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Systematic study of the product ((E(2+
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1 ))∗B(E2)↑) through
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Abstract: A systematic study of the product ((E(2+
2 )/E(2+

1 )) ∗B(E2) ↑) is carried out in the major shell space

Z = 50−82,N = 82−126 within the framework of the asymmetric rotor model where the asymmetry parameter γ0

reflects change in the nuclear structure. A systematic study of the product ((E(2+
2 )/E(2+

1 ))∗B(E2) ↑) with neutron

number N is also discussed. The product ((E(2+
2 )/E(2+

1 ))∗B(E2) ↑) provides a direct correlation with the asymmetry

parameter γ0. The effect of subshells is visible in Ba-Gd nuclei with N > 82, but not in Hf-Pt nuclei with N > 104.

We study, for the first time, the dependency of the product ((E(2+
2 )/E(2+

1 ))∗B(E2) ↑) on the asymmetry parameter

γ0.
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1 Introduction

The systematic study of nuclear structure with pro-
ton number Z or neutron number N gives a deeper un-
derstanding of the nuclear interactions involved. The
collective nuclear structure of medium mass nuclei (A
= 150−200) changes from vibrator to rotor as we go away
from the closed shell. It is preferred to reproduce these
changes in the structure of nuclei with Z or N . Many
microscopic and macroscopic methods have been intro-
duced to study the nuclear spectra. In microscopic the-
ory, like the shell model in spherical or deformed nuclei,
the Z or N dependency of nucleon-nucleon interactions
is observed to study the experimental data of nuclear
spectra. In a phenomenological approach, the param-
eters of the Hamiltonian H are fitted to experimental
data and the nuclear spectra are then studied. In em-
pirical studies, the systematic variation of experimental
data is observed with Z, N or A in order to understand
the nucleon-nucleon interactions. The Interacting Boson
Model (IBM) [1] has used all the above ways to study
nucleon-nucleon interactions. Most of the studies have
been done using the phenomenological IBM model (see
Refs. [2–4]). The systematic study of the first excited
state energy E(2+

1 ) and energy ratio R4/2 = E(4+
1 )/E(2+

1 )
with the total boson number NB = Np+Nn (where Np =
proton boson numbers and Nn = neutron boson num-
bers) and NpNn product was studied by Casten [2]. In
IBM-1, the coefficient parameter χ of the Hamiltonian
in the quadrupole operator [5] plays an important role

in determining the structural changes in nuclei. In IBM-
2 [1], the structure of the nucleus is supposed to be a
function of the NpNn product.

The rigid triaxial Asymmetric Rotor Model (ARM)
of Davydov and Filippov [6] explains the structure of
transitional nuclei and the obtained results are better
than the axially symmetric rotation model. The en-
ergy level spacing and transitional properties of excited
states in even-even nuclei can be calculated using the
ARM model. The changes in structure of nuclei are
observed in terms of the asymmetry parameter γ0 of
the ARM model. A small correlation of B(E2) ratios
(2+

2 → 0+
1 /2+

1 ), (2+
2 → 0/2+

1 → 0), (2+
2 → 2+

1 /2+
1 → 0)

with R2γ = E(2+
2 )/E(2+

1 ) and noticeable deviations in
the curve was observed for low R2γ [7]. The results of
the ARM model and Rotation-Vibration model [8] were
compared by Davidson [9] and it was observed that both
the models are equally good. The Davydov-Rostovsky
model [10] was proposed to study the β-band and cal-
culated the rotational level energies for spins 4,6,8 in
even-even nuclei. Gupta and Sharma [11] illustrated
that the B(E2,2γ → 0/2) and B(E2,3γ → 2/4) ratios
have some dependence on the asymmetry parameter γ0.
Mittal et al. [12] extended this search to study neutron-
deficient light Te−Sm nuclei for N < 82 and predicted
the same results. The correlation of B(E2) ↑ values
with the asymmetry parameter γ0 have been studied in
Ref. [13].

The global best fit equation for nuclear data was in-
troduced by Grodzins [14]:
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(E(2+
1 )∗B(E2) ↑)∼ constant, (1)

using the relation between the reduced electric
quadrupole transition probability, B(E2;0+

1 → 2+
1 ) val-

ues (= B(E2) ↑ values) and the first excited state energy
E(2+

1 ). Gupta [15] pointed out that the constancy of the
Grodzins product breaks down in the combined effect of
Z = 64 subshell effect and transition at N = 88− 90.
Recently, Kumari and Mittal [16] studied the correla-
tion between the Grodzins product (E(2+

1 ) ∗B(E2) ↑)
and NpNn product, and further extended their research
work to study the dependence of the Grodzins product
(E(2+

1 )∗B(E2) ↑) on the asymmetry parameter γ0 [17].
It would be interesting to replace the first excited state
energy, E(2+

1 ) with energy ratio, R2γ because the asym-
metry parameter γ0 is sensitive to R2γ . In this context,
the equation becomes

(R2γ ∗B(E2) ↑)∼ constant. (2)

We present extensive experimental data for the product
(R2γ∗B(E2) ↑) and study it with the asymmetry param-
eter γ0 for the first time.

2 Theory

The Hamiltonian of the ARM [6] can be written as:

H =
3
∑

λ=1

AJ2
λ

2sin2

(

γ−
2π

3
λ

) , (3)

where A =
~

2

4Bβ2
has the dimensions of energy. The J2

λ

are the angular momentum projection operators on the
axes of the coordinate system related to the nucleus. The
rotational level energies for 2,3,5 spins and the transi-
tional probabilities between these energy levels have been
obtained by treating the nucleus as a triaxial ellipsoid.
The asymmetry parameter γ0 of the ARM switches be-
tween 0◦ and 30◦. It determines the deviation in shape
of the nucleus from axial symmetry. When the asymme-
try parameter γ0 is zero, the energy spectrum is similar
to an axially symmetric nucleus. Even though the in-
crease of asymmetry parameter γ0 affects the rotational
energy spectrum of the nucleus very slightly, some new
rotational energy states with spin 2, 3, 4, 5, 6 etc. ap-
pear (see Fig. 1 of Ref. [6]). This effect becomes large
as the asymmetry parameter reaches γ0 = 20◦. The
nucleus gets deformed with the increase in asymmetry
parameter γ0 and finally develops into a triaxial near
γ0 = 30◦.

There are many approaches to calculate the asym-
metry parameter γ0. Firstly, Varshni and Bose [18] used
R4/2 to calculate the asymmetry parameter γ0 and ex-
clude nuclei with R4/2 < 8/3. The first excited state

E(2+
1 ) as well as the second excited state E(4+

1 ) were
used to determine the asymmetry parameter γ0 [19].
Gupta et al. [20] proposed another approach to calcu-
late the value of the quadrupole moment Q using the
sum of B(E2) values of 2+

1 → 0+
1 and 2+

2 → 0+
1 . The value

of the asymmetry parameter γ0 has been calculated but
this approach was not so fruitful and had some short-
comings. Davydov et al. [6] used R2γ to determine the
asymmetry parameter γ0 and this approach was found to
be valid [11]. We calculate the value of the asymmetry
parameter γ0 by using R2γ from the equation:

γ0 =
1

3
sin−1

(

9

8

(

1−

(

R2γ −1

R2γ +1

)2
))1/2

. (4)

The experimental values of E(2+
2 ) and E(2+

1 ) are taken
from the website of the National Nuclear Data Center,
Brookhaven National Laboratory, USA [21]. The re-
duced electric quadrupole transition probability, B(E2) ↑
are obtained from Ref. [22] where the B(E2) ↑ values
were compiled for the even-even nuclei of the 0 6 A 6 260
mass region.

3 Results and discussion

Gupta et al. [23] suggested splitting the major shell
space Z = 50−82, N = 82−126 into four quadrants on the
basis of valence-particles and valence-holes. Quadrant-I
has particle-particle bosons, quadrant-II contains hole-
particle bosons and quadrant-III consists of hole-hole
bosons. Quadrant-IV contains particle-hole bosons and
no nuclei lie in this region. A detailed discussion of the
product (R2γ ∗B(E2) ↑) with the asymmetry parameter
γ0 in quadrants-I, II and III is presented in the following
subsections.

3.1 Ba-Gd nuclei, N >82 region

This region contains particle-particle bosons of the
Z = 50− 82,N = 82− 126 major shell region, named
the N > 82 region. The plot of product (R2γ ∗B(E2) ↑)
against neutron number N for Ba-Gd nuclei is shown
in Fig. 1. The sudden increase in the value of product
(R2γ ∗B(E2) ↑) at N = 88 is due to the onset of defor-
mation at Z = 64, as stated in many research papers, see
Ref. [2, 24, 25]. The product (R2γ ∗B(E2) ↑) is plot-
ted versus the asymmetry parameter γ0 for quadrant-I
in Fig. 2. This region is well known in the literature
because of the presence of Z = 64 subshell closure at
N = 88− 90 isotones. The asymmetry parameter γ0 is
sensitive to R2γ for γ0 = 0◦ to 15◦ but it is much less
sensitive in the range of γ0 = 20◦ to 30◦ (see Ref. [11]).
On multiplying the energy ratio R2γ with B(E2) ↑ val-
ues, the asymmetry parameter γ0 becomes less sensitive
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to the product (R2γ ∗B(E2) ↑) for 20◦ to 30◦. The ef-
fect of the Z = 64 subshell is also visible in Fig. 2. The
value of the product (R2γ ∗B(E2) ↑) increases suddenly
at N = 88−90 isotones. Therefore, the nuclei Nd and Sm
show a sharp increase in the product (R2γ ∗B(E2) ↑) at
N = 88−90 (γ0 → 19◦ to 13◦). However, the overall trend
of the curve is smooth. The product (R2γ∗B(E2) ↑) shows
more smoothness with the asymmetry parameter γ0 as
compared to the neutron number N for Ba-Gd nuclei in
the N > 82 region (see Figs. 1 and 2).

Fig. 1. Plots of the product (R2γ ∗B(E2) ↑) vs. N
for the N > 82 region in Ba-Gd nuclei.

Fig. 2. Plots of the product (R2γ ∗ B(E2) ↑) vs.
asymmetry parameter γ0 for the N > 82 region in
Ba-Gd nuclei.

The product (R2γ ∗B(E2) ↑) decreases smoothly with
increase in the asymmetry parameter γ0. The product
(R2γ ∗B(E2) ↑) shows more smoothness as compared to
the Grodzins product (E(2+

1 )∗B(E2) ↑) with asymmetry
parameter γ0 in quadrant-I (see Ref. [17]). The calcu-
lated values of asymmetry parameter γ0 for all nuclei of
quadrant-I are shown in Fig. 3. This can be taken as a
reference for identifying the isotope numbers related to
the data points in Fig. 2.

Fig. 3. The asymmetry parameter γ0 as a func-
tion of proton number and neutron number ob-
tained by using the Asymmetric Rotor Model for
quadrant-I.

3.2 Dy-Hf nuclei, N <104 region

This is a proton-hole and neutron-particle boson sub-
region of the Z = 50−82,N = 82−126 major shell region
known as quadrant-II. The plot of product (R2γ∗B(E2) ↑)
against neutron number N for Dy-Hf nuclei is shown in
Fig. 4. The product (R2γ ∗B(E2) ↑) versus the asymme-
try parameter γ0 is plotted in Fig. 5 for the N < 104
region. This quadrant-II is described as a transition
region of SU(3) to U(5) or O(6) region. The product
(R2γ ∗B(E2) ↑) shows more smoothness with the asym-
metry parameter γ0 as compared to the neutron number
N for Dy-Hf nuclei in the N < 104 region (see Figs. 4
and 5).

Fig. 4. Plots of the product (R2γ ∗B(E2) ↑) vs. N
in Dy-Hf nuclei.

The asymmetry parameter γ0 is sensitive to R2γ for
γ0 = 0◦ to 15◦. This is also true for the product
(R2γ ∗B(E2) ↑) (see Fig. 5). However, the asymmetry
parameter γ0 ranging from 20◦ to 30◦ is less sensitive to
R2γ . This feature is seen in the product (R2γ ∗B(E2) ↑).
The Grodzins product (E(2+

1 )∗B(E2) ↑) shows more con-
stancy for deformed nuclei [15]. This is also true in the
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case of the product (R2γ ∗B(E2) ↑) as quadrant-II con-
sists of both well-deformed and transitional nuclei. The
product (R2γ ∗B(E2) ↑) smoothly decreases for all these
nuclei. This shows the direct correlation of the prod-
uct (R2γ ∗B(E2) ↑) with the asymmetry parameter γ0.
The product (R2γ∗B(E2) ↑) shows smoother graphs than
the Grodzins product (E(2+

1 )∗B(E2) ↑) with asymmetry
parameter γ0 in quadrant-II (see Ref. [17]). The asym-
metry parameter γ0 as a function of N and Z for N < 104
in Dy-Hf nuclei is plotted in Fig. 6.

Fig. 5. Plots of the product (R2γ ∗ B(E2) ↑) vs.
asymmetry parameter γ0 for the N < 104 region
in Dy-Hf nuclei.

Fig. 6. The asymmetry parameter γ0 as a func-
tion of proton number and neutron number ob-
tained by using the Asymmetric Rotor Model for
quadrant-II.

3.3 Hf-Pt nuclei, N >104 region

These nuclei lie in quadrant-III of the major shell
space Z = 50−82,N = 82−126 and contain the hole-hole
subspace. Quadrant-III consists of nuclei which undergo
transition from well deformed to γ-soft. The plot of prod-
uct (R2γ ∗B(E2) ↑) against neutron number N for Hf-Pt
nuclei is shown in Fig. 7. The variation of the prod-
uct (R2γ ∗B(E2) ↑) versus the asymmetry parameter γ0

shows a smoothly decreasing curve (see Fig. 8) for Hf-Pt
nuclei. The product (R2γ∗B(E2) ↑) shows more smooth-
ness with the asymmetry parameter γ0 as compared to
the neutron number N for Hf-Pt nuclei in the N > 104
region (see Figs. 7 and 8).

Fig. 7. Plots of the product (R2γ ∗B(E2) ↑) vs. N
in Hf-Pt nuclei.

Fig. 8. Plots of the product (R2γ ∗ B(E2) ↑) vs.
asymmetry parameter γ0 for N > 104 region in
Hf-Pt nuclei.

The 178−180Hf and 180−186W nuclei lie in the range
γ0 = 10◦−16◦ and this region is sensitive to R2γ . This
shows that the product (R2γ∗B(E2) ↑) is also sensitive in
the range of asymmetry parameter γ0 = 0◦ to 15◦ (as the
product (R2γ ∗B(E2) ↑) varies from 20 to 60 e2b2). The
182−192Os nuclei vary from γ0 = 14◦ to 26◦, implying that
they are shape phase transitional nuclei. The 184−196Pt
nuclei lie in a less sensitive region of the asymmetry pa-
rameter γ0. The product (R2γ∗B(E2) ↑) with asymmetry
parameter γ0 predicts that the 192−196Pt nuclei make a
transition from γ-soft to rigid nuclei. A small neutron
sub-shell gap is effective at N = 114 in quadrant-III (see
Ref. [26]). The product (R2γ ∗B(E2) ↑) is not affected
due to this neutron shell gap at N = 114 because the
maximum value of the asymmetry parameter γ0 is 30◦
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and for Pt nuclei, the curve merges at γ0 = 30◦. There-
fore, we get the smooth decreasing curve for quadrant-
III. This shows the direct dependency of the product
(R2γ ∗B(E2) ↑) on the asymmetry parameter γ0. The
product (R2γ ∗B(E2) ↑) shows a smoother correlation
with asymmetry parameter γ0 as compared to the re-
lation between the Grodzins product (E(2+

1 )∗B(E2) ↑)
and the asymmetry parameter γ0 in quadrant-III (see
Ref. [17]). The asymmetry parameter γ0 values in Hf-Pt
nuclei for the N > 104 region are presented in Fig. 9 and
these values can be considered as a reference to identify
the isotope number related to the data points in Fig. 8.

Fig. 9. The asymmetry parameter γ0 as a func-
tion of proton number and neutron number ob-
tained by using the Asymmetric Rotor Model for
quadrant-III.

4 Conclusion

The product (R2γ∗B(E2) ↑) provides a direct correla-
tion with the asymmetry parameter γ0. The systematics
of the product (R2γ ∗ B(E2) ↑) with neutron number
N were also discussed. In all the above mentioned
quadrants, the product (R2γ ∗ B(E2) ↑) varies from 0
to 80 e2b2. In quadrant-I with N > 82, the product
(R2γ∗B(E2) ↑) decreases with increase in the asymmetry
parameter γ0. The effect of the Z = 64 subshell is also
visible in Ba-Gd nuclei. In quadrant-II with N < 104,
the product (R2γ ∗B(E2) ↑) decreases with increase in
the asymmetry parameter γ0. For well deformed nuclei,
the product (R2γ ∗B(E2) ↑) shows a good correlation
with the asymmetry parameter γ0. The neutron sub-
shell gap at N = 114 is also less effective in Pt nuclei in
the product (R2γ∗B(E2) ↑). The product (R2γ∗B(E2) ↑)
decreases with increase in the asymmetry parameter γ0.
The asymmetry parameter γ0 is sensitive to the product
(R2γ ∗B(E2) ↑) in range γ0 = 0◦ to 15◦. In the case
of transitional nuclei, (R2γ ∗B(E2) ↑) lies in the range
γ0 = 15◦ to 20◦. However, the product (R2γ ∗B(E2) ↑)
shows somewhat better correlation with the asymme-
try parameter γ0 as compared to the Grodzins product
(E(2+

1 )∗B(E2) ↑).
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