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Abstract: We examine in detail a recent work (D. Gülmez, U. G. Meißner and J. A. Oller, Eur. Phys. J. C,

77: 460 (2017)), where improvements to make ρρ scattering relativistically covariant are made. The paper has the

remarkable conclusion that the J=2 state disappears with a potential which is much more attractive than for J=0,

where a bound state is found. We trace this abnormal conclusion to the fact that an “on-shell” factorization of

the potential is done in a region where this potential is singular and develops a large discontinuous and unphysical

imaginary part. A method is developed, evaluating the loops with full ρ propagators, and we show that they do not

develop singularities and do not have an imaginary part below threshold. With this result for the loops we define an

effective potential, which when used with the Bethe-Salpeter equation provides a state with J=2 around the energy

of the f2(1270). In addition, the coupling of the state to ρρ is evaluated and we find that this coupling and the T

matrix around the energy of the bound state are remarkably similar to those obtained with a drastic approximation

used previously, in which the q2 terms of the propagators of the exchanged ρ mesons are dropped, once the cut-off in

the ρρ loop function is tuned to reproduce the bound state at the same energy.
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1 Introduction

The chiral unitary approach, combining the dynam-
ical features of chiral Lagrangians and unitarity in cou-
pled channels, has allowed much progress in the meson-
meson [1–4] and meson-baryon interactions [5–9] (see re-
view paper [10]). One step forward in this direction was
the extension of the approach to study the interaction
of vector mesons among themselves. The first such work
studied the ρρ interaction [11], which was found to be
attractive in the isospin I=0 and spin J=0,2 channels.
The strength of the interaction in the J=2 channel was
found more than twice as big as that of the J=0 channel.
In both cases it was sufficient to produce bound states.
The one with J =0 was associated to the f0(1370) and
the one with J=2 to the f2(1270) states. The work was
generalized to the SU(3) sector [12] and more resonant
states were found that could be associated with known
states.

In Refs. [11, 12] the parameters of the loop function
were fine tuned. With natural values of the parameters
in order to find the binding at the experimental energies,
the couplings of the resonances to different channels were
extracted. These couplings were then used to study ra-
diative decays [13] and other decays [14], and in all cases
consistency with experiment was found.

References [11, 12] relied upon an approximation of
neglecting the three momenta of the vector mesons with
respect to their mass. This approximation was ques-
tioned in a recent work [15] where improvements were
made to give a fully relativistic approach. The authors
found that in the ρρ interaction the I = J = 0 state,
the f0(1370), was obtained, very close to the result of
Ref. [11], but the f2(1270) did not appear. This is cer-
tainly surprising because if the f0(1370) appears bound,
the f2(1270), where the interaction is also attractive and
with a strength more than double the one in the I=J=0
sector, should also appear as a bound state. In the
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present paper we show the reasons for the findings of
Ref. [15], stemming from an unjustified on-shell factor-
ization of the potential, which renders it singular. The
singularity does not appear in a proper loop function,
which we evaluate here. We propose a different method
based on the results for the loop function without fac-
torizing the propagators and show that in that case the
I=0,J=2 channel generates a bound state, more bound
than the I = J = 0 state. The other important finding
here is that if the parameters to regularize the loop are
tuned to obtain the f2(1270) bound at the experimental
energy, the coupling of the state to ρρ is very close to
the one obtained with the non-relativistic approach of
Ref. [11]. It is well known that for composite states, and
the case of a small binding, the coupling is only tied to
the binding energy [16–18]. In the case of the f2(1270)
the binding is 270 MeV with respect to the nominal two
ρ masses. Yet, this number is misleading because the
ρ has a width of 150 MeV and with two ρ mesons their
mass components go more than 300 MeV below the nom-
inal mass and the binding is not as extreme as it seems.
From this perspective it is not so surprising that we find
the couplings so similar in different approaches.

The claim of the f2(1270) as a dynamically generated
resonance from the ρρ interaction seems at odds with
a widespread belief that it actually belongs to a p-wave
nonet of qq̄ states [19, 20]. Yet, the fact remains that the
molecular picture has successfully undergone far more
tests than the quark model, comparing predictions with
practically all observables related to the resonance (see
detailed discussions in the introduction of Refs. [21, 22]).
The developments of the present work in Section 4 will
further reinforce this picture.

2 Summary of the ρρ interaction

In Ref. [11] the local hidden gauge approach [23–25]
was used to generate the ρρ interaction. The formalism
leads to two terms, a contact term and a ρ exchange
term, which are depicted in Fig. 1.

(a) (b)

Fig. 1. Terms in the ρρ interaction: (a) contact
term; (b) ρ exchange term.

In Ref. [11], the ρ exchange propagator was taken
as 1/(−M2

ρ ), where the q2 dependence of the propaga-
tor was removed. This is done in analogy to the more
general case in pseudoscalar interactions where the stan-
dard lowest order chiral Lagrangians can be obtained

from the local hidden gauge approach, exchanging vec-
tor mesons and removing the q2 term in the propagator.
There is another approximation made in Ref. [11], since
the three body vertex ρρρ contains six terms and only
the two leading terms were kept, neglecting terms that
go like pρ/Mρ. This is improved in Ref. [15]. With these
approximations the interaction obtained in Ref. [11] is
given in Table 1, with g=MV/(2f), MV the vector mass
and f the pion decay constant f=93 MeV.

Table 1. Potential V for the scalar and tensor
channels with I=0.

I J contact exchange total at threshold [IG(JPC)]

0 0 8g2 −8g2

(
3s

4M2
ρ

−1

)
−8g2[0+(0++)]

0 2 −4g2 −8g2

(
3s

4M2
ρ

−1

)
−20g2[0+(2++)]

One can see that the attraction in the case of J=2 is
much bigger than in J=0. With the interaction in Table
1 one can solve the Bethe-Salpeter equation (BS),

T=[1−V G]−1V, (1)

where G is the loop function of two ρ meson propagators.
Since the interaction has been reduced to a constant (in-
dependent of momentum transfer) for each value of s, the
square of the total mass in the ρρ rest frame, the am-
plitude T in Eq. (1) is summing the diagrams of Fig. 2,
and G is given in the cut-off regularization by

G=
∫

|~q|6qmax

d3q

(2π)3
ω1+ω2

2ω1ω2[P 02−(ω1+ω2)2+iε]
, (2)

where qmax stands for the cutoff, (P 0)2 = s and ωi =√
~q2+M2

ρ . However, in the case of the ρ, which has a
large width, one cannot neglect its mass distribution.
This is very important and was taken into account in
Ref. [11] by making a convolution of G over the mass
distribution of the two ρ mesons as follows:

G̃(s) =
1
N2

∫ (Mρ+2Γρ)2

(Mρ−2Γρ)2
dm̃2

1

(
− 1

π

)
Im

1
m̃2

1−M2
ρ+iΓm̃1

×
∫ (Mρ+2Γρ)2

(Mρ−2Γρ)2
dm̃2

2

(
− 1

π

)
Im

1
m̃2

2−M2
ρ+iΓm̃2

×G(s,m̃2
1,m̃

2
2) , (3)

with

N=
∫ (Mρ+2Γρ)2

(Mρ−2Γρ)2
dm̃2

1

(
− 1

π

)
Im

1
m̃2

1−M2
ρ+iΓm̃1

, (4)

where Mρ=770 MeV, Γρ=146.2 MeV and for Γ≡Γ (m̃)
we take the ρ width for the decay into pions in the p-wave

Γ (m̃)=Γρ

(
m̃2−4m2

π

M2
ρ−4m2

π

)3/2

θ(m̃−2mπ). (5)
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The use of this G̃ function gives a width to the bound
states obtained from the ρ→ππ decay. In addition, box
diagrams with four intermediate π mesons were also con-
sidered in Ref. [11], which account for the ππ decay chan-
nel of the states obtained. This channel is not a matter
of concern in Ref. [15] and we shall not discuss it here.

One should bear in mind that we are working with
an effective theory, which is not renormalizable. This
is generally the case in all effective theories, in partic-
ular, chiral perturbation theory [26–28]. Despite this,
the loops are well defined, with prescription given for
their regularization and introducing appropriate coun-
terterms, and the theory is remarkably successful at low
energies. One can proceed in a similar way in the case
of the local hidden gauge Lagrangians, from which the
chiral Lagrangians can actually be obtained [29]. Eq.
(1), from which a unitary amplitude is constructed, can
be obtained imposing the unitary constraint, Imt=t∗σt,
(with σ the phase space for the intermediate state pro-
portional to the momentum). The latter equation can
be recast as Imt−1=−σ, which allows use of a dispersion
relation for t−1 that is made convergent with a subtrac-
tion constant for the s-wave, which we study here. This
was done in Refs. [30–32], and is the base of the chiral
unitary approach [1–9]. In Ref. [7], the equivalence of
the use of the dispersion relation method and the loop
regularization with a cut-off was also established, and
this latter method is often used in the unitary approach
of effective theories [10].

Equation (1) is generally referred to as the Bethe-
Salpeter equation [33]. This is because relativistic prop-
agators are used for the propagation of the intermediate
particles and a d4q integral is made in the integral equa-
tion (unlike the d3q integral of the Lippmann Schwinger
equation). However, a factorization of the kernel (po-
tential) has been done to arrive at Eq. (1), which more
properly should be called the on-shell factorized BS equa-
tion. The on-shell factorization is justified when one can
neglect the contribution of the left hand cut in the disper-
sion relation discussed above [7] or it is quite energy in-
dependent, in which case it can be reabsorbed by means
of subtraction constants in the dispersion integral, which
are finally obtained by fitting to some data [31]. Note
that the left hand cut for equal mass particles goes from
s=−∞ to s=0, still far away from the f2(1270) mass in
the present problem.

Concerning the kernel as being just the ρ exchange,
the growing energy dependence of the interaction (see
Table 1) has been used as one element to justify the intro-
duction of Regge phenomena [34–36]. The ρ exchange in
our approach would then be substituted by a Regge tra-
jectory. The energy dependence for the case of J=2 can
be seen in Table 1, and one should note that, apart from
the linear term in s, there is a constant term of strength

−12g2, which is more important than the s dependent
term around

√
s=1270 MeV. Yet, it would be interest-

ing to see what differences can come from the use of the
plain ρ exchange or the full ρ trajectory. Such a test has
already been done in the study of the photoproduction
of the f2(1270). For the ρ trajectory, Refs. [37–41] were
considered, but using a constant phase which is favored
by the CLAS data [42]. The conclusion was that both
approaches gave similar results, using moderate flexibil-
ity in the parameters of the models compatible with the
phenomenology of other processes.

+ + +...T ≡

Fig. 2. Diagrammatic representation of the ρρ

scattering matrix.

3 Beyond the static ρ exchange with on-
shell factorization

The novelty in Ref. [15], which is the reason for the
disappearance of the tensor state, stems from keeping the
q2 dependence in the ρ exchange potential in Fig. 1(b).
To show that, one can still use the potential in Table 1,
since the relativistic improvements on the vertices have
nothing to do with this problem. The ρ propagator in
Fig. 1(b) gives, in the notation p1+p2→p3+p4,

D(ρ) =
1

q2−M2
ρ+iε

=
1

(p1−p3)2−M2
ρ+iε

=
1

−2~p2(1−cosθ)−M2
ρ+iε

, (6)

where we have taken ~p1 = pûz, ~p2 = −~p1, and as in
Ref. [15] we have taken q0 =0. This corresponds to the
on-shell factorization, where the interaction V is taken
for an on-shell situation. The next assumption in the
on-shell factorization in Ref. [15] is that p2

i =M2
ρ . Thus

p2=
(

E
2

)2−M2
ρ and hence, p2 becomes negative for bound

states, E=
√
s<2Mρ. Here is where the problem begins,

because the ρ exchange develops a singularity. However,
we can already advance that this singularity never ap-
pears in the loops of the Bethe-Salpeter equation of Fig. 2
when the ρρρρ vertex is substituted by the ρ exchange
diagram of Fig. 1(b). Continuing with the derivation, we
project the ρ-exchange in s-wave as done in Ref. [15] and
obtain

Dρ(s−wave)=− 1
4p2

log
(

4p2+M2
ρ

M2
ρ

+iε
)
. (7)

We can see that when 4p2+M2
ρ ≡s−4M2

ρ +M2
ρ =0, this

has a singularity, and the on-shell factorized potential
becomes infinite at s= 3M2

ρ . In addition, for s< 3M2
ρ ,

Dρ(s−wave) develops an imaginary part.
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Fig. 3. (color online) Dashed line: V0=Vc+Vex from
Ref. [11]. Solid line: Re V (s) of Eq. (8). Dotted
line: Im V (s) of Eq. (8)

In Fig. 3, we plot the new potential

V (s)=Vc+VexDρ(s−wave)(−M2
ρ ) (8)

with Vc and Vex from Table 1, where we have replaced
1

−M2
ρ

by Dρ(s−wave) in the Vex potential of Ref. [11].
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Fig. 4. The results for |T |2 with the potential of Eq. (8).

As we can see, the new potential of Eq. (8) is remark-
ably similar to the one exhibited in Fig. 4 of Ref. [15]. It
is exactly equal to the one of Ref. [11] at threshold and
develops a singularity at s=3M2

ρ . One can also see that
the potential develops an imaginary part for s < 3M2

ρ ,
with a discontinuity at s= 3M2

ρ . This imaginary part
is not tied to any physical process, as could be the ρρ

system decaying into 2π or 4π. The singularity appears
at
√
s=1334 MeV and, hence, one anticipates problems

to get a state at 1270 MeV, as it would correspond to
the f2(1270) state. Indeed, in Fig. 4 we plot the result of
|T |2 for this potential. As we can see, this does not reflect
a resonance at 1270 MeV with a width of 100 MeV as in
the experiment. In this sense, the conclusion of Ref. [15]
that the tensor resonance f2(1270) does not appear with
the potential of Eq. (8) is correct. The problem is that
this is a clear situation where the on shell factorization
cannot be done since the “on- shell” potential seats on
top of a singularity of the extrapolated amplitude below
threshold.

Before we proceed to perform the integration of the
loop function with the full ρ propagator (including also
the q0 dependence) let us, however, note that the singu-
larity obtained corresponds to using a ρ mass fixed to the

nominal value of 770 MeV. We next show what happens
if the realistic ρ mass distribution is used. For this, we
again take the Dρ(s−wave) of Eq. (7) and convolute it
with the ρ mass distribution. Hence, we now use

Ṽ (s)=Vc+VexD̃ρ(s−wave)(−M2
ρ ) (9)

with

D̂ρ =
1
N

∫ (Mρ+2Γρ)2

(Mρ−2Γρ)2
dm̃2

ρ

(
− 1

π

)
Im

1
m̃2

ρ−M2
ρ+iΓm̃ρ

×
[
− 1

4p2
log

(
4p2+m̃2

ρ

m̃2
ρ

+iε
)]

(10)

with N and Γ given by Eqs. (4)–(5), and p2= s
2
−m̃2

ρ.
In Fig. 5 we show Ṽ (s) compared to that from

Ref. [11]. We can see that now Ṽ (s) does not have a
singularity and ReṼ (s) is actually quite similar to the
potential from Ref. [11]. In addition, the imaginary part
of Ṽ (s) no longer has a discontinuity. It is interesting to
see what happens if we use the Bethe-Salpeter equation
with this potential. In Fig. 6, we show |T |2 evaluated
with the potential Ṽ (s) and Eq. (1) with the same cut-off
qmax=875 MeV as in Ref. [11]. Using G̃(s) from Eq. (3),
we get a broad bump that could be identified with a res-
onance with mass around 1300 MeV and Γ ≈300 MeV.
So, even using the on shell approach of Ref. [15], a state
with mass around 1300 MeV appears. The width, how-
ever, is not realistic, since it is related to the imaginary
part of the Dρ(s−wave), which is not linked to any phys-
ical channel. If we remove this spurious imaginary part,
we obtain for |T |2 the result shown in Fig. 7(a), which is
remarkably close to that of Ref. [11], shown in Fig. 7(b).
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Fig. 5. (color online) The potential of Eqs. (9) and (10).
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Fig. 6. |T |2 from Ṽ (s) of Eqs. (9) and (10) and G̃
from Eq. (3) via Eq. (1).
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Fig. 7. |T |2 obtained from ReṼ (s) (a) and from
Vc+Vex of Ref. [11] (b).

4 Improved calculation

In this section we are going to evaluate explicitly the
loops that would appear in the Bethe-Salpeter equation,
Fig. (2), where a contact term or the explicit ρ exchange
are used as the source of interaction. We note that at
the one-loop level we would have the diagrams of Fig. 8.

Next we see that around 1270 MeV we have

Vc=−4g2; Vex=−8g2
3s−4M2

ρ

4M2
ρ

;
Vex

Vc

=
3s−4M2

ρ

2M2
ρ

(11)
if the exchanged ρ propagator is factorized as − 1

M2
ρ
.

Therefore Vex/Vc is of the order of two. The sum of
the strength of the two middle diagrams (b) and (c) of
Fig. 8 will be about the same as in Fig. 8(d), actually
even bigger when the loop is evaluated because of the
reduction in the ρ propagator due to the explicit con-
sideration of the full propagator, as we shall see. We
therefore concentrate on the diagram of Fig. 8(b) and
evaluate it explicitly.

(a) (b) (c) (d)

+ + +

Fig. 8. Diagrams appearing at one-loop level with the contact and ρ exchange terms.

First, we want to see the difference between this di-
agram evaluated exactly and the same one when the ρ

propagator is replaced by − 1
M2

ρ
as in Ref. [11]. For this,

we neglect the vertices for the moment and concentrate
on the propagators.

In Fig. 9 we show explicitly the momenta of the vari-
ables. The loop function for this diagram considering
only the propagators is given in the rest frame of the ρρ

system, ~P=0, by

t = i
∫

d4q

(2π)4
1(

P 0

2
−q0

)2

−(~p−~q)2−M2
ρ+iε

1
2ω(q)

× 1
q0−ω(q)+iε

1
2ω(q)

1
(P 0−q0)−ω(q)+iε

(12)

(P0
2 , p⃗ )

(P0
2 − q0, p⃗− q⃗ )

P − q

q

(P0
2 ,−p⃗)

Fig. 9. Diagram of Fig. 8(b) showing explicitly the
momenta of the particles.

with ω(q) =
√
~q2+M2

ρ , where we have kept the full ρ

propagator for the exchanged ρ (including the energy
dependence). For the two intermediate ρ we keep their
relativistic form but keep only the positive energy part
of the propagator, since they will propagate close to on-
shell. There is practically no change from keeping the full
propagators and the formulas are simplified, yet show all
the analytical structure. By analytically performing the
q0 interaction in Eq. (12), we obtain

t =
∫

|~q|<qmax

d3q

(2π)3
1

2ω(q)2
1

2ω(~p−~q)
1

P 0−2ω(q)+iε

× 1
P 0

2
−ω(q)−ω(~p−~q)+iε

. (13)

It is interesting to look at the analytical structure
of the loop. We see two cuts, the one coming from
P 0−2ω(q)+iε in the denominator, which corresponds
to having the two intermediate ρ mesons on-shell (the
two lines in the diagrams of Fig. 9 cut by a vertical
line) and from P0

2
−ω(q)−ω(~q−~q)+iε in the denomi-

nator, which accounts for a possible situation where the
exchanged ρ and one intermediate ρ are placed on-shell.

124101-5
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Yet, since ω(q)≥Mρ, for a ρρ system below threshold,
where P 0<2Mρ, this term never vanishes. We can, there-
fore, see that the exchanged ρ in the actual loops cannot
produce any imaginary part, contrary to the “on-shell”
factorization of Vρ(s−wave) of Eq. (7), done in Ref. [15].

Performing the same calculation with 1
−M2

ρ
for the

exchanged ρ propagator, we obtain

tf =
∫

d3q

(2π)3

(
− 1
M2

ρ

)
1

4ω(q)2
1

P 0−2ω+iε
. (14)

Comparing to t in Eq. (13), we see that we have replaced

1
2ω(~p−~q)

1
P 0

2
−ω(q)−ω(~p−~q)

by −1
2M2

ρ
, which holds exactly at threshold with ~q=~p−~q=0.

The explicit consideration of the propagator of the
exchanged ρ has produced a reduction factor in the
loop with respect to its replacement by 1/(−M2

ρ ) as in
Ref. [11], but there are no singularities and no imaginary
part. In view of this, one can anticipate that one would
get similar results using the approach of Ref. [11] but us-
ing an explicit cut-off that would effectively account for
this converging factor. This means that if the cut-off is
fine tuned to obtain the peak of |T |2 at the mass of the
f2(1270), one will need a smaller qmax in the approach of
Ref. [11] than explicitly using the loop evaluated here,
which is formally convergent. We will come back to this
point later on.

Next we introduce the vertices. The right-hand ver-
tex of Fig. 8(b) is the contact term, Vc of Eq. (11). The
two other vertices come from the combination (k1+k3)·
(k2+k4)=s−u, where k1, k2 are the initial ρ meson mo-
menta and k3, k4 the outgoing ones. After projecting
over the s-wave and taking the on-shell value, k2

i =m2
ρ,

we obtain −M2
ρVex, with Vex of Eq. (11). In principle,

the k2, k4 momenta in the loop are off-shell. The on-
shell factorization of this term (not of the ρ exchanged
propagator) is usually justified as follows [1, 6]. We can
write this term as (s−u)on+[(s−u)off−(s−u)on]. The
[(s−u)off−(s−u)on] can be written in powers of (k2

2−m2
ρ)

or (k2
4−m2

ρ) (hence vanishing when k2
2 = k2

4 =m2
ρ), and

each of these terms kills one of the two intermediate ρ

propagators with momenta q or P−q in Fig. 9. The
remaining diagram (of the tadpole type if the ρ propa-
gator with three momenta ~p−~q in Fig. 9 is also shrunk)
can usually be reabsorbed by the lowest order term, in a
renormalization procedure. Following this philosophy we
will also factorize the product of the two vertices with its
on-shell value −M2

ρVex. However, one cannot apply this
procedure to the exchanged ρ propagator because first,
the intermediate ρ states with momenta q and P−q in
Fig. 9 cannot be placed on-shell for

√
s below threshold;

second, because as we have seen above, the exchanged

ρ with three momentum ~p−~q in Fig. 9 cannot be put
on-shell; and third, because even if it could be placed
on-shell, one still has the d3q integral to perform and the
pole (x−x0+iε)−1 will give rise to P(x−x0)−1−iπδ(x−x0),
both of them finite. Thus, the infinity which comes from
this propagator “on-shell” in Ref. [15] is artificial. Our
procedure, factorizing the vertices and keeping the full
structure of the exchanged propagator, is a sensible one.
The contribution of the diagram of Fig. 9 is then ob-
tained, multiplying t of Eq. (13) by Vc(−M2

ρ )Vex. The
term of Fig. 8(a) is obtained in the same way, substitut-
ing −1/M2

ρ in Eq. (14) by V 2
c . One may wonder what

happens with higher order terms of the Bethe-Salpeter
equation. One can see that all terms in this expansion,
which do not have two consecutive ρ exchanges, as in
Fig. 8 (d), can be calculated without any difficulty. To
make it technically easy we introduce an effective ρ ex-
change propagator Gρ,eff such that Gρ,eff(s)G(s) = t(s),
with G the two ρ meson loop function, −M2

ρ tf , of Eq.
(14), and an effective Ṽex potential

Ṽex=Vex(−M2
ρ )Gρ,eff . (15)

We see now that (Ṽex+Vc)2G gives rise by construction to
the terms of Figs. 8(a), (b), and (c), and provides an ap-
proximation for the term of Fig. 8 (d) as Ṽ 2

exG. With this
approximation one gets the full Bethe-Salpeter series,

T=[1−VeffG]−1Veff (16)

with
Veff =Ṽex+Vc . (17)

Next we discuss the accuracy of the approximation
done in the loop of Fig. 8(d) with four ρ meson propaga-
tors. This loop has been evaluated exactly in Appendix
C of Ref. [12], where a lengthy expression is given. It
has also been evaluated in Ref. [11] with four pion prop-
agators instead of ρ propagators. Here we can take ad-
vantage of the simplifications made in Eq. (12) and also
evaluate exactly the loop with four meson propagators
of Fig. 8(d). This is done in the Appendix and the con-
clusion reached there is that the difference between the
exact calculation and G2

ρ,effG that we obtain using the
effective potential ranges from 18% at

√
s= 1270 MeV

to 10% at the ρρ threshold. The approximation is ac-
ceptable when we know that the strength of this term
is about one fourth of the total one-loop contribution,
which means we have 4.5% difference in the total one-
loop contribution at

√
s=1270 MeV and 2.5% difference

at the ρρ threshold. These differences are not relevant,
even more when we know that small changes in a poten-
tial can be accommodated by small changes in the cut-off
of G, which is finally fitted to the precise mass of a state.

There is one more point to discuss. The evaluation
of t in Eq. (12) requires the knowledge of ~p, the momen-
tum of the initial ρ in the molecule that is finally formed.
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Only the modulus is needed since q is integrated over all
angles and we can take ~p in the z direction. In the “on-
shell” factorization ~p2 was negative. Taking ~p2 negative
is one way to say that one has negative energies with re-
spect to the threshold, and in this sense it is used when
one looks for poles of the t-matrix below threshold. How-
ever, in the physical systems the momenta are certainly
real. A bound state has negative energy and a wave func-
tion which corresponds to a distribution of real momenta.
A very good approximation to the wave functions derived
with a potential of the type V θ(qmax−q)θ(qmax−q′), which
leads to the standard Bethe Salpeter equation with a cut-
off qmax in the G function[18], is given in Refs. [18, 43].
Using Eqs. (105) of Ref. [43] and Eq. (47) of Ref. [18] we
obtain

〈p|ψ〉=g θ(qmax−p)
E−ω1(p)−ω2(p)

, (18)

where g is the coupling of the state to the components
of the wave function (ρρ in this case). We determine an
average momentum by looking at the peak of p2〈p|ψ〉2
and we find p≈500 MeV/c for E=1270 MeV. This value
could be smaller if the wave function picks up the lower
components of the ρ mass distribution, but we take this
value for the evaluation, and t is only smoothly depen-
dent on p. For comparison, p is of the order of 170 MeV/c
for E=1500 MeV.

In Fig. 10 we plot the effective potential Veff of
Eq. (17) as a function of the energy and compare it with
the potential from Ref. [11] and from the “on-shell” fac-
torized potential, already shown in Fig. 3. As we can see,
Veff is smaller than the potential from Ref. [11], which is
logical since it incorporates the q2 dependence of the ρ

propagator. Yet, the potential does not have any sin-
gularity, as is the case of V (s), and we showed that the
propagator in the loops does not develop a singularity.
Also, Veff below threshold does not have an imaginary
part, unlike V (s) which develops an imaginary part with
a discontinuity at s=3M2

ρ .

Re VHsL
VeffHsL
V0 HsL

1200 1250 1300 1350 1400 1450 1500

-1500

-1000

-500

0

s @MeVD

V

Fig. 10. (color online) Comparison of Veff , Re V (s)
and the potential from Ref. [11].

In Fig. 11 we show the results for |T |2 using Veff .
As anticipated, in order to have a bound state at 1270
MeV, we must use a larger value of qmax than in the case

of the potential in Ref. [11] because Veff already includes
the effects of q2 in the ρ propagator, which reduces the
contributions of the ρ exchange potential. Such effects
are effectively taken into account in Ref. [11] by using a
smaller cut-off qmax. The calculation of Fig. 11 is done,
as in Fig. 7, using the convoluted G̃ function to account
for the mass distribution of the ρ. The use of the con-
voluted G̃ function in the Bethe-Salpeter equation gives
a width to the state because it can now decay to ρππ

or ππππ. We already mentioned that this provides only
part of the width. In the case of the f2(1270) most of
the width comes from ππ decay, which we evaluated in
Ref. [11] by means of a box diagram. We refrain from
doing it here, but the small width obtained using Veff or
the potential of Ref. [11] serves us the purpose of evalu-
ating the coupling of the state to ρρ, which we do in the
following way [13]:

g2
T=MRΓR

√
|T |2max , (19)

where MR, ΓR are the mass and width respectively of the
tensor state in Figs. 7 and 11, and |T |2max is the value of
|T |2 at the peak. The value of gT is gT =10700 MeV in
the calculation with the effective potential and a cut-off
of 1500 MeV, and gT = 11700 MeV with the potential
of Ref. [11] and a cut-off of 860 MeV. In both cases,
the pole shows up at

√
s0=1273 MeV with a width of 3

MeV. If p=50 MeV, the pole with the effective poten-
tial appears at

√
s0 = 1254 MeV, with Γ = 2 MeV and

gT = 10000 MeV, while if p= 800 MeV, we obtain the
pole at

√
s0=1300 MeV, with Γ=5 MeV and gT=11000

MeV.

1240 1250 1260 1270 1280 1290 1300

0

2´108

4´108

6´108

8´108

s @MeVD

ÈT 2

Fig. 11. |T |2 evaluated with Veff and G̃. The value
of qmax is 1500 MeV.

The value of gT is very similar in both approaches,
with differences of less than 10%. This connects with our
discussion in the Introduction because the compositeness
condition [16–18] provides the coupling as a function of
the binding energy for small binding, and in the present
case, the fact that gT is roughly model independent is
somehow telling us that the wave function has picked up
the low mass components of the ρ, which provide less
binding.

The fact that gT is so stable and the results obtained
are so close to those obtained before with the extreme
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approximation of neglecting the q2 dependence of the ρ

propagator, but coping for it by means of a reduced cut
off, is very important and reinforces the agreement found
with the couplings of Ref. [11] for the radiative decay of
this resonance [13] and other decays [14].

5 Conclusions

We have made a critical discussion of a recent work
[15] where certain improvements have been made in the
ρρ interaction. Yet, the use of the Bethe-Salpeter equa-
tion with an “on-shell” factorization of the potential
leads the authors to conclude that, unlike the f0(1370)
state, which appears as a bound ρρ state, the tensor
state f2(1270), which had been obtained before with
some non-relativistic approximations, disappears. We
argue from a general point of view that if the potential
for J=2 is more than twice more attractive than the case
of J=0 (as is the case in Ref. [15]) and the J=0 bound
state is found in Ref. [15], the appearance of a bound
state in J=2 is unavoidable. Then we proceed to under-
stand the reason for the claim in Ref. [15]. The problem
stems from the “on-shell” factorization of the potential
on top of a singularity which produces a “potential” of
infinite strength and with a big imaginary part that has
a discontinuity in the singular point. We show that this
imaginary part is unphysical and bears no connection
to the decay products of the ρρ bound state into ππ

or ππππ. After the source of the anomalous results in
Ref. [15] is disclosed, we proceed to tackle the problem

in an appropriate way, evaluating the loops with the full
ρ propagators for the ρ in the exchange channel, and
see that there are no singularities nor an imaginary part
below threshold tied to those diagrams. Finally, from
the evaluated loops we define an effective potential in a
way that, when used with the Bethe-Salpeter equation,
renders the results of the loop. With this effective po-
tential we solve the Bethe-Salpeter equation and find a
bound state for J = 2. Upon fine tuning of the cut-off
in the G function, taking into account the ρ mass dis-
tribution, the bound state is made to appear at 1270
MeV to generate the f2(1270) resonance, and its cou-
plings to the ρρ component are extracted. Then we find
that the coupling evaluated with this improved method
is very similar to the one obtained with a more dras-
tic approximation made in Ref. [11], where in analogy
to the construction of the chiral Lagrangians starting
from the local hidden gauge Lagrangians, the q2 in the
propagators of the exchanged vector mesons is removed.
We show that after tuning the cut-off with this latter
approximation, to approximately take into account the
reduction of the exchanged propagators due to their q2

dependence, and fitting the energy of the bound state
to the experimental one, the resulting T matrix around
the bound state energy is remarkably similar to the one
obtained with the more sophisticated approach of the
effective potential.

We acknowledge some discussions with J. A. Oller
and U. G. Meißner.

Appendix

Comparing the loop with four ρ mesons with the loop with Dρ,eff

We can easily compare these two magnitudes starting
from Eq. (12). The introduction of an extra ρ exchange prop-

agator,
[
(P0

2
−q0)2−(~p−~q)2−M2

ρ

]−1
, where we take ~p and ~p′ (

the three momentum of the outgoing ρ) as equal for simplic-

ity, can be obtained by changing M2
ρ→M

′2
ρ in this propagator

in Eq. (12), which we will call t′, and evaluating

∂t′

∂M
′2
ρ

. (A1)

We then compare this with

G2
ρ,effG≡

(
t

G

)2

G=
t2

G
=

t2

−M2
ρ tf

. (A2)

The two magnitudes, Eq. (A1) and Eq. (A2) differ by 18%
at
√

s=1270 MeV, and the difference goes down to 10% at
the ρρ threshold.
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