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Abstract: It has recently been pointed out that, under certain conditions, the energy of particles accelerated by

black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two

particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged

rotating Kaluza-Klein black holes as well as the naked singularity case in Einstein-Maxwell-dilaton theory. We find

that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating

Kaluza-Klein black holes, extremal charged rotating Kaluza-Klein black holes and in the naked singularity case.

Keywords: black hole, particles accelerator, center-of-mass energy

PACS: 97.60.Lf, 04.70.-s, 04.50.Cd DOI: 10.1088/1674-1137/41/6/065101

1 Introduction

The Planck scale defines the meeting point of gravity
and quantum mechanics. The probe of the Planck-scale
physics also contributes to the discovery of extra dimen-
sions of space-time and the Grand Unification Theory.
However, compared with the Planck energy of 1016 TeV,
the largest terrestrial accelerator, the Large Hadron Col-
lider, which can detect physics at collision energies of or-
der 101 TeV, is too low to probe Planck-scale physics.
There is a very, very large gap between the Planck scale
and our current experimental techniques. So some other
new physics mechanisms should be proposed for probing
Planck-scale physics. The collision of particles around a
black hole may provide a possible detection.

Bañados, Silk and West (BSW) [1] recently investi-
gated the maximum center-of-mass energy of particles
colliding around a Kerr black hole. Their result showed
that the maximum energy grows with a, which is the
unit angular momentum of the black hole. Remarkably,
as the black hole becomes extremal, they found a fas-
cinating and important property of the extremal Kerr
black hole, that two particles freely falling from rest at
spatial infinity can collide at the horizon with arbitrar-
ily high center-of-mass (CM) energy. Such a black hole
could serve as a particle accelerator and may provide a
visible probe of Planck-scale physics. To achieve that,

the black hole must have a maximized angular momen-
tum and one of the colliding particles should have orbital
angular momentum per unit rest mass l = 2. Subse-
quently, in Refs. [2, 3], the authors argued that the CM
energy is in fact limited, because there is always a small
deviation of the spin of an astrophysical black hole from
its maximal value. According to the work of Thorne
[23], the dimensionless spin of astrophysical black holes
should not exceed a = 0.998. In terms of the small pa-
rameter ε = 1−a, Jacobson and Sotiriou got the maximal

CM energy
Emax

CM

m0

∼ 4.06ε−1/4 +O(ε1/4) in Ref. [3]. Tak-

ing a = 0.998 as a limit, one can obtain the maximal
CM energy per unit mass 19.20, which is a finite value.
Meanwhile, Lake showed that the CM energy of the col-
lision at the inner horizon of the black hole is generically
divergent [4] and the colliding particles can have arbi-
trary angular momentum per unit rest mass that could
fall into the black hole. But he claimed soon after [4]
that the collision at the inner horizon actually could not
take place [5], which leads to no divergence of the CM
energy. On the other hand, Grib and Pavlov suggested
that the CM energy can be unlimited in the case of mul-
tiple scattering [6–9]. The universal property of accel-
eration of particles for black holes was investigated in
Refs. [10–12]. In Refs. [13, 14], the property of the CM
energy for two colliding particles in the background of a
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charged spinning black hole was discussed. One of the
important results of [13, 14] is that the CM energy can
still be unlimited despite the deviation of the spin from
its maximal value. The BSW approach was then applied
to the collision of particles plunging from the innermost
stable circular orbit and last stable orbit near the hori-
zon in Refs. [15, 16]. There are also some investigations
on naked singularities [17–20] and (anti-) de Sitter back-
grounds [21].

In this paper, we will investigate the property
of the collision of particles in the background of
Einstein-Maxwell-dilaton gravity. Firstly we calcu-
late geodesic equations in Kaluza-Klein spacetime in
Einstein-Maxwell-dilaton theory. Then, we study the
CM energy for collisions taking place at the horizon of
three cases of Kaluza-Klein black holes. We find the CM
energy is unlimited for a pair of point particles collid-
ing at the horizon, with some fine tuning for the charged
nonrotating case and the extremal rotating case. The re-
sult of the near-extremal case shows that the CM energy
is in fact limited because the critical angular momen-
tum is too large for the geodesics of particles to reach
the horizon. Then we obtain the numerical result of the
maximal CM energy per unit mass for some different
value of ε = 1−a in the case of a near-extremal Kaluza-
Klein black hole, due to the difficulty in finding the exact
result. Lastly, the Kaluza-Klein naked singularity is also
considered in the present work. We find that the CM en-
ergy of collision between two particles can be arbitrarily
high in this case.

This paper is organized as follows. In Section 2,
we give a brief review of four-dimensional Kaluza-Klein
black holes and obtain the geodesic equations in the
background of Kaluza-Klein spacetime. In Section 3, we
study the CM energy for collisions taking place at the
horizon for different cases of Kaluza-Klein black holes
and in the naked singularity case. The last section is
devoted to discussion and conclusions.

2 Geodesic equations in Kaluza-Klein

spacetime

We begin with a brief review of the Kaluza-Klein
black hole. It is derived by a dimensional reduction of
the boosted five-dimensional Kerr solution to four dimen-
sions. It is an exact solution of Einstein-Maxwell-Dilaton
theory. The metric is explicitly given by [22]

ds2 =−1−Z

B
dt2− 2aZ sin2 θ

B
√

1−ν2
dtdϕ+

BΣ

∆
dr2 +BΣdθ2

+

[

B(r2 +a2)+a2 sin2 θ
Z

B

]

sin2 θdϕ2 , (1)

where

Z =
2µr

Σ
,

B =

√

1+
ν2Z

1−ν2
,

Σ = r2 +a2 cos2 θ ,

∆ = r2−2µr+a2. (2)

The gauge potential is

A =
ν

2(1−ν2)

Z

B2
dt− aν sin2 θ

2
√

1−ν2

Z

B2
dϕ . (3)

The physical mass M , the charge Q, and the angular mo-
mentum J are expressed in terms of the boost parameter
ν, the mass parameter µ, and the specific angular mo-
mentum a as

M =µ

[

1+
ν2

2(1−ν2)

]

,

Q=
µν

1−ν2
,

J =
µa√
1−ν2

. (4)

The outer and inner horizons are respectively defined at

r± = µ±
√

µ2−a2 . (5)

Thus, µ = a corresponds to the extremal black hole with
one degenerate horizon. The components of the inverse
metric are

gtt =−
B(r2 +a2)+a2 sin2 θ

Z

B
∆

,

grr =
∆

BΣ
,gθθ =

1

BΣ
,

gϕϕ =
1−Z

B∆sin2 θ
,gtϕ =− aZ

B∆
√

1−ν2
. (6)

Because there are two Killing vectors

(

∂

∂t

)µ

and
(

∂

∂ϕ

)µ

, we have two conserved quantities along a

geodesic motion for a test particle with charge e as fol-
lows

E =−gµσ

(

∂

∂t

)µ

[uσ +eAσ] =−(gttṫ+gtϕϕ̇−eAt) ,(7)

L= gµσ

(

∂

∂ϕ

)µ

[uσ +eAσ] = gtϕṫ+gϕϕϕ̇−eAϕ , (8)

where E and L correspond to the constant energy and
angular momentum along a geodesic motion, respec-
tively. It is easy to solve the above equations for ṫ and
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ϕ̇ as

ṫ=
B(r2 +a2)+a2

Z

B
sin2 θ

∆
(E−eAt)

− aZ

B∆
√

1−ν2
(L+eAϕ) ,

ϕ̇=
aZ

B∆
√

1−ν2
(E−eAt)+

1−Z

B∆sin2 θ
(L+eAϕ) . (9)

Substituting these solutions into the normalization con-

dition gµνu
µuν =−1 on the equatorial plane, θ =

π

2
and

θ̇ = 0, one will arrive at

ṙ =
∆

BΣ
R(r) , (10)

where

∆

BΣ
R2(r)=

B(r2 +a2)+a2
Z

B
∆

(E−eAt)
2

−2
aZ

B∆
√

1−ν2
(E−eAt)(L+eAϕ)

−1−Z

B∆
(L+eAϕ)2−1 . (11)

Now we have solved the geodesic equations on the equa-
torial plane in Kaluza-Klein spacetime. In the next sec-
tion, we will turn to the CM energy for particles colliding
in this background.

3 Center-of-mass energy for collisions in

Kaluza-Klein spacetime

The energy in the center-of-mass frame for a pair of
point particles colliding is computed by the formula [1]

ECM =
√

2m0

√

1−gµνu
µ
1uν

2 , (12)

where uµ
1 and uν

2 are the 4-velocities of the two particles.
For the case that the particles begin at rest at infinity
and the collision energy comes solely from gravitational
acceleration, the particles follow geodesics with energy
E > 1. Consider two particles coming from infinity with
E1 = E2 = 1 and approaching the black hole with differ-
ent angular momenta L1 and L2. Taking into account the
metric of the Kaluza-Klein black hole (1) on the equa-
torial plane, we obtain the CM energy for collision with
the help of (9) (10) and (12)

E2
CM

2m2
0

= 1+
K

B∆
, (13)

where

K =[B2(r2 +a2)+a2Z](1−e1At)(1−e2At)

+(Z−1)(L1 +e1Aϕ)(L2 +e2Aϕ)

− aZ√
1−ν2

[(1−e1At)(L2 +e2Aϕ)

+(1−e2At)(L1 +e1Aϕ)]

−
{

[B2(r2 +a2)+a2Z](1−e1At)
2

+(Z−1)(L1 +e1Aϕ)2

− 2aZ√
1−ν2

(1−e1At)(L1 +e1Aϕ)−B∆

} 1
2

×
{

[B2(r2 +a2)+a2Z](1−e2At)
2

+(Z−1)(L2 +e2Aϕ)2

− 2aZ√
1−ν2

(1−e2At)(L2 +e2Aϕ)−B∆

} 1
2

. (14)

We have obtained the CM energy of two colliding par-
ticles in Kaluza-Klein spacetime. Now we are ready to
investigate the CM energy for different cases of Kaluza-
Klein black holes and for the naked singularity case.

3.1 Charged nonrotating Kaluza-Klein black

hole

The acceleration of particles by a Reissner-Nordström
black hole has been discussed in Ref. [11]. Charged non-
rotating Kaluza-Klein spacetime is very different from
the Reissner-Nordström case because there is only one
event horizon, which leads to the absence of an extremal
nonrotating Kaluza-Klein black hole. The metric of the
charged nonrotating Kaluza-Klein spacetime is

ds2 =− ∆

r2B
dt2 +

r2B

∆
dr2 +Br2dθ2 +Br2 sin2 θdϕ2, (15)

where

B =

√

1+
ν2Z

1−ν2
,

Z =
2µ

r
,

∆ = r2−2µr . (16)

The gauge potential is given by

A =
ν

2(1−ν2)

Z

B2
dt . (17)

The horizon lies at rh = 2µ. According to Eq. (13) and
Eq. (14), we can obtain the CM energy of two radial mo-
tion particles colliding in charged nonrotating Kaluza-
Klein spacetime as
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E2
CM

2m2
0

= 1+
K1

B∆
, (18)

where

K1 = B2r2(1−e1At)(1−e2At)

−
√

[B2r2(1−e1At)2−B∆][B2r2(1−e2At)2−B∆].

(19)

It appears that E2
CM diverges at r = rh, but this is not

true because, although not totally obvious, the numer-
ator vanishes at that point as well. After some calcula-
tions, the CM energy is

E2
CM

2m2
0

=1+
1

2





1−e2

ν

2

1−e1

ν

2

+
1−e1

ν

2

1−e2

ν

2



 . (20)

If one of the particles participating in the collision has

the critical charge e =
2

ν
, the CM energy will blow up

at the horizon. Thus we have shown that non-extremal
black holes could also serve as particle accelerators and
provide a visible probe of Planck-scale physics.

3.2 Extremal charged rotating Kaluza-Klein

black hole

In the case a = µ, which corresponds to the extremal
Kaluza-Klein black hole, we obtain the form of the CM
energy of two uncharged particles colliding at the degen-
erate horizon, after some tedious calculations, as:

EKK
CM(r→ r+)

=
√

2m0









1+
(1+ν2)(L1−L2)

2

2
√

1−ν4

(

L1−
2µ√
1−ν2

)(

L2−
2µ√
1−ν2

)

+
1

2









L1−
2µ√
1−ν2

L2−
2µ√
1−ν2

+

L2−
2µ√
1−ν2

L1−
2µ√
1−ν2

















1
2

, (21)

Clearly, when L1 or L2 takes the critical angular mo-

mentum Lc =
2µ√
1−ν2

, the CM energy EKK
CM will be un-

limited, which means that the particles can collide with
arbitrarily high CM energy at the horizon. We expect
that, in the case ν = 0, the CM energy (21) in the back-
ground of a Kaluza-Klein black hole should reduce to
the one in the background of a Kerr black hole. After
some calculations, we find that the CM energy is exactly
consistent with that of Ref. [1] in the case ν = 0.

We plot ṙ2 and EKK
CM in Fig. 1 and Fig. 2, from which

we can see that there exists a critical angular momentum

Lc =
2µ√
1−ν2

for the geodesics of particle to reach the

horizon. If L > Lc, the geodesics never reach the hori-
zon. On the other hand, if the angular momentum is too
small, the particle will fall into the black hole and the
CM energy for the collision is limited. However, when

L1 or L2 takes the angular momentum L =
2µ√
1−ν2

, the

CM energy is unlimited. As a result, it may provide a
unique probe for Planck-scale physics.

Fig. 1. (color online) For an extremal Kaluza-Klein Black hole with J =

√

3

4
and M = 1, (a) the variation of s = ṙ

2

with radius for three different values of angular momentum, and (b) the variation of E
KK
CM with radius for three

combinations of L1 and L2. For L1 =Lc, E
KK
CM blows up at the horizon.
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Fig. 2. (color online) For an extremal Kaluza-Klein Black hole with J =

√

5

9
and M = 1, (a) the variation of s = ṙ

2

with radius for three different values of angular momentum, and (b) the variation of E =E
KK
CM with radius for three

combinations of L1 and L2. For L1 =Lc, E
KK
CM blows up at the horizon.

3.3 Near-extremal charged rotating Kaluza-

Klein black hole

For the near-extremal case, we also obtain the CM

energy of two uncharged particles colliding at the outer
horizon:

EKK
CM(r→ r+)=

√
2m0









1+

(

r2
+

a2
+ν2

)

(L1−L2)
2

2B(r+)(1−ν2)

(

L1−
r2
+ +a2

a
√

1−ν2

)(

L2−
r2
+ +a2

a
√

1−ν2

)

+
1

2









L1−
r2
+ +a2

a
√

1−ν2

L2−
r2
+ +a2

a
√

1−ν2

+

L2−
r2
+ +a2

a
√

1−ν2

L1−
r2
+ +a2

a
√

1−ν2

















1
2

. (22)

Naively, the CM energy EKK
CM will be divergent when

L1 or L2 takes the critical angular momentum

Lc =
r2
+ +a2

a
√

1−ν2
. (23)

However, a careful analysis shows that the critical an-
gular momentum Lc is too large for the geodesics of the
particle to reach the horizon. That is, a freely falling
particle with this critical angular momentum will be re-
flected before it reaches the horizon. The turning point
of an initially ingoing particle is located at the larger
root of the equation

Veff = 0, (24)

where Veff is the effective potential for the radial mo-
tion. For an uncharged particle coming from infinity
with E = 1, it is given by

Veff =
1

B2r4

[

(

aL− r2 +a2

√
1−ν2

)2

−∆

(

L− a√
1−ν2

)2

−∆
r2ν2

1−ν2
−∆Br2

]

, (25)

where ∆ = r2−2µr+a2 and B =

√

1+
2µν2

r(1−ν2)
. We find

that Veff = 0 at the horizon when the freely falling parti-
cle has the critical angular momentum Lc. However, one
can derive at the horizon that

dVeff

dr
|
r=r+

=− ∆′

B2r4
+

×
[

(

Lc−
a√

1−ν2

)2

+
r2
+ν2

1−ν2
+Br2

+

]

, (26)

where ∆′ =
d∆

dr
|
r=r+

and ∆ |
r=r+

= 0 has been used.

Since r+ is the larger root of ∆ = 0, ∆′ = r+ − r− > 0.
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Given the fact that the boost parameter ν2 < 1, hence
dVeff

dr
|r=r+

< 0. That means the effective potential will

decrease when r grows from r+. Thus there will be at
least one root located at r+ < r <∞. Consequently, the
freely falling particle with critical angular momentum Lc

will be reflected before reaching the horizon. Hence the
arbitrarily high CM energy will not be achieved in the
case of collision of two freely falling particles from in-
finity. For particles which can reach the horizon, their
angular momentum should be smaller than the angular
momentum of a circular orbit particle. We will refer
to the angular momentum of a circular orbit particle as
the maximal angular momentum Lmax. The angular mo-
mentum of a circular orbit particle and the radius of the
circular orbit are defined implicitly from the solution of

the following equations

Veff =
dVeff

dr
= 0. (27)

Though an analytical definition of Lmax is very hard to
get from Eq. (27) due to the presence of r in the ex-
pression of B, one can always solve it numerically when
other parameters µ,ν,a are specified. Taking the unit
µ = 1 and one of the particles falling with Lmax, while
the other particle falls without orbital angular momen-
tum, we list the numerical results of CM energy per unit
mass in Table 1 for different small parameter ε = 1−a

and different values of ν. The results show that the CM
energy is in fact limited and grows slowly as the black
hole spin approaches its maximal value.

Table 1. The CM energy per unit rest mass
Ecm

m0
for a KK black hole with spin a= 1−ε and L1 = Lmax, L2 = 0.

ε=0.1 ε=0.01 ε=0.001 ε=0.0001 ε=0.00001

ν=0 4.21767 7.10481 12.43999 22.01962 39.10101

ν=0.1 4.21931 7.10426 12.43576 22.00991 39.08243

ν=0.2 4.22482 7.10430 12.42667 21.98763 39.03917

ν=0.3 4.23623 7.11010 12.42368 21.97348 39.00878

ν=0.4 4.25740 7.13106 12.44599 22.00338 39.05618

ν=0.5 4.29529 7.18270 12.52408 22.13337 39.28214

ν=0.6 4.36278 7.29163 12.70810 22.45441 39.84939

ν=0.7 4.48641 7.50928 13.09206 23.13507 41.05854

ν=0.8 4.73260 7.95838 13.89599 24.56740 43.60709

ν=0.9 5.34624 9.07637 15.89588 28.12961 49.94483

3.4 Naked singularity case

Lastly, we will consider the naked singularity case. If
we take a near-extremal Kaluza-Klein naked singularity,
we expect that it is possible for an ingoing and an out-
going particle to collide, just like the case of the Kerr
naked singularity [19]. Then the CM energy for collision
in the Kaluza-Klein naked singularity is

E2
CM

2m2
0

= 1+
K

B∆
, (28)

where

K=[B2(r2 +a2)+a2Z](1−e1At)(1−e2At)

+(Z−1)(L1 +e1Aϕ)(L2 +e2Aϕ)

− aZ√
1−ν2

[(1−e1At)(L2 +e2Aϕ)

+(1−e2At)(L1 +e1Aϕ)]

+

{

[B2(r2 +a2)+a2Z](1−e1At)
2

+(Z−1)(L1 +e1Aϕ)2

− 2aZ√
1−ν2

(1−e1At)(L1 +e1Aϕ)−B∆

} 1
2

×
{

[B2(r2 +a2)+a2Z](1−e2At)
2

+(Z−1)(L2 +e2Aϕ)2

− 2aZ√
1−ν2

(1−e2At)(L2 +e2Aϕ)−B∆

} 1
2

. (29)

Let us work in the unit µ = 1. If the collision happens to
take place at r = 1, the CM energy of collision between
two particles can be very high in the limit that the de-
viation of an extremal Kaluza-Klein naked singularity
is very small (∆ → 0). Essentially, the divergence of
the CM energy comes from the extremality of the naked
singularity. Nonetheless, the range of allowed angular
momentum of a freely falling particle is not arbitrary, to
guarantee that it can turn back at some point to become
an outgoing particle. The turning point of an initially
ingoing particle is located at the larger root of the equa-
tion

Veff = 0, (30)

where Veff is the effective potential for the radial mo-
tion. For an uncharged particle coming from infinity
with E = 1, it is given by
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Veff =−
[

1+
a2

r2
+

2a2

r3B2
− 4aL

r3B2
√

1−ν2

− (r−2)L2

r3B2
− r2−2r+a2

Br2

]

, (31)

where B =

√

1+
2ν2

r(1−ν2)
. For the case without a real

root of Eq. (30), the particle will hit the singularity even-
tually. To have a collision of the two particles at r = 1,
one just needs to solve the range of allowed angular mo-
mentum from Eq. (30) to guarantee that the following
condition is satisfied: one of the particles should have a
turning point at rt < 1 and the other particle should not
turn back before reaching r = 1. Though the analytical
solution to Eq. (30) is extremely hard, if not impossible,
to get, one can always check the existence of a solution
numerically when all the parameters are specified.

4 Discussion and conclusions

In this paper, we have investigated the CM energy for
two colliding particles in Kaluza-Klein spacetime. The
Kaluza-Klein black hole is an exact solution in Einstein-
Maxwell-dilaton theory in four-dimensional spacetime.
When the charge Q vanishes, it just describes the Kerr
black hole. Hence there is a restriction that our result
should not be in contradiction with that of the Kerr black
hole when Q = 0, which has been proved by the calcula-
tions. Our results show that an extremal Kaluza-Klein
black hole can serve as a particle accelerator with arbi-
trarily high CM energy when one of the colliding parti-

cles has the fine-tuned angular momentum L =
2µ√
1−ν2

.

For the near-extremal case, in terms of the small param-
eter ε = 1−a, we also obtain the numerical result of the
maximal CM energy per unit mass for some different val-

ues of ε and ν. Our near-extremal result shows that the
CM energy will not be so high, even in the very near-
extremal case. On the other hand, with the vanished
angular momentum J , the Kaluza-Klein black hole does
not reduce to the Reissner-Nordström black hole. Our
result in the nonrotating case shows that the CM energy
of two charged colliding particles could also blow up,
thus a non-extremal black hole could also provide a vis-
ible probe of Planck-scale physics. In both cases where
arbitrarily high CM energy can be reached, a very spe-
cific angular momentum of the colliding particle needs
to be chosen. Hence one must fine-tune the angular mo-
mentum of the ingoing particle. To overcome this issue,
we also studied the collision of particles in the Kaluza-
Klein naked singularity case. Our results show that the
range of allowed angular momenta of freely falling par-
ticles to reach arbitrarily high CM energy will be much
larger than a single fine-tuned value.

However, our calculations were performed without
considering the back reaction effect of the accelerated
particle pair on the background geometry of the Kaluza-
Klein black hole. It should be pointed out that particles
can be accelerated to arbitrarily high CM energy. Hence
the background geometry may be destroyed and the back
reaction effect should not be ignored. On the other hand,
high energy concentrated at small scale will lead to grav-
itational collapse. So the Planck-scale physics induced
by the collision of a particle pair with arbitrarily high
CM energy is protected by the event horizon formed
due to gravitational collapse, and cannot be observed
externally. Hence, it would definitely be interesting and
meaningful to explore the field theory interpretation of
this classical effect in the future.

P. J. M. is grateful to Xiaolei Sun and Shi-Xiong

Song for valuable information and helpful discussions.
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