM(,r):(L (38)
mq

where mq arises from the doubled reduced mass of the
quarkonium system and Wy, represents the wave func-
tion of the state with total angular momentum J and
its third component M. We can solve Eq. (38) nu-
merically, using the Gaussian expansion method (see
review in Ref. [89]) in which the wave function is ex-
panded in terms of a set of L?-integrable basis functions
(B3, in=1—Tas}

Wyn(r)=Y _ CVLs®%% () (39)

n=1

and the Rayleigh-Ritz variational principle is employed.
Thus, one can formulate a generalized eigenvalue prob-
lem given as

Mmax

Z <¢§i{,n

m=1

hQ
—m—QV2+VQQ(7’)—E‘¢§f4,m>ofyl],)Ls—0-

(40)

The normalized radial part of the basis wave functions
E(r) is expressed in terms of the Gaussian basis func-

tions
1/2
92L+% .—2L-3 )
L) n La=(r/rn)
o lr)= < ﬁ(2L+1)!!> e, W)

where r,,n=1,2,--+ ,Ny,. stand for variational parame-
ters. In the case of a two-body problem, the total number
of variational parameters can be reduced by choosing the
geometric progression in the form of r, =r;a™"*, which
produces a good convergence of the results. Thus, we
need only three variational parameters, i.e. r;, a and

nmax .
3.3 Quarkonium states

We already mentioned that at large distance the in-
stanton potential is saturated, so that there is no con-
finement in the present approach. The bound or quasi-
bound charmonium states with masses below or around
the threshold mass Mqq~2(mA4AMg), where m.=1275
is the charm quark mass [73], are listed in Table 1 with
the two different sets of the instanton parameters. Other

states above threshold will appear as resonances in the
present approach.

One can see that the instanton effects are not small
in reproducing the mass of quarkonia. For example, in
the case of the potential with parameter Set I, the con-
tribution to the mass of a charmonium is determined
by AM = M. —2m.. For example, the contribution
of the instanton effects to the 7. mass turns out to be
118.81 MeV, which is approximately about 30% of the
experimental value 433.60 MeV. As discussed already,
the potential from the instanton vacuum is sensitive to
the instanton parameters. Therefore, a change in the in-
stanton parameters strongly affects the spectrum of QQ
states. For example, parameter Set IIb gives the result
AM,, ~203.64 MeV, which is almost 50% of the exper-
imental value. Parameter Set Ila gives slightly larger
results than Set IIb. When it comes to the J/{ state,
the instanton effects on the QQ mass becomes smaller
in comparison with the experimental data. However,
it is still important to consider them, since AMj,y, is
119.57 MeV (205.36 MeV) with Set I (Set IIb) used,
compared with the experimental value 540.92 MeV. On
the other hand, we obtain AM,  ~142.43 MeV (Set I)
and AM, , ~250.86 MeV (Set IIb). Parameter Set I
reproduces X0, X1 and X.o as quasibound states while
parameter Set IIb yields them as definite bound states.

It is of also interest to discuss the effects of the in-
stanton vacuum on the hyperfine mass splitting. The
contribution to the hyperfine mass splitting of each low-
lying charmonium state is listed in Table 2.

While the instanton effects come into play signifi-
cantly in AM_, they turn out to be rather small in de-
scribing the hyperfine mass splittings of the charmonia.
This might be due to the spin-dependent part of the po-
tential from the instanton vacuum being almost an order
of magnitude smaller than the central part. The tensor
interaction contributes almost nothing to the results. As
a result, the instanton effects on the hyperfine mass split-
tings are almost negligible. In order to obtain realistic
results of the hyperfine mass splittings as well as of the
charmonium masses, we need to include the Coulomb-
like potential coming from the perturbative one gluon-
exchange and the confining potential together with that
from the instanton vacuum.

Table 1. Low-lying charmonium states from the instanton potential. Charm quark mass is set to be m.=1275 MeV.
this work this work
Set 1 Set IIb experiment [73]/MeV
p=1/3 fm,R=1 fm [60, 71]/MeV 5=0.36 fm,R=0.89 fm [83-86]/MeV
My, 2668.81 2753.64 2983.61+0.6
Mj 2669.57 2755.36 3096.916+0.11
My, 2692.43 2800.86 3414.7540.31
My, 2692.50 2801.11 3510.6640.07
My 5 2692.67 2801.70 3556.20+0.09
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Table 2. Contributions to the hyperfine mass splittings of the low-lying charmonium states. Charm quark mass is
set to be m.=1275 MeV.
this work this work
Set I Set IIb experiment [73]/MeV
p=1/3 fm, R=1 fm [60, 71]/MeV $=0.36 fm,R=0.89 fm [83-86]/MeV

AM; /4y 0.72 1.72 113.32 £ 0.70
AM,y,, oo 0.07 0.25 95.91 + 0.32
AMy .o 0.24 0.84 141.45 + 0.32
AMy ) oy 0.16 0.59 45.54 + 0.11

Table 3. Low-lying bottomonium states from the with the heavy-quark potential purely induced by the

instanton potential. Charm quark mass is set to
be mp=4180 MeV.

this work
Set 1 experiment [73] /MeV
p=1/3 fm, R=1 fm [60, 71]/MeV
My, 8454.58 9399.0+£2.3
M~y 8454.76 9460.30+0.26
My 8477.95 9859.44+0.52
My, 8477.97 9892.78+0.40
My, 8478.01 9912.21+0.40

4 Summary and outlook

In the present work, we aimed at investigating the
instanton effects on the heavy-quark potential, based
on the instanton liquid model. We first considered
the heavy-quark propagator starting from the QCD La-
grangian, which is essential in deriving the heavy-quark
potential. We showed briefly how to construct the heavy-
quark potential from the instanton vacuum. Expanding
the heavy-quark propagator in powers of the inverse mass
of the heavy quark, we obtained the spin-dependent parts
of the heavy-quark potential. We studied the depen-
dence of the heavy-quark potential on the two essential
parameters for the instanton vacuum, that is, the aver-
age size of the instanton (p) and the distance between
the instantons (R). The results of the potential are very
sensitive to the parameter R, while they vary marginally
with changes in p. The spin-spin interaction shows r
dependence similar to a Gaussian-type potential, which
is distinguished from the point-like spin-spin interaction
derived from perturbative QCD. The spin-orbit poten-
tial behaves like the spin-spin interaction, whereas the
tensor potential is different. It increases until r reaches
approximately 0.4 fm and then starts to fall off.

Having explicitly solved the Schrddinger equation

instantons, we discussed the masses of the low-lying
quarkonia. The instanton contribution to the hyperfine
mass splitting turns out to be tiny due to the smallness
of the spin-dependent part of the potential. We also
discussed the dependence of the results on the intrinsic
parameters of the instanton vacuum, i.e. the average size
of the instanton and the distance between instantons.

It is of great importance to study carefully the mass
spectra of the quarkonia and their decays by explicitly
solving the Schrédinger equation, combining the heavy-
quark potential derived in the present work with the
confining and Coulomb potentials. Considering the fact
that the instanton vacuum plays a key role in realiz-
ing chiral symmetry and its spontaneous breaking in
QCD, nonperturbative gluon dynamics is expected to
shed light on strong decays of quarkonia involving pions.
Since the central part of the heavy-quark potential was
derived by using the small packing parameter N/V N,
we can obtain the corrections from the next-to-leading
order (N/VN.)?. In principle, it is not that difficult
to compute them. Starting from the instanton oper-
ator corresponding to the Wilson line (see Eq.(17) in
Ref. [59]), we can consider the next-to-leading order in
the expansion with respect to the small packing param-
eter of the instanton medium. Though the corrections
from the next-to-leading order might be very small, one
could use it for fine-tuning of the mass spectrum of the
quarkonia. The corresponding investigations are under
way.

HChK wants to express his gratitude to A. Hosaka,
M. Oka, and Q. Zhao for very useful comments and
discussions at “The 31st Reimei Workshop on Hadron
Physics in Ezxtreme Conditions at J-PARC”. HChK owes
also a debt of thanks to the late D. Diakonov and V.
Petrov for invaluable discussions and suggestions.
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Appendix A
Useful formulae

Using the instanton and anti-instanton fields

_wen s
= 22(x24p2)’

—a _a 2
_ Tl T P

= 22 (g2 p2) (A1)

where 7, and 7, denote the 't Hooft symbols [88], we can
easily derive the path-ordered exponential as follows [59]

Pexp (1/ dx4A14) =—cos &
— 0o /p2+22

Tz, 7| 2]

—1WSIH (\/ﬁ) ) (A2)
which is used for deriving the heavy-quark potential and the
instanton corrections to the heavy-quark mass.

The leading-order propagator given in Eq. (11) is the
same as the path-ordered exponential, apart from the Dirac
delta function. Thus, it is of great use to consider the identi-
ties derived in Ref. [58] for the path-order exponentials when

we compute the spin-dependent parts of the heavy-quark po-
tential. Defining the path-ordered exponential as

Y4

P(w4,y1):=Pexp (i / 4 dZ4A4(z))7 (A3)

we have the following identities

P(z4,y4)P(ya,24)=P(z4,24),
Di(24) P(24,y4)— P(24,y4) D" (ya)
:/ 4dzP(x4,z)E¢(Z)P(Zay4)v

4

P(y,t;z,t) Di(z,t) P(z,t;y,t)=D;i(y,t)

_Eijk/() doz(m—y)j[P(y,t;z,t)Bk(zJ)P(z,t;y,t)], (A4)

where z=ay+(1—a)x. D; denotes the spatial component
of the covariant derivative. When time ¢ goes to infinity, i.e.
t:i%—wo, the third identity is simplified to be

lim P(y,t;z,t)D(x,t)P(z,t;y,t)=iV,.

[t|—o0

(A5)
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