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interactions by considering the one-eta-exchange and/or one-pion-exchange contributions. We further predict the

existence of hidden-charm molecular pentaquarks. Promising candidates for hidden-charm molecular pentaquarks

include a Ξ′
cD̄

∗ state with 0( 1
2

−
) and the Ξ∗
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predicted hidden-charm molecular pentaquarks are an interesting future research topic for experiments like LHCb.
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1 Introduction

As a hot research issue, studying exotic hadronic
states is attractive for both experimentalists and theo-
rists. In the past 14 years, more and more charmonium-
like and bottomonium-like states and states with open-
charm and open-bottom quantum numbers have been
reported in experiments. This gives us a good chance
to identify possible candidates for exotic states (see the
comprehensive reviews in Refs. [1, 2] for recent progress
in this field).

There are different configurations of exotic states,
which include glueballs, hybrids, molecular states, multi-
quark states and so on. Among these configurations, the
molecular state is very popular to study these newly ob-
served hadronic states. In observed hadronic matter, the
deuteron, which is composed of a neutron and a proton,
has been confirmed to be the typical hadronic molecular
state existing in nature. The measured binding energy
of deuteron is E =−2.224575 MeV [3, 4]. To quantita-
tively depict a neutron interacting with a proton to form
a deuteron, theorists have focused on the nuclear force
and developed corresponding phenomenological models

like the one-boson-exchange (OBE) model. Here, pi-
ons, sigmas and rho/omega particles contribute to the
nuclear force at long, medium and short distances, re-
spectively. Since 2003, the observed charmonium-like
and bottomonium-like states have stimulated extensive
interest in applying the OBE model to investigate the
newly observed X(3872) [5–12], Y (3930)/Y (4140) [13–
15] and Zb(10610)/Zb(10650) [7, 16, 17]. In addition,
the interactions of two hadrons have been explored un-
der the OBE model and more hadronic molecular states
predicted [18–30].

In 2015, Pc(4380) and Pc(4450) were reported by the
LHCb Collaboration [31]. Before the observation of these
two Pc states, theorists once predicted the existence of
molecular hidden-charm pentaquarks [26, 32–37]. Later,
combining with the released experimental information,
theorists analyzed the properties of the two Pc states
by different approaches [29, 30, 38–56] (see Ref. [1] and
references therein for details).

Under the molecular state assignment to Pc(4380)
and Pc(4450) [29, 30, 38–44], the interactions of charmed
baryons with anti-charmed mesons were studied. If
Pc(4380) and Pc(4450) are molecular pentaquarks com-
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posed of a charmed baryon and an anti-charmed meson,
we have reason to believe that their partners should exist.
For example, in Ref. [30], possible charm-strange molec-
ular pentaquarks were studied by the OBE model. The
authors suggested Λ0

b→D̄0D0Λ0 as an appropriate chan-
nel to search for two predicted pentaquarks Pcs(3340)
and Pcs(3400), which correspond to the ΣcK̄

∗ configu-
ration with I(JP ) = 1

2
( 3

2

−
) and the Σ∗

cK̄
∗ configuration

with 1
2
( 5

2

−
), respectively.

Along this line, in this work we focus on other hidden-
charm molecular pentaquarks with a strange quark,
which have the concrete quark component [cc̄sqq]. These
molecular pentaquarks, which are also called strange
hidden-charm molecular pentaquarks in this work, are
closely related to the ΛcD̄

∗
s /Σ(∗)

c D̄∗
s/Ξ(′,∗)

c D̄∗ interactions.
There are some previous theoretical studies of strange
hidden-charm molecular pentaquarks [32–34]. Very re-
cently, Karliner and Rosner [57] proposed that Λb →
J/ψΛ(π+π−/η) is a promising channel to find a possible
strange hidden-charm molecular pentaquark composed
of Λc and D̄∗

s .
Different from the former studies of strange hidden-

charm molecular pentaquark in Refs. [32–34, 57], in
this work we carry out a comprehensive investigation of
the ΛcD̄

∗
s/Σ(∗)

c D̄∗
s/Ξ(′,∗)

c D̄∗ interactions under the OBE
model, by which we further predict the strange hidden-
charm molecular pentaquarks. Here, two kinds of molec-
ular configurations will be taken into consideration:
molecular systems composed of a charmed baryon and
an anti-charmed-strange meson (molecular pentaquarks
with components ΛcD̄

∗
s , ΣcD̄

∗
s , and Σ∗

cD̄
∗
s ), and systems

composed of a charmed-strange baryon and an anti-
charmed meson (molecular pentaquarks with compo-
nents ΞcD̄

∗, Ξ′
cD̄

∗, and Ξ∗
cD̄

∗). In the following section,
we will give a detailed illustration of deducing the effec-
tive potentials involved in the study of strange hidden-
charm molecular pentaquarks. We hope that the present
work may provide valuable information about strange
hidden-charm molecular pentaquarks, which will be help-
ful for further experimental searches for them.

The paper is organized as follows. We present the
deduction of the effective potentials in Section 2. In
Section 3, the corresponding numerical results for the
strange hidden-charm pentaquarks are given. A sum-
mary is then given in Section 4.

2 Effective potentials related to the

ΛcD̄
∗

s/Σ
(∗)
c D̄∗

s/Ξ
(′,∗)
c D̄∗ systems

First, we need to illustrate the details of deducing
the effective potential. For the ΛcD̄

∗
s/Σ(∗)

c D̄∗
s/Ξ(′,∗)

c D̄∗

systems, their total wave functions are constructed by
including color, flavor, spin-orbit, and spatial wave func-
tions. For colorless molecular states, the color wave func-

tion is simply taken as 1. In addition, we adopt the nota-
tion |2S+1LJ〉 to define the spin-orbit wave function. The
total angular momentum J can be 1

2
and 3

2
for the ΛcD̄

∗
s ,

ΣcD̄
∗
s , Ξ′

cD̄
∗ and ΞcD̄

∗ systems, and 1
2
, 3

2
and 5

2
for the

Σ∗
cD̄

∗
s and Ξ∗

cD̄
∗ systems. The spin-orbit wave function

|2S+1LJ〉 can be explicitly expressed as

J=
1

2
: |2S 1

2

〉, |4D 1

2

〉;

J=
3

2
: |4S 3

2

〉, |2D 3

2

〉, |4D 3

2

〉;

J=
5

2
: |6S 5

2

〉, |2D 5

2

〉, |4D 5

2

〉, |6D 5

2

〉,

(1)

where S and D denote the corresponding systems with
orbit angular momentum L=0 and L=2, respectively.
We need to specify that in our calculation we consider
the mixing of S-wave and D-wave, which is the lesson
learned from deuteron studies. Here, S-D mixing con-
tributes to the tensor force, which is crucial to form the
shallow deuteron.

The explicit expressions for the spin-orbit wave func-
tion are categorized into two typical groups by the spin
SB of the baryon in the system, i.e.,

∣

∣

2S+1LJ

〉

SB= 1

2

=

mS,mL
∑

m,m′

CS,mS

1

2
m,1m′

CJ,M
SmS ,LmL

χ 1

2
mεm′ |YL,mL

〉,

(2)

∣

∣

2S+1LJ

〉

SB= 3

2

=

mS,mL
∑

m,m′

CS,mS

3

2
m,1m′

CJ,M
SmS ,LmL

Φ 3

2
mεm′ |YL,mL

〉,

(3)
where YL,mL

is the spherical harmonics function, and
the constants CJ,M

SmS ,LmL
, CS,mS

1

2
m,1m′

and CS,mS

3

2
m,1m′

are the

Clebsch-Gordan coefficients. The polarization vectors
for the vector meson are defined as εm

± =∓ 1√
2

(

εm
x ±iεm

y

)

and εm
0 = εm

z , which are written explicitly as ε±1 =
1√
2
(0,±1,i,0) and ε0 = (0,0,0,−1). The χ 1

2
m denotes

the spin wave function for baryons (Λc, Σc, or Ξ(′)
c )

with spin SB = 1
2
. The polarization tensor Φ 3

2
m for

baryons (Σ∗
c or Ξ∗

c , ) with spin SB = 3
2

has the form
Φ 3

2
m=

∑

m1,m2
〈 1

2
,m1;1,m2| 32 ,m〉χ 1

2
,m1

εm2 .

Additionally, the flavor wave function |I,I3〉 of these
molecular systems, where I and I3 are the isospin and
its third component of the systems, respectively, has the
form

ΛcD̄
∗
s : |0,0〉=|Λ+

c D−
s 〉,

Σ(∗)
c D̄∗

s :











|1,1〉=|Σ(∗)++
c D∗−

s 〉,
|1,0〉=|Σ(∗)+

c D∗−
s 〉,

|1,−1〉=|Σ(∗)0
c D∗−

s 〉,

Ξ(′,∗)
c D̄∗ :















|1,1〉=|Ξ(′,∗)+
c D̄∗0〉,

|1,0〉= 1√
2

(

|Ξ(′,∗)+
c D∗−〉+|Ξ(′,∗)0

c D̄∗0〉
)

,

|1,−1〉=|Ξ(′,∗)0
c D∗−〉,

(4)
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|0,0〉= 1√
2

(

|Ξ(′,∗)+
c D∗−〉−|Ξ(′,∗)0

c D̄∗0〉
)

,

where Σ(∗)
c indicates the charmed baryons Σc and Σ∗

c , and
the charmed-strange baryons Ξc, Ξ′

c and Ξ∗
c , are denoted

by Ξ(′,∗)
c .

In the following, we continue to deduce the effective
potentials of the ΛcD̄

∗
s /Σ(∗)

c D̄∗
s /Ξ(′,∗)

c D̄∗ systems. In gen-
eral, the effective potential in momentum space is related
to the scattering amplitude, i.e.,

V ab→cd(q) = − M(ab→cd)√
2ma2mb2mc2md

, (5)

where M(ab→cd) denotes the scattering amplitude of a
process ab→cd, and mi (i=a,b,c,d) is the mass of parti-
cle a/b/c/d. At the hadronic level, we can write out the
expression of M(ab→cd) by the effective Lagrangian ap-
proach. Then, an effective potential in momentum space
VE(q) can be transferred into an effective potential in co-
ordinate space by performing the Fourier transformation

V ab→cd
E (r) =

∫

d3q

(2π)3
eiq·rV ab→cd

E (q)F2(q2,m2
E). (6)

In the above Fourier transformation, the form factor
F(q2,m2

E) should be introduced at each interaction ver-
tex to compensate the off-shell effect of the exchanged
meson and reflect the inner structure of each interac-
tion vertex. Usually, a monopole form like F(q2,m2

E)=
(Λ2−m2

E)/(Λ2−q2) is suggested [5, 6]1),2), where mE and
q denote the mass and four-momentum of the exchanged
particle, respectively. In addition, the cutoff Λ is a model
parameter in our calculation. Later, we will discuss the
dependence of the numerical result on Λ. With the ob-
tained effective potential, we try to find bound state so-
lutions by solving the Schrödinger equation. In this way,
we can further predict the mass spectrum of the possible
molecular states.

When writing out the scattering amplitude, we adopt
the effective Lagrangian approach. Due to both heavy
quark symmetry and chiral symmetry [58–63], the rele-
vant Lagrangians can be constructed as

LP = igTr
[

H̄a
(Q̄)

γµAµ
abγ5H

(Q̄)
b

]

, (7)

LS = −3

2
g1ε

µνλκvκTr
[

S̄µAνSλ

]

, (8)

LB
3̄

= g2Tr
[

B̄3̄γµγ5A
µB3̄

]

, (9)

where H (Q̄)
b and Sµ are defined as field operators. H (Q̄)

a

is defined as H (Q̄)
a =[P ∗(Q̄)µ

a γµ−P (Q̄)
a γ5]

1−/v
2

with the heavy

pseudoscalar meson P (Q̄)=(D̄0,D−,D−
s )T and heavy vec-

tor meson P ∗(Q̄) =(D̄∗0,D∗−,D∗−
s )T . Its conjugate field

satisfies H̄(Q̄)
a = γ0H

(Q̄)†
a γ0. The superfield operator Sµ

is related to baryons B6 with JP = 1/2+ and B∗
6 with

JP =3/2+ in the 6F flavor representation. The expres-

sion of Sµ reads as Sµ=−
√

1
3
(γµ+vµ)γ5B6+B∗

6µ. Addition-

ally, the four velocity has the form v=(1,0). The axial
current satisfies Aµ= 1

2
(ξ†∂µξ−ξ∂µξ†) with ξ=exp(iP/fπ)

and the pion decay constant is taken as fπ =132 MeV.
The concrete expressions of matrices P, B3̄, and B(∗)

6 are

P =















π0

√
2
+

η√
6

π+ K+

π− − π0

√
2
+

η√
6

K0

K− K̄0 − 2√
6
η















,

B3̄ =







0 Λ+
c Ξ+

c

−Λ+
c 0 Ξ0

c

−Ξ+
c −Ξ0

c 0






,

B(∗)
6 =















Σ(∗)++
c

1√
2
Σ(∗)+

c

1√
2
Ξ(′,∗)+

c

1√
2
Σ(∗)+

c Σ(∗)0
c

1√
2
Ξ(′,∗)0

c

1√
2
Ξ(′,∗)+

c

1√
2
Ξ(′,∗)0

c Ω(∗)0
c















.

By further expanding Eqs. (7-9), the concrete expres-
sions of the effective Lagrangians adopted in our calcu-
lation can be obtained, i,e.,

LP̄∗P̄∗P = i
2g

fπ

vαεαµνλP̄ ∗µ†
a P̄ ∗λ

b ∂ν
Pab, (10)

LB6B6P = i
g1

2fπ

εµνλκvκTr
[

B̄6γµγλ∂νPB6

]

, (11)

LB∗

6
B∗

6
P = −i

3g1

2fπ

εµνλκvκTr
[

B̄∗
6µ∂νPB∗

6λ

]

, (12)

LB
3̄
B

3̄
P =

g2

fπ

Tr
[

B̄3̄γµγ5P
µB3̄

]

. (13)

In the above Lagrangians, there are three coupling con-
stants, g, g1, and g2, to be determined. Based on the D∗

1) In Refs. [5, 6], Törnqvist studied the one-pion exchange potential contribution to NN systems. Especially, the deuteron was

discussed with the introduced monopole form factor, where an expression for a spherical pion source was given, R=
√

10
Λ

= 0.624
Λ/[GeV]

fm.

According to this relation, the Λ value was estimated to be 0.8−1.5 GeV for the NN interaction. For the discussed hidden-charm molecular
pentaquarks, a smaller R should be expected, which results in a larger Λ. Due to this reason, in this work we choose Λ=0.8−5 GeV to
present our numerical results. Although the bound state solution by scanning this wide Λ range can be found, we still should be careful
to make a definite conclusion of the existence of the corresponding hidden-charm molecular pentaquarks. Thus, in this work we take a
stricter criterion, i.e., if the bound state solutions appear when taking Λ=1−1.5 GeV, the existence of the corresponding molecular state
becomes more possible. In Section 3, we give more detailed discussions.

2) Indeed we can take other forms for the form factor, such as the dipole form factor F(q2,m2
E)=(Λ2−m2

E)2/(Λ2−q2)2, to regularize
the potential. If taking this form of form factor in the calculation, we need to fix the possible range of Λ by restudying the NN interaction.
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decay width (Γ (D∗+)=96±4±22 keV) [64], the coupling
constant g in Eq. (7) is found to be g=0.59±0.01±0.07.
In Eq. (8), g1 is fixed as g1 = 0.94 (Ref. [63])1). The
coupling constant g2 in Eq. (9) describes the strength of
the coupling of the pseudoscalar meson π/η and charmed
baryons B3̄ with its light quarks in 3̄F representation. In
the heavy quark limit, the coupling constant g2 is taken

as g2 = 0 because the decay process B3̄ → B3̄+π/η is
forbidden.

In the following, we continue to the deduction of the
effective potential. The normalization relations for vec-
tor meson P ∗, baryon B3̄(B6) with spin-1/2, and baryon
B∗µ

6 with spin-3/2 are

〈0|P̄ ∗
µ |Q̄q(1)〉 = εµ

√

MP̄∗ ,

〈0|B3̄|Qqq(
1

2
)〉 =

√

2MB
3̄

((

1− p2

8M 2
B

3̄

)

χ 1

2
,m,

σ·p
2MB

3̄

χ 1

2
,m

)T

,

〈0|B∗µ
6 |Qqq(

3

2
)〉 =

∑

m1,m2

C3/2,m1+m2

1/2,m1 ;1,m2

√

2MB∗

6

((

1− p2

8MB∗

6

)

χ 1

2
,m1

,
σ·p

2MB∗

6

χ 1

2
,m1

)T

εµ
m2

,

respectively. Here, Mb (b=B3̄, B6, P̄ ∗) denotes the cor-
responding mass of vector meson P ∗/baryon B3̄/baryon
B∗µ

6 . The σ and p are the Pauli matrix and the momen-
tum of the corresponding heavy hadron, respectively.

With the above preparation, we get the general ex-
pressions of the one-pion-exchange and one-eta-exchange
effective potentials for the molecular systems considered
in this work, i.e.,

VΛcD̄
∗

s
→ΛcD̄

∗

s

η (r) = 0, (14)

VΣcD̄
∗

s
→ΣcD̄

∗

s

η (r) = −1

3

gg1

f 2
π

V1(Λ,mη,r), (15)

VΣ∗

c
D̄∗

s
→Σ∗

c
D̄∗

s

η (r) = −1

2

gg1

f 2
π

V2(Λ,mη,r), (16)

VΞcD̄
∗→ΞcD̄

∗

π
(r) = 0, (17)

VΞcD̄
∗→ΞcD̄

∗

η (r) = 0, (18)

VΞ′

c
D̄∗→Ξ′

c
D̄∗

π
(r) =

1

4
G(I)

gg1

f 2
π

V1(Λ,mπ,r), (19)

VΞ′

c
D̄∗→Ξ′

c
D̄∗

η (r) = − 1

12

gg1

f 2
π

V1(Λ,mη,r), (20)

VΞ∗

c
D̄∗→Ξ∗

c
D̄∗

π
(r) =

3

8
G(I)

gg1

f 2
π

V2(Λ,mπ,r), (21)

VΞ∗

c
D̄∗→Ξ∗

c
D̄∗

η (r) = −1

8

gg1

f 2
π

V2(Λ,mη,r). (22)

Here, the subscript of VΛcD̄
∗

s
→ΛcD̄

∗

s
η (r) denotes that the

exchanged meson is η. We use the same notation for the
other effective potentials listed in Eqs. (15)-(22). At first
sight, the ΛcD̄

∗
s and ΞcD̄

∗ interactions are forbidden be-
cause of the constraint from heavy quark symmetry. For

the ΣcD̄
∗
s and Σ∗

cD̄
∗
s interactions, the one pion exchange

is suppressed according to the OZI rule and vanishes un-
der the symmetries considered in the current work. In
the one-pion-exchange effective potentials listed in Eq.
(19) and Eq. (21), an isospin factor G(I) is introduced,
which is taken as G=1 for the isovector sector with I=1,
and G =−3 for the isoscalar sector with I =0. For the
convenience of the reader, two auxiliary potential func-
tions V1 and V2 are given here, i.e.,

V1(Λ,m,r) =
1

3

[(

iε1×ε†
3

)

·σ
]

Z(Λ,m,r)

+
1

3
S(r̂,iε1×ε†

3
,σ)T (Λ,m,r), (23)

V2(Λ,m,r) = −
∑

a,b,c,d

〈

1

2
,a;1,b

∣

∣

∣

∣

3

2
,a+b

〉〈

1

2
,c;1,d

∣

∣

∣

∣

3

2
,c+d

〉

×χa†
4 χc

2

{

1

3

(

ε1×ε†
3

)

·
(

εd
2×εb†

4

)

Z(Λ,m,r)

+
1

3
S
(

r̂,ε1×ε†
3,ε

d
2×εb†

4

)

T (Λ,m,r)

}

, (24)

where S(r̂,x,y) = 3(r̂ ·x)(r̂ ·y)−x·y, and the functions
Y (Λ,m,r), Z(Λ,m,r), and T (Λ,m,r) have the definitions

Y (Λ,m,r) =
1

4πr
(e−mr−e−Λr)−Λ2−m2

8πΛ
e−Λr, (25)

Z(Λ,m,r) = ∇2Y (Λ,m,r), (26)

T (Λ,m,r) = r
∂

∂r

1

r

∂

∂r
Y (Λ,m,r). (27)

The values of the angular momentum operators in
Eqs. (23)–(24) sandwiched between the wave functions
can be read from Table 1, which will be used in the cal-
culation.

1) In Ref. [63], the coupling constant g1 is related to another coupling constant g4 by the relation g1=
√

8
3

g4, where g4 is a coupling
constant of Σ∗

c →Λcπ. By the measured decay width of Σ∗
c →Λcπ [65], g4=0.999 can be extracted, by which g1=0.94 is estimated (see

Ref. [63] for more details).
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Table 1. Matrix representations for the angular momentum operators 〈2S′+1L′
J′ |Oi|

2S+1LJ 〉. Here, E1 =

(iε1 × ε†
3
) · σ, S1 = S(r̂,iε1 × ε†

3
,σ), E2 =

∑

a,b;c,dC
3/2,m
1/2,a;1,bC

3/2,n
1/2,c;1,dχa†

4 χc
2(ε1 × ε†3) · (ε

d
2 × εb†

4 ), and S2 =
∑

a,b;c,dC
3/2,m

1/2,a;1,bC
3/2,n

1/2,c;1,dχa†
4 χc

2S(r̂,ε1×ε†3,ε
d
2×εb†

4 ).

J 〈2S′+1L′
J′
|E1|2S+1LJ 〉 〈2S′+1L′

J′
|S1|2S+1LJ 〉 〈2S′+1L′

J′
|E2|2S+1LJ 〉 〈2S′+1L′

J′
|S2|2S+1LJ 〉

1/2







−2 0

0 1













0 −
√

2

−
√

2 −2















5

3
0

0
2

3

















0 − 7

3
√

5

− 7

3
√

5

16

15









3/2















1 0 0

0 −2 0

0 0 1





























0 1 2

1 0 −1

2 −1 0































2

3
0 0

0
5

3
0

0 0
2

3

































0
7

3
√

10
−16

15
7

3
√

10
0 − 7

3
√

10

−16

15
− 7

3
√

10
0

















5/2 ... ...























−1 0 0 0

0
5

3
0 0

0 0
2

3
0

0 0 0 −1



















































0
2√
15

√

3

175
−
√

56

5

2√
15

0

√

7

45
−
√

32

105
√

3

175

√

7

45
−16

21
−
√

2

147

−
√

56

5
−
√

32

105
−
√

2

147
−4

7





























With the effective potentials obtained, the bound
state solutions (binding energy E and corresponding
root-mean-square radius rRMS) can be obtained by solv-
ing the coupled-channel Schrödinger equation. The cor-
responding kinetic terms for the systems investigated
read as

KJ=1/2
α = diag

(

− ∇2

2Mα

,− ∇2
1

2Mα

)

, (28)

KJ=3/2
α = diag

(

− ∇2

2Mα

,− ∇2
1

2M2

,− ∇2
1

2Mα

)

, (29)

KJ=5/2
α = diag

(

− ∇2

2Mα

,− ∇2
1

2Mα

,− ∇2
1

2Mα

,− ∇2
1

2Mα

)

, (30)

where ∇2 = 1
r2

∂
∂r

r2 ∂
∂r

, ∇2
1 = ∇2−6/r2, and Mα is the

reduced mass with the subscript α standing for the dif-
ferent systems ΣcD̄

∗
s , Σ∗

cD̄
∗
s , Ξ′

cD̄
∗, and Ξ∗

cD̄
∗.

Recall that the ΛcD̄
∗
s and ΞcD̄

∗ interactions are for-
bidden under heavy quark symmetry and chiral sym-
metry. In Section 3.1 and Section 3.2, we will present
our results for two different types of molecular system,
i.e., the Σ(∗)

c D̄∗
s systems, with the strange quark in the

constituent meson, and the Ξ(′,∗)
c D̄∗ systems, with the

strange quark in the constituent baryon, respectively.

3 Numerical results

In Table 2, we list the masses and quantum num-
bers of charmed hadrons involved in our calculation. In
this work, special attention will be paid to the roles of
the one-pion-exchange (OPE) potential and the one-eta-
exchange (OEE) potential in forming a hadronic molec-

ular state.

Table 2. Properties of hadrons involved in this
work [66]. Here, the mass is taken as the aver-
age value, for example, mD̄∗ =(mD̄∗0+mD∗−)/2.

hadrons IG(JP ) mass/MeV hadrons IG(JP ) mass/MeV

D̄∗ 1

2
(1−) 2008.63 D̄∗

s 0(1−) 2112.3

Λc 0(
1

2

+

) 2286.46 Ξc
1

2
(
1

2

+

) 2469.34

Σc 1(
1

2

+

) 2453.54 Ξ′
c

1

2
(
1

2

+

) 2576.75

Σ∗
c 1(

3

2

+

) 2518.07 Ξ∗
c

1

2
(
3

2

+

) 2645.9

η 0+(0−) 547.853 π 1−(0−) 139.57

3.1 The ΣcD̄
∗
s and Σ∗

cD̄
∗
s systems

For the ΣcD̄
∗
s and Σ∗

cD̄
∗
s systems, the OPE poten-

tial does not exist, and only the contribution from the
OEE should be considered. In Table 3, the correspond-
ing bound state solutions are listed. In addition, we also
present the Λ dependence of the bound state solutions
in Fig. 1.

When scanning the Λ range from 0.6 GeV to 5 GeV,
we find that there exist bound state solutions for the
ΣcD̄

∗
s state with quantum number I(JP ) = 1( 1

2

−
) and

the Σ∗
cD̄

∗
s states with 1( 1

2

−
) and 1( 3

2

−
). Usually, with an

estimate of radius of the heavy meson about 0.5−1 fm
and by assuming the light meson to be a point particle,
the cutoff should be about 1−1.5 GeV. The correspond-
ing Λ values for the ΣcD̄

∗
s state with quantum number

I(JP )=1( 1
2

−
) and the Σ∗

cD̄
∗
s states with 1( 1

2

−
) and 1( 3

2

−
)
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Fig. 1. (color online). Λ dependence of bound state solutions (the binding energy E and the root-mean-square

radius rRMS) for the ΣcD̄
∗
s state with 1( 1

2

−
) and the Σ∗

c D̄
∗
s states with 1( 1

2

−
) and 1( 3

2

−
).

Table 3. Typical values of the obtained bound
state solutions (binding energy E and root-mean-
square radius rRMS) for the ΣcD̄

∗
s and Σ∗

c D̄
∗
s sys-

tems. E, rRMS, and Λ are in units of MeV, fm,
and GeV, respectively.

J
ΣcD̄∗

s Σ∗
c D̄∗

s

Λ E rRMS Λ E rRMS

1(
1

2

−
) 2.88 -0.53 3.78 2.50 -1.59 2.31

2.98 -5.52 1.26 2.55 -4.68 1.36

3.08 -15.43 0.78 2.60 -9.29 0.98

1(
3

2

−
) . . . . . . . . . 3.75 -0.32 4.52

. . . . . . . . . 3.85 -2.84 1.78

. . . . . . . . . 3.95 -7.86 1.09

1(
5

2

−
) . . . . . . . . . . . . . . . . . .

are larger than such an estimate. This phenomenon re-
flects that the OEE really provides an attractive force,
but it is not strong enough to produce the bound state
if a cutoff about 1−1.5 GeV is adopted strictly.

If the existence of the ΣcD̄
∗
s molecular pentaquark

state with quantum number I(JP )=1( 1
2

−
) and the Σ∗

cD̄
∗
s

molecular pentaquark states with 1( 1
2

−
) and 1( 3

2

−
) are

possible, their allowed two-body decay channels include

ΣcD̄s, ΞcD̄, ΞcD̄
∗, Ξ′

cD̄, ηcΣ, J/ψΣ,

by which experiments like LHCb may search for these
three strange hidden-charm molecular pentaquarks in fu-
ture.

3.2 The Ξ′
cD̄

∗ and Ξ∗
cD̄

∗ systems

For the Ξ′
cD̄

∗ and Ξ∗
c D̄

∗ systems, the OPE is not sup-
pressed, so it works with the OEE to provide the interac-

tion force. The numerical results of bound state solutions
for the Ξ′

cD̄
∗ and Ξ∗

cD̄
∗ systems are collected in Table 4

and Table 5, respectively. Here, we still scan the cutoff
Λ from 0.6 GeV to 5 GeV.

As shown in Table 4, we cannot find a bound state
solution for the Ξ′

cD̄
∗ system if only OEE is considered in

the calculation. However, with only OPE considered, the
Ξ′

cD̄
∗ states with 0( 1

2

−
), 0( 3

2

−
), and 1( 3

2

−
) have bound

state solutions: (a) the bound state solution for the Ξ′
cD̄

∗

system with 0( 1
2

−
) appears when taking Λ=1.1 GeV; (b)

for the Ξ′
cD̄

∗ system with 0( 3
2

−
), we may find its bound

state solution if we take Λ to be around 3 GeV, while
there is a bound state solution for the Ξ′

cD̄
∗ system with

1( 3
2

−
) and Λ∼ 4 GeV. The corresponding cutoff is un-

usual and deviates from 1−1.5 GeV. Considering this
situation, we predict the existence of the Ξ′

cD̄
∗ molecu-

lar pentaquark state with 0( 1
2

−
) and do not recommend

the Ξ′
cD̄

∗ states with 1( 3
2

−
) and 0( 3

2

−
) as good candidates

for a molecular pentaquark.
The bound state solutions for the Ξ′

cD̄
∗ system when

considering both the OPE and the OEE are presented
in the columns marked “OPE&OEE” in Table 4. The
bound state solutions for the Ξ′

cD̄
∗ systems with 0( 1

2

−
)

and 0( 3
2

−
) are obtained in the OPE&OEE mode. Com-

pared with the results in the OPE mode, the bound state
solution for the Ξ′

cD̄
∗ system with 1( 3

2

−
) disappears when

scanning the cutoff Λ from 0.6 GeV to 5 GeV, which
shows that the OEE effective potential provides a repul-
sive force for the Ξ′

cD̄
∗ system with 1( 3

2

−
). However,

for the Ξ′
cD̄

∗ systems with 0( 1
2

−
) and 0( 3

2

−
), interaction

from the OEE is weakly attractive, which makes the cut-
off becomes smaller when including both OPE and OEE
contributions in our calculation.
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Table 4. Typical values of the bound state solutions (binding energy E and root-mean-square radius rRMS) for the
Ξ′

cD̄
∗ system. Here, E, rRMS, and Λ are in units of MeV, fm, and GeV, respectively.

I(JP )
OEE OPE OPE&OEE

[Λ,E,rRMS] Λ E rRMS Λ E rRMS

0( 1
2

−
) . . . 1.14 -0.20 5.04 1.12 -0.43 4.18

. . . 1.26 -3.96 1.62 1.22 -4.13 1.59

. . . 1.38 -13.02 0.97 1.32 -12.14 1.00

1( 1
2

−
) . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0( 3
2

−
) . . . 2.62 -0.24 5.17 2.48 -0.62 3.95

. . . 2.90 -3.72 1.84 2.70 -4.09 1.78

. . . 3.18 -13.18 1.08 2.92 -11.83 1.14

1( 3
2

−
) . . . 3.84 -0.40 4.27 . . . . . . . . .

. . . 4.04 -4.47 1.48 . . . . . . . . .

. . . 4.24 -13.66 0.88 . . . . . . . . .

Fig. 2. (color online). Effective potentials for the Ξ′
cD̄

∗ state with I(JP ) = 0( 1
2

−
) at cutoff Λ = 1.32 GeV. The

dotted, dashed and solid lines are for the OEE , the OPE and total effective potentials, respectively. Here,
V11=〈2S 1

2

|VΞ′

c
D̄∗→Ξ′

c
D̄∗

(r)|2S 1

2

〉, V12=〈2S 1

2

|VΞ′

c
D̄∗→Ξ′

c
D̄∗

(r)|4D 1

2

〉, and V22=〈4D 1

2

|VΞ′

c
D̄∗→Ξ′

c
D̄∗

(r)|4D 1

2

〉.

To show the contributions from the OPE and the
OEE more clearly, the effective potentials for the Ξ′

cD̄
∗

interaction with 0( 1
2

−
) when taking the cutoff Λ = 1.32

GeV are shown in Fig. 2. The OPE effective potentials
are much larger than the OEE effective potentials and
dominate the total potentials for the V11, V12, and V22

cases. The curves for the OPE potentials nearly overlap
with these for the total effective potentials. Besides, as
indicated by the results for the bound state solution, the
OEE behavior is similar to that of the OPE but with a
smaller contribution to the total effective potential.

In Table 5, we present the numerical results for the
Ξ∗

cD̄
∗ system. As for the Ξ′

cD̄
∗ system, no bound state

solution is obtained if only the OEE is taken into con-
sideration. The small contribution from the OEE results
in that the result with both OPE and OEE is similar to
that with the OPE only. The cutoff to produce a Ξ∗

cD̄
∗

bound state with 0( 3
2

−
) is about 1.5 GeV, which shows

that the Ξ∗
cD̄

∗ molecular pentaquark states with 0( 3
2

−
)

may exist. Especially, for the Ξ∗
c D̄

∗ state with 0( 1
2

−
), the

value of the cutoff is around 1 GeV when the correspond-
ing bound state solution appears. Thus, we also suggest
the existence of a Ξ∗

c D̄
∗ pentaquark state with 0( 1

2

−
). In

summary, these two Ξ∗
c D̄

∗ states with 0( 1
2

−
) and 0( 3

2

−
)

are promising molecular pentaquark candidates. If we
relax the restriction on the cutoff up to 3.5 GeV, there
may exist two other molecular pentaquark state candi-
dates, i.e., the Ξ∗

cD̄
∗ states with 0( 5

2

−
) and 1( 5

2

−
).

With the cutoff restricted to below 5 GeV, the bound
state solution for the Ξ∗

cD̄
∗ system with 1( 3

2

−
) disappears

after including the OEE contribution, while the OEE
provides a repulsive force in this case. For the Ξ∗

cD̄
∗ sys-

tems with 0( 1
2

−
), 0( 3

2

−
), and 0( 5

2

−
), the corresponding

OEE potentials are attractive, which makes the value of
the cutoff Λ become smaller when considering both OPE
and OEE contributions if reproducing the same binding
energy as when only considering the OPE contribution.
Different from the above three cases, the OEE contribu-
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tion provides a repulsive potential for the Ξ∗
c D̄

∗ system
with 1( 5

2

−
). Thus, we can naturally understand why the

cutoff for the OPE&OEE mode is larger than for the
OPE mode, as shown in Table 5.

The effective potentials for the Ξ∗
c D̄

∗ state with 0( 3
2

−
)

are presented in Fig. 3. A similar conclusion to that of
the Ξ′

cD̄
∗ state with 0( 3

2

−
) can be reached. The OEE

contribution is much smaller than the OPE contribution
for all Vij potentials considered here, which is consistent
with the observation from these results in Table 5.

Table 5. Typical values of the bound state solutions (binding energy E and root-mean-square radius rRMS) for the
Ξ∗

c D̄
∗ system. Here, E, rRMS, and Λ are in units of MeV, fm, and GeV, respectively.

I(JP )
OEE OPE OPE&OEE

[Λ,E,rRMS] Λ E rRMS Λ E rRMS

0( 1
2

−
) . . . 0.95 -0.14 5.39 0.95 -0.45 4.10

. . . 1.05 -3.17 1.80 1.05 -4.73 1.51

. . . 1.15 -10.46 1.08 1.15 -14.27 0.95

1( 1
2

−
) . . . . . . . . . . . . . . . . . . . . .

0( 3
2

−
) . . . 1.55 -0.23 5.02 1.50 -0.48 4.08

. . . 1.70 -3.61 1.73 1.65 -5.06 1.50

. . . 1.85 -11.86 1.04 1.80 -15.64 0.92

1( 3
2

−
) . . . 4.25 -0.44 4.09 . . . . . . . . .

. . . 4.40 -3.11 1.73 . . . . . . . . .

. . . 4.55 -8.47 1.08 . . . . . . . . .

0( 5
2

−
) . . . 2.35 -0.24 5.20 2.20 -0.37 4.70

. . . 2.60 -3.48 1.93 2.40 -3.22 2.00

. . . 2.85 -12.30 1.15 2.60 -10.07 1.26

1( 5
2

−
) . . . 3.15 -0.62 3.62 4.30 -0.26 4.79

. . . 3.30 -4.03 1.54 4.50 -3.22 1.70

. . . 3.45 -10.84 0.98 4.70 -10.03 1.00

Fig. 3. (color online). Effective potentials for the Ξ∗
c D̄

∗ state with I(JP ) = 0( 3
2

−
) at cutoff Λ = 1.80 GeV. The

dotted, dashed and solid lines are for the OEE, the OPE and total effective potentials, respectively. Here, we
define Vij =〈i|VΞ∗

c
D̄∗→Ξ∗

c
D̄∗

(r)|j〉 with |i〉=|6S 5

2

〉, |2D 5

2

〉, |4D 5

2

〉, and |6D 5

2

〉 for i=1, 2, 3, and 4, respectively.
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Additionally, we also provide the allowed two-body
decay channels for the Ξ(′,∗)

c D̄∗ molecular pentaquarks
with different quantum numbers in Table 6, which may
be useful for the further experimental study of these
molecular pentaquarks.

Table 6. Allowed decay channels for Ξ′
cD̄

∗ and
Ξ∗

c D̄
∗ with different quantum numbers.

channels
Ξ′

cD̄
∗[I(JP )

]

Ξ∗
c D̄∗[I(JP )

]

0( 1
2

−
) 0( 3

2

−
) 0( 1

2

−
) 0( 3

2

−
) 0( 5

2

−
)

ΛcD̄s X X X X X

ΛcD̄∗
s X X X X X

ΞcD̄ X X X X X

ΞcD̄∗ X X X X X

Ξ′
cD̄ X X X X X

Ξ′
cD̄

∗ X X X

Ξ∗
c D̄ X X X X X

ηcΛ X X X X X

J/ψΛ X X X X X

Ξcc(
1
2

+
)K̄ X X X X X

Ξcc(
1
2

+
)K̄∗ X X X X X

Ωcc(
1
2

+
)η X X X X X

Ωcc(
1
2

+
)ω X X X X X

4 Summary

Searching for exotic hadronic states is a research field
full of challenges and opportunities. With recent exper-

imental progress, more and more novel phenomena have
been revealed in experiments, which has stimulated the-
orists’ extensive interest in studying exotic states. In-
terested readers may read about the relevant progress in
the review papers in Refs. [1, 2].

In 2015, the observation of two Pc states at LHCb
[31] inspired many new investigations of hidden-charm
pentaquarks, and molecular assignments to the two Pc

states are a popular explanation [29, 30, 38–44]. In this
situation, we have reason to believe that there should
exist partners of the two Pc states. Thus, we need to
perform dynamical studies relevant to their partners. In
this work, we mainly focus on the ΛcD̄

∗
s/Σ(∗)

c D̄∗
s/Ξ(′,∗)

c D̄∗

interactions and predict the existence of some strange
hidden-charm molecular pentaquarks, as described in
Section 3.

Our numerical results show that the most promising
strange hidden-charm molecular pentaquarks are a Ξ′

cD̄
∗

state with 0( 1
2

−
) and the Ξ∗

c D̄
∗ states with 0( 1

2

−
) and

0( 3
2

−
). Thus, we strongly suggest that experimentalists

search for these.
In summary, the two observed Pc states from LHCb

have opened fascinating new avenues of research. In
future, theorists and experimentalists should make more
effort to study hidden-charm pentaquarks, especially the
partners of Pc(4380) and Pc(4450). As we face this re-
search field full of challenges, more opportunities are
waiting for us.

We thank T. Burns for useful discussions.
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