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Abstract: In many-body perturbation theory (MBPT) we always introduce a parameter Nshell to measure the

maximal allowed major harmonic-oscillator (HO) shells for the single-particle basis, while the no-core shell model

(NCSM) uses Nmax~Ω HO excitation truncation above the lowest HO configuration for the many-body basis. It

is worth comparing the two different methods. Starting from “bare” and Okubo-Lee-Suzuki renormalized modern

nucleon-nucleon interactions, NNLOopt and JISP16, we show that MBPT within Hartree-Fock bases is in reasonable

agreement with NCSM within harmonic oscillator bases for 4He and 16O in “close” model space. In addition, we

compare the results using “bare” force with the Okubo-Lee-Suzuki renormalized force.
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1 Introduction

The ab initio description of atomic nuclei is a fun-
damental and challenging problem in nuclear structure
theory. Ab initio methods, such as the no-core shell-
model (NCSM) [1–3], the Green’s function Monte Carlo
approach [4–7], and the coupled-cluster (CC) method [8–
10], have been used to madk great progress in exploring
the structure of atomic nuclei in the past decade. How-
ever, all these models are computationally demanding,
which leads to a hard limitation on the number of nu-
cleons that can be handled. For heavier nuclei there are
a few ab initio approaches that can calculate the struc-
ture of closed-shell nuclei or those nearby, such as the
CC method, importance-truncated no-core shell model
(IT-NCSM) [11, 12] and many-body perturbation theory
(MBPT) in Hartree-Fock (HF) basis [13–15]. However,
there are some other methods [16–22] that can give good
descriptions of the heavier nuclei. Ab initio methods
always use a Slater-determinant basis constructed from
harmonic-oscillator (HO) single-particle states. The lim-
itation of computer power requires that the Schrödinger
equation is solved in a model space with a finite number
of configurations or basis states. The CC and MBPT
approaches always use Nshell major shell truncation at
single-particle level, while NCSM uses Nmax model space
truncation at many-body total energy level. The HF
state is taken as the reference state for the CC and
MBPT approaches, to accelerate convergence and can-

cel some single excitations of the intermediate states,
while the NCSM is always calculated in HO basis. We
will compare the results using different truncations in
MBPT and NCSM calculations with the same effective
Hamiltonian.

Two modern interactions, NNLOopt [23] and JISP16
[24–26], are used in our MBPT and NCSM calcula-
tions. The new NN chiral interaction NNLOopt yields
χ2≈1 per degree of freedom for laboratory energies be-
low approximately 125 MeV by using the optimization
tool, Practical Optimization Using No Derivatives (for
Squares) algorithm, with respect to phase-shift analysis.
The JISP16 interaction is obtained by phase-equivalent
transformations of the J-matrix inverse scattering po-
tential to describe not only the NN data but the bind-
ing energies and spectra of nuclei with A 6 16. It has
been demonstrated [23, 26] that many aspects of nuclear
structure can be understood in terms of these NN in-
teractions, without resorting to three-body forces. An-
other similarity of these two interactions is that they are
“soft” and can be used directly in the ab initio calcula-
tion without renormalization. They can provide a fast
convergence for ab initio calculations. In practice, if we
expand these “bare” interactions in a small HO model
space with low oscillator parameter ~Ω, the momentum
cutoff λ of the employed nuclear interactions may exceed
the ultraviolet (UV) momentum associated with the en-
ergy of the highest HO level [27, 28],

ΛUV≡
√

2(N+3/2)~/b. (1)
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Here, N=(2n+l) denotes the HO shells, n(l) is the radial
(angular-momentum) quantum number, b≡

√
~/(mΩ) is

the HO length, and m is the nucleon mass. Then, we can-
not get converged nuclear structure results in this small
model space. For example, when we choose N=9 and
~Ω=10 MeV for HO basis, the model space ΛUV≈ 444
MeV/c is smaller than the momentum cutoff λ≈500

√
2

MeV/c of JISP16 in Ref. [29]. In order to speed up
convergence with lower model space UV momentum, we
can decrease the momentum cutoff of the original inter-
action by a renormalization scheme specified by a renor-
malization group transformation or a similarity transfor-
mation. Such transformations preserve all experimen-
tal quantities up to the low momentum cutoff domain.
The Okubo-Lee-Suzuki (OLS) technique [2, 30–35] is a
universal renormalization method and always improves
the results with the “bare” interaction, in particular, for
smaller spaces and lower oscillator parameter ~Ω [36].
We will compare the results using the “bare” nuclear
force with those using the OLS renormalized force.

The main purpose of this paper is to compare the
ground-state properties of doubly closed-shell nuclei cal-
culated by different many-body methods, MBPT and
NCSM, with different effective Hamiltonians, “bare” and
OLS renormalized nuclear interactions. The paper is or-
ganized as follows. In Section 2 we give an outline of the
derivation for the effective Hamiltonian. In Section 3 we
give the details of our many-body calculations, present
our results and compare them. A summary and outlook
is given in Section 4.

2 Effective Hamiltonian and decoupling
operator

Starting from an arbitrary Hamiltonian H with the
eigensystem Ek, |k〉,

H|k〉=Ek|k〉, (2)

we can divide the full Hilbert space into a model space
and its complement by defining two projection operators
P and Q with P+Q=1, P 2=P , Q2=Q and PQ=0. The
goal of calculating the effective Hamiltonian is to repro-
duce exactly the eigenvalues and any observable charac-
terized by an operator in model space. The similarity
transformation can achieve this purpose [32],

He−G|k〉=(e−GH eG)(e−G|k〉)=Ek(e−G|k〉), (3)

where exp(G)exp(−G) = 1. The transformed Hamilto-
nian H can be decomposed into four terms,

H=PHP+PHQ+QHP+QHQ. (4)

If we define the effective Hamiltonian Heff in model
space as

Heff=PHP =P e−GH eGP, (5)

we need the decoupling condition.

QHP =Qe−GHeGP =0. (6)

If eG is a solution of Eq. (6), we can easily see that the
eigenvalues of Heff agree with the H in model space. The
correlation operator G cannot be determined uniquely
from the above decoupling condition. The unique solu-
tion is obtained from the restrictions [33],

PGP =QGQ=0. (7)

In nuclear physics, the Lee-Suzuki approach that
chooses the correlation operator ω as G has been
very widely used, especially for some nuclear interac-
tion renormalization schemes, such as the effective low-
momentum NN interaction Vlow-k and the OLS renor-
malization scheme. We will mainly discuss the OLS
method.

2.1 Lee-Suzuki approach

Let us choose eG=eω, where the operator ω acts as a
mapping between the P and Q spaces [35], i.e.,

|q〉=ω|p〉, (|p〉∈P |k〉,|q〉∈Q|k〉). (8)

We can easily find

ω=QωP,

QωQ=PωP =PωQ=0,

ω2=ω3=ω4=...=0,

eω=1+ω,

e−ω=1−ω. (9)

The decoupling condition Eq. (6) is satisfied. So the
eigenvalues of Heff agree with the H in model space. Let
us denote the model space basis states as αP , and its
complement Q-space states as αQ. Using the first expres-
sion in Eq. (9), the action of the transformation operator
ω on |k〉 is 510

〈αQ|k〉=
∑
αP

〈αQ|ω|αP 〉〈αP |k〉. (10)

If the model space has dP dimensions, we can choose
a set κ of {|k〉}dP×dP

. The matrix elements of ω can be
found in a noniterative scheme,

〈αQ|ω|αP 〉=
∑
k∈κ

〈αQ|k〉〈k̃|αP 〉, (11)

where 〈k̃|αP 〉 denote the inverted matrix of 〈αP |k〉, i.e.∑
αP

〈k̃|αP 〉〈αP |k′〉=δkk′ , for k,k′∈κ.

Then, we can easily get the effective Hamiltonian H̃eff

in model space as

H̃eff=P e−GHeGP =P (1−ω)H(1+ω)P. (12)
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However, the transformation eω is not unitary, and
the effective Hamiltonian H̃eff is non-Hermitian. Unitar-
ity can be achieved using the anti-Hermitian operator
G=arctanh(ω−ω†) (G†=−G), and the Hermitian effec-
tive Hamiltonian H̄eff defined on the model space P is
given by [3, 32, 33]

H̄eff = [P (1+ω†ω)P ]1/2

×PH(P+QωP )[P (1+ω†ω)P ]−1/2. (13)

The H̄eff can also be rewritten as

H̄eff = [P (1+ω†ω)P ]−1/2

×(P+Pω†Q)H(P+QωP )

×[P (1+ω†ω)P ]−1/2. (14)

With the help of the solution of Eq. (11) for ω we can
get the matrix elements of H̄eff,

〈αP |H̄eff|βP 〉 =
∑
k∈κ

∑
αP ′

∑
βP ′

〈αP |(1+ω†ω)−1/2|αP ′〉

×〈αP ′ |k̃〉Ek〈k̃|βP ′〉
×〈βP ′ |(1+ω†ω)−1/2|βP ′〉. (15)

To compute the elements of (1+ω†ω)−1/2, we can use
the relation,

〈αP |(1+ω†ω)|αP ′〉 = 〈αP |(1+ω†)(1+ω)|αP ′〉
=

∑
k∈κ

〈αP |k̃〉〈k̃|αP ′〉. (16)

2.2 Renormalization methods to soften realistic
interactions

Realistic NN potentials, such as CD-Bonn [37], Ni-
jmegen [38], Argonne V18 (AV18) [39], INOY [40], and,
to some extent, the chiral N3LO [41, 42], generate
strong short-range correlations, so none of them can be
used directly in nuclear structure calculations without
renormalization or a large-enough truncated harmonic-
oscillator (H.O.) basis. In order to solve this problem
and to speed up convergence, we need a renormaliza-
tion scheme. A traditional approach is to introduce
the reaction matrix G (G-matrix) in the Brueckner-
Bethe-Goldstone theory [43–45]. Recently, a new class
of these schemes has been developed, including Vlow-k

[46, 47], similarity renormalization group (SRG) [48],
Okubo-Lee-Suzuki [30–35], and the unitary correlation
operator method (UCOM) [49, 50]. These renormaliza-
tion schemes soften the interactions and generate effec-
tive Hamiltonians, while they preserve all experimental
quantities in the low-energy domain.
2.2.1 Effective low-momentum NN interaction Vlow-k

Realistic NN potentials always generate strong
short-range correlations, so their momentum space ma-
trices V (k,k′) are still significant at high momentum

transfer. If the troublesome high-momentum modes can
be eliminated in a physically equivalent way, we can get
soft nuclear interactions. By introducing a cutoff in mo-
mentum space, we can separate the Hilbert space into a
low momentum and a high momentum part. The renor-
malization group (RG) can be used to construct the effec-
tive interaction Vlow-k in the low momentum space. The
evolved effective interaction Vlow-k is energy-independent
and preserves two-nucleon observables for relative mo-
menta up to the cutoff. Bogner, Kuo and Schwenk [47]
have shown that the low-momentum Hamiltonian ob-
tained from the solution of the RG eqution is equiva-
lent to the effective theory derived using Bloch-Horowitz
or Lee-Suzuki projection methods. We will discuss the
Lee-Suzuki projection method.

The Lee-Suzuki approach has been outlined in Sec-
tion 2.1. For a given partial wave, the P and Q are
defined in a continuous plane wave basis as

P =
2
π

∫ Λ

0

p2dp|p〉〈p|,

Q =
2
π

∫ ∞

Λ

q2dq|q〉〈q|. (17)

Then we can get the effective low-momentum Hamil-
tonian,

H̄LS
low-k = [P (1+ω†ω)P ]1/2

×PH(P+QωP )[P (1+ω†ω)P ]−1/2. (18)

2.2.2 Okubo-Lee-Suzuki renormalization
The intrinsic Hamiltonian of the A-nucleon system

used in this work reads

Ĥint=
A∑

i<j

(~pi−~pj)2

2mA
+

A∑
i<j

VNN,ij . (19)

Here, the first term on the right is the intrinsic kinetic
energy, and VNN is the NN interaction including the
Coulomb interaction between protons.

We modify the intrinsic Hamiltonian by adding the
center-of-mass (c.m.) harmonic-oscillator (HO) Hamil-
tonian,

HΩ
c.m.=

~P 2

2mA
+

1
2
AmΩ2 ~R2 (20)

with the nucleon mass m, ~P =
∑A

i=1 ~pi and ~R =
(1/A)

∑A

i=1 ~ri.
The modified Hamiltonian can then be written as

HΩ
A = Hint+HΩ

c.m.=
A∑

i=1

[
~p2

i

2m
+

1
2
mΩ2~r2

i

]

+
A∑

i<j

[
VNN,ij−mΩ2

2A
(~ri−~rj)2

]
. (21)
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We can simply write the above Hamiltonian as

HΩ
A =

A∑
i=1

hi+
A∑

i<j

V Ω,A
ij . (22)

Okubo-Lee-Suzuki renormalization is able to accom-
modate the short-range two-body correlations by choos-
ing the anti-Hermitian operator G=arctanh(ω−ω†). Us-
ing the Lee-Suzuki approach outlined in Section 2.1 we
can get the Hermitian effective Hamiltonian H̄eff,

H̄A
eff=e−GHΩ

A eG. (23)

In general, both G and effective Hamiltonian H̄A
eff are A-

body operators. A non-trivial approximation to H̄A
eff is

to develop an a-body effective Hamiltonian H̄a
eff from the

a-body cluster,

HΩ
a =

a∑
i=1

[
~p2

i

2m
+

1
2
mΩ2~r2

i

]

+
a∑

i<j

[
VNN,ij−mΩ2

2A
(~ri−~rj)2

]
. (24)

Note that in the above cluster Hamiltonian, the strength
of the two-body potential V Ω,A

ij =VNN,ij−mΩ2

2A
(~ri−~rj)2 de-

pends on the original A. This reflects that the cluster is
embedded in the nuclear environment. The effective in-
teraction V̄ a

eff in the a-body cluster approximation for the
A-body system is defined as

V̄ a
eff=H̄a

eff−
a∑

i=1

[
~p2

i

2m
+

1
2
mΩ2~r2

i

]
. (25)

Then the A-body problem becomes an approximation to
a particular level of clustering with a6A

H̄eff =
A∑

i=1

[
~p2

i

2m
+

1
2
mΩ2~r2

i

]

+
(A−a)!(a−2)!

(A−2)!

A∑
i1<i2...<ia

V̄ a
eff;i1...ia

. (26)

We note that there are two ways of convergence. One
is that in the limit a→A and fixed dP dimension P space,
we can obtain the exact solutions for dP states of the full
problem in any finite basis space. Another is that in the
limit P→1 and fixed a-body cluster approximation, we
can obtain the exact solutions for an A-nucleon system
of the full problem over a very large basis space.

If only NN interactions are included in the A-body
system, it is reasonable to expect that a two-body ef-
fective interaction would be the most important part of
the exact effective interaction. Using the notation of
Eq. (22), the two-body effective interaction can be ob-

tained as follows,

V̄ 2
eff = P2

[
e−G12(h1+h2+V Ω,A

12 )eG12
]
P2

−P2(h1+h2)P2 (27)

where G12 =arctanh(ω12−ω†12) and P2 is a two-nucleon
model space projector. As shown in Section 2.1, in order
to calculate the V̄ 2

eff we need the exact solutions of the
Hamiltonian h1+h2+V Ω,A

12 . To be explicit, the two-nucleon
calculation is done with

HΩ,A
2 = H02+V Ω,A

12

=
~p2

2mµ

+
1
2
mµΩ2~r2+VNN(~r)−mµΩ2

A
~r2, (28)

where ~r=~r1−~r2, ~p=
~p1−~p2

2
,mµ=

m

2
and H02=h1+h2−H2c.m.

differs from h1+h2 by subtracting the center-of-mass HO
term of nucleons 1 and 2. Then the two-body effective
interaction can be obtained as follows,

V̄ 2
eff=P2

[
e−G12(H02+V Ω,A

12 )eG12−(H02)
]
P2. (29)

Finally, the two-body effective Hamiltonian used in
the A-nucleon NCSM calculation becomes

H̄eff =
A∑

i=1

[
~p2

i

2m
+

1
2
mΩ2~r2

i

]

+
A∑

i1<i2

V̄ 2
eff;i1,i2

−HΩ
c.m.+β(HΩ

c.m.−
3
2
~Ω), (30)

where we subtracted the c.m. Hamiltonian HΩ
c.m. and

added the Lawson projection term β(HΩ
c.m.−3

2
~Ω) to shift

the spurious c.m. excitations.
In MBPT, we only calculate the ground state. We do

not need the the Lawson projection term β(HΩ
c.m.−3

2
~Ω)

because the spherical Hartree-Fock method can treat the
translational invariance exactly. The following Hamilto-
nian is used in our MBPT,

H̄eff =
A∑

i1<i2

[
(~pi1−~pi2)

2

2Am
+

mΩ2

2A
(~ri1−~ri2)

2

]

+
A∑

i1<i2

V̄ 2
eff;i1,i2

. (31)

3 Calculations

We use two sets of A-nucleon Hamiltonians in the
MBPT and NCSM calculations. One is Eq. (19) with
two-body “bare” NNLOopt and JISP16 nuclear interac-
tions in both MBPT and NCSM calculations. The other
is Eq. (30) with two-body OLS effective interactions de-
rived from NNLOopt and JISP16 in the MBPT calcula-
tion, and Eq. (31) in the NCSM calculation. A detailed
description of the MBPT in HF basis was presented in
Ref. [51].
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For the NCSM calculation, we introduce a many-
body basis truncation parameter Nmax that is defined
as the maximal allowed harmonic-oscillator (HO) exci-
tation above the lowest HO many-body configuration.
Nmax=10 for 4He was chosen, and this means that a to-
tal of 11 major HO shells are involved. Nmax=10 model
space in the 4He calculation can allow two nucleons to
occupy the N = 5 HO shell, while the other two nucle-
ons stay in the N =0 HO shell. Alternatively, the four
nucleons can respectively occupy the N =1, 2, 3, 4 HO
shells, and so on. The other notable problem for OLS
renormalization is that Nshell truncation will allow the
two active nucleon go to the maximal shell at the same
time, so the restriction of the HO single-particle states
in P -space is given by (2n1+l1)+(2n2+l2)62×(Nshell−1).

For 16O, we use Nmax=8, and this means that a to-
tal of 10 major HO shells are involved. We will use
the results of MBPT with Nshell=10 truncation to com-

pare with the NCSM results. For the OLS renormal-
ization to 16O, the Nshell truncation requires the HO
single-particle states in P -space to satisfy (2n1 + l1)+
(2n2+l2) 6 2×(Nshell−1), while Nmax truncation satis-
fied N1=(2n1+l1)6(Nmax+2), N2=(2n2+l2)6(Nmax+2)
and (N1+N2)6(Nmax+2).

3.1 Application to 4He and 16O

3.1.1 Binding energy
Figures 1, 2, 3 and 4 compare the ground-state ener-

gies in the HF approximation, added second- and added
third-order MBPT corrections with different nuclear ef-
fective interactions for selected closed-shell nuclei. In our
MBPT calculations the model space has been extended
up to Nshell = 10. We can verify that this truncation
is sufficient to ensure that the HF, second-order and
third-order MBPT results do not significantly depend
on the variation of the oscillator parameter ~Ω when it is
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Fig. 1. (color online) Ground-state energies of 4He and 16O as a function of oscillator parameter ~Ω in MBPT
calculations with HF reference energy (long-dashed line), added second- (dashed line) and third-order (solid line)
MBPT corrections. The interaction used is the “bare” NNLOopt potential [23].
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Fig. 2. (color online) Same as Fig. 1 but using OLS effective interaction.
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Fig. 3. (color online) Same as Fig. 1 but the interaction used is the “bare” JISP16 potential [24–26].
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Fig. 4. (color online) Same as Fig. 1 but using OLS effective interaction. The original interaction is the JISP16
potential [24–26].

larger than a certain ~Ω, and the convergence with the
basis enlargement is fast. For low ~Ω the convergence is
slow, and the reason has been shown in Section 1. Our
results also show that the convergence of the MBPT ex-
pression is fairly rapid, and higher-order corrections are
negligible.

Figures 5 and 6 compare the ground-state energies of
4He and 16O as a function of ~Ω in MBPT with Nshell ma-
jor shells truncation at single-particle level and NCSM
with Nmax model space truncation at many-body total
energy level. Although these two methods use different
model space truncations, Nmax and Nshell truncation, we
find that the results of MBPT are in reasonable agree-
ment with NCSM in “close” model space for different nu-
clear effective interactions. Since third order MBPT can
produce too-high binding energies for both interactions
based on NCSM results, it seems that 4th order MBPT
could be sufficient for the remaining amounts. In NCSM
all A nucleons are treated the same, and the Nmax trunca-
tion can generate all possible A-particle A-hole (ApAh)

excirations up to the excitation energy Nmax~Ω from the
unperturbed ground state. But for the MBPT, when
we go to the second-order wave function, it includes the
1p1h, 2p2h, 3p3h and 4p4h excitations from the HF ref-
erence state, φref. When we go to the third-order energy,
only the 2p2h excitations to φν are in fact used:

E=E(0)+∆E=E(0)+〈φref|Hint|φν〉 (32)

We can find from the IT-NCSM [11] that they can
resort to an iterative scheme to generate the 3p3h and
higher-order configurations when starting with a 0p0h
single HO Slater determinant reference state.

When looking at the comparison between “bare”
force and OLS renormalized force, we find that the two-
body OLS effective interaction always improves on the
results with bare interaction, in particular, for smaller
spaces and lower oscillator parameter ~Ω. We can also
see that starting at certain ~Ω, the results of MBPT or
NCSM become the same for the two-body OLS effective
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Fig. 5. (color online) Ground-state energies of 4He and 16O as a function of oscillator parameter ~Ω in MBPT and
NCSM calculations. The “bare” in this figure denotes using “bare” force, “eff” denotes OLS effective force, “Nshell”
indicates how many major HO shells for single-particle basis, and “Nmax” is defined as the maximal allowed HO
excitation above the lowest HO many-body configuration. The original interaction used is the NNLOopt potential
[23].
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Fig. 6. (color online) Same as Fig. 5 but the original interaction used is the JISP16 potential [24–26].
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Fig. 7. (color online) Point-proton rms radii of 4He and 16O as a function of oscillator parameter ~Ω in MBPT and
NCSM calculations. We calculate the one-body density for point-proton rms radii up to second order in MBPT,
as shown in Ref. [51]. The original interaction used is the NNLOopt potential [23].
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Fig. 8. (color online) Point-proton rms radii of 4He and 16O as a function of oscillator parameter ~Ω in MBPT
calculations. The “PT2” in this figure denotes the second order of MBPT for one-body density, and “-spur(c.m.)”
denotes the correction of spurious center-of-mass motion. The original interaction used is the NNLOopt potential
[23].
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Fig. 9. (color online) Same as Fig. 7 but the original interaction used is the JISP16 potential [24–26].

10 15 20 25 30 35 40
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

h̄Ω [MeV]

Pr
ot

on
 R

M
S 

R
ad

iu
s [

fm
]

4He
JISP16 (bare)

 

 

HF
HF+PT2
HF+PT2−spur(c.m.)

10 15 20 25 30 35 40

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

h̄Ω [MeV]

Pr
ot

on
 R

M
S 

R
ad

iu
s [

fm
]

16O

JISP16 (bare)

 

 

HF
HF+PT2
HF+PT2−spur(c.m.)

Fig. 10. (color online) Same as Fig. 8 but the original interaction used is the JISP16 potential [24–26].
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interaction and “bare” interaction. For “harder” inter-
actions, this value of ~Ω will be larger.
3.1.2 Root-mean-square radii

Our point-nucleon rms results of MBPT and NCSM
are presented in Fig. 7. For this quantity, we found an in-
teresting dependence on oscillator parameter ~Ω for dif-
ferent calculations in the same model spaces. In NCSM,
the radii decrease with increasing ~Ω, and this reflects
the behavior of the HO basis states. However, we found
that the MBPT calculation in HF basis improves conver-
gence and reduces the frequency dependence compared
to the NCSM calculation in HO basis, and there is a
similar conclusion for NCSM using a natural orbital ba-
sis [52]. We also found that there is a strange curve where
the radii increase with increasing ~Ω after a certain ~Ω
for 4He in MBPT. To interpret this trend, we look at
the details of the MBPT calculation, as shown in Fig. 8.
In this figure, the “HF” means the point-nucleon rms is
calculated by HF one-body density, “HF+PT2” means
taking into account the corrections of anti-symmetrized
Goldstone diagram expansion in Rayleigh-Schrödinger
perturbation theory for one-body density up to second
order, and “-spur(c.m.)” denotes the correction of spu-
rious center-of-mass motion. The correction of the rms
radius for the spurious center-of-mass motion, ∆rc.m., is

defined as [53]

∆rc.m.=[r2
SHF−

b2

A
]1/2−rSHF, (33)

where b2= ~
mΩ

and A are the nucleon number. So, ∆rc.m.

increases with increasing ~Ω, and we can easily under-
stand the trend of radii in MBPT. We also find that the
point-nucleon rms results of HF has the same trend as
the NCSM in the HO basis, and the higher corrections
of MBPT for one-body density is very small.

3.2 Application to 40Ca

Figure 11 shows the ground-state energy of 40Ca
in MBPT calculation as a function of ~Ω for differ-
ent “bare” nuclear interactions and Nshell truncations.
The convergence with the basis enlargement using the
NNLOopt potential is slower than with the JISP16 poten-
tial, and using the JISP16 potential has more overbind-
ing energy than NNLOopt. We give some details about
the ground-state observables of 40Ca in Table 1 and 2 at
the ~Ω where minimum energy is obtained. We conclude
that the NNLOopt potential can minimize the need for
three-body force effects, and the JISP16 potential needs
further phase-equivalent transformations or three-body
forces for heavier nuclei.
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Fig. 11. (color online) Ground-state energies of 40Ca as a function of oscillator parameter ~Ω in MBPT calculations
with HF reference energy (long-dashed line), added second- (dashed line) and third-order (solid line) MBPT
corrections. The original interactions used are the NNLOopt potential [23] and JISP16 potential [24–26].

Table 1. Ground-state observables of 40Ca with
“bare” NNLOopt interaction [23] (Nshell =10 and
~Ω=24 MeV).

observable p-rms/fm Eg.s./MeV

Expt. 3.39 -342.05

SHF 2.8382 -157.25

PT2 -0.0055 -222.18

PT3 − -0.68

∆rc.m. -0.0076 −
MBPT total 2.8251 -380.11

Table 2. Ground-state observables of 40Ca with
“bare” JISP16 interaction [24–26] (Nshell=10 and
~Ω=30 MeV).

Observable p-rms/fm Eg.s./MeV

Expt. 3.39 -342.05

SHF 1.8672 -432.20

PT2 0.0254 -109.38

PT3 − 2.87

∆rc.m. -0.0092 −
MBPT total 1.8835 -538.72
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4 Summary

In this work, starting from the “softer” NN interac-
tions NNLOopt and JISP16, we have compared results
obtained from MBPT in HF basis with NCSM in HO
basis. These two methods use different model space
truncations, the Nmax and Nshell truncations, but they
are in reasonable agreement in “close” model space. We
also have compared the results using “bare” force with

OLS renormalized force. We find that the two-body
OLS effective interaction always improves on the bare
interaction results, in particular, for smaller spaces and
lower HO frequencies.

We are grateful to Prof. James P. Vary at Iowa State
University, USA for valuable discussions and providing
the NNLOopt and JISP16 interactions.
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11 R. Roth and P. Navrátil. Phys. Rev. Lett., 99: 092501 (2007)
12 M. K. G. Kruse, E. D. Jurgenson, P. Navrátil, B. R. Barrett
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