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Abstract: The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons.
Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks,
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pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory
techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophis-

ticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune

time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues

concerning heavy exotic hadrons is presented.
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PACS: 12.38.Aw, 12.38.Qk, 14.40.Pq

1 Introduction

In 2007 the Belle Collaboration claimed the discov-
ery of the Z(4430). This state attracted considerable
attention because it is charged and couples to charmo-
nium, implying that the most economical interpretation
of its quark content is ccud. The recent high statis-
tics confirmation of the Z by the LHCb collaboration,
and the startling demonstration of phase motion, has
brought sharp focus on exotic hadronic matter. Indeed,
the Z(4430) joins a long list of other putative exotic
states, several of which have been reported within the
past year:

c¢ multiquarks
X(3872), Z.(3900), Y(3940), Z.(4020),
7,(4050), Z»(4250), Y (4140)

bb multiquarks
7,(10610), Zy(10650)

other unusual states
D,(2317), H dibaryon, Y(2175),
Y (4260), Y(4660), Y,(10888), 7t;(1600),
71(1800), £,(1500).

Although hadronic exotics such as glueballs, hybrids,
and multiquark states have been long expected, the un-
derstanding of these states is primarily at the level of
conjecture. Certainly, if the confirmation of the Z(4430)
marks the beginning of the exploration of a new sector
of matter, the current phenomenology concerning quark
interactions will need to be radically overhauled. A com-
pelling and unified understanding of the new states has
not yet emerged, and the gap between theory and exper-
iment remains a major deficiency in our current level of
understanding of elementary particle physics.

This gap has its roots in the famously difficult prob-
lem of solving QCD in its many-body, strongly interact-
ing, relativistic regime. Current effective field theories
are inoperable in the excited spectrum, lattice field the-
ory has difficulties with weakly bound diffuse coupled-
channel systems, and extant phenomenological models
are insufficiently well constrained to be confidently ap-
plied to exotic states. Even the lack of knowledge of
relatively simple dynamics, such as interactions in the
Kt system, can affect the analysis of data concerning
the new states.

hadronic physics, exotic hadrons, tetraquark, pentaquark
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The flood of information initiated by B factories
(CLEO, BaBar, Belle), t-charm facilities (CLEO-c, BE-
SIII), and hadron machines (CDF, DO, LHCb, ATLAS,
CMS) is not expected to abate soon. LHCb will continue
to deliver new results in heavy quark spectroscopy for at
least a decade. At the same time, BESIII at the Bei-
jing Electron Positron Collider will continue its program
to collect and analyze eTe~ data in the energy region
of the putative exotic states of charmonium. Further-
more, the GlueX experiment is due to start taking data
in 2015. This experiment, situated at Hall D at JLab, is
designed to discover and explore the properties of light
hybrid mesons. The COMPASS experiment at CERN
has been, and will continue to be, very active in hadron
spectroscopy. The PANDA experiment at FAIR is ex-
pected to start taking data in 2019; amongst its goals is
the exploration of charmonium hybrids and other exotic
states.

In view of this situation, a workshop was convened at
the Institute of Nuclear Theory, Seattle, with the aim of
assessing the status of the field and drawing up a short
list of questions that have the potential to move the field
forward. This document is the outcome. We stress that
this is not meant as a review, for which the reader is di-
rected to Refs. [1-5]. Furthermore, the topics contained
herein are not meant to be comprehensive, but are of-
fered in the hope that progress will be spurred in various
directions.

The next three sections provide specific queries in the
areas of lattice field theory, experiment, and theory. The
lattice method has been singled out because it has ad-
vanced to the stage where modelling issues are minimal,
but where results are sufficiently complex that experi-
mental methods must sometimes be invoked to interpret
them. Finally, the interface between theory and experi-
ment is addressed in section 5. Here the emphasis is on
smoothing the interaction between theorists and exper-
imental collaborations with the hope of drawing on the
strengths of both communities.

2 Lattice QCD calculations

2.1 Compute quantities as a function of light
quark mass
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A better determination of the contribution of (vir-
tual) two heavy-light meson loops in QQ states below
threshold is needed. Coupled channel phenomenologi-
cal models suggest that for QQ states near threshold
these contributions are significant. After renormaliza-
tion of the bare model parameters, one finds modest
shifts in the leading nonrelativistic mass spectrum. Spin
splittings between ground state heavy-light mesons in-
duce spin-dependent effects in the spectrum and allow
hadronic transitions that violate the Heavy Quark Spin
Symmetry expectations. Furthermore, the mass split-
tings between the Qii, Qd and Qs ground state heavy-
light mesons allows small isospin breaking and consider-
able SU(3) breaking effects. In particular, this may be
evident in the large X(3872) — pJ/{ and (25) — n
transition rates.

In lattice QCD calculations, as the light quark masses
are varied down from infinite (quenched approximation)
to the scale of the momentum in the QQ system, the
dominant effect of light quark loops is to modify the run-
ning of the QCD coupling (). But as the quark masses
are varied below this scale and below Aqcp, light quark
loops become spatially extended and probe the effects of
coupled channels in the hadronic basis of states. Initial
effort in exploring these effects are described in Refs. [6].

We suggest that detailed lattice studies of the QQ
mass spectrum as a function of light quark masses
(my, mq,mg) for masses in a range between their phys-
ical values and ~ 2 X Agcp will give much insight into
the effects of coupling to decay channels in a model in-
dependent way. Furthermore, a calculation of hadronic
transition rates as a function of light quark masses would
be very illuminating.

2.2 Develop and implement coupled-channel
scattering formalism

The recent publication [7-9] of the first determina-
tions of coupled-channel scattering amplitudes from lat-
tice QCD offers promise that this first-principles ap-
proach to QCD might shed light on the exotic behavior
being observed in charmonium. For the case of coupled
two-body scattering, resonant singularities in the ampli-
tudes can be explored using parameterizations of the T-
matrix, where the parameters are tuned to describe the
finite-volume spectra calculated in lattice QCD. From
the pole positions and residues, masses, widths, and
branching fractions of resonances can be determined
— the distribution of poles across unphysical Riemann
sheets may offer a discriminator for the internal struc-
ture of the resonances.

There has been no application of these coupled-
channel techniques to meson systems featuring charm
quarks, and only limited studies of elastic scattering,
which is a situation in need of remedy. Early targets

will be charmed systems near threshold like DK, D¢n
and Dm,Dn as well as exotic isospin and strangeness
channels[10]. Double charmed channels like DD are also
relatively simple. Hidden charm channels are challeng-
ing, because while all the tools are in place to deal with
the coupled DD,DD*,D*D*,D,Ds,--- system, the open-
ing of three-body channels like n.m7t and J /W7 occurs
at rather low energies. No complete formalism to re-
late finite-volume spectra to three-body scattering am-
plitudes yet exists — such a formalism will be required to
study such systems in detail.

Calculations of meson-baryon scattering are at a less
advanced stage than those for meson-meson scattering.
Current stochastic methods for dealing with quark prop-
agation make the calculation of the J/1 p scattering am-
plitudes straightforward with a modest increase in cost
over meson-meson amplitudes, even for large volumes
[11].

2.3 Investigate static quark interactions

Recent improvements to the set of techniques avail-
able for computing light quark propagation on the lattice
should encourage practitioners to revisit the problem of
computing potentials between static color sources and
their excitation spectra [12-15]. For related work see
Refs. [16-18]. These calculations have a long history
and the static potential in the SU(3) Yang-Mills theory
was amongst the first lattice Monte Carlo computations.
Revisiting the potentials in the presence of light dynami-
cal quarks [19-22] will give useful insight into the nature
of the XY Z and pentaquark experimental signals. In
particular, the bottom quark sector could be modelled
very effectively with this data while exotic mesons in the
charm sector are more sensitive to finite mass correc-
tions. Phenomenological models of the exotic hadrons
based on the Born-Oppenheimer picture would use these
potentials as input.

With a static color and anti-color source, separated
along an axis at distance R, the eigenstates of the Hamil-
tonian are irreducible representations of the little group
of symmetries that preserve this axis. The energy of
these states as a function of distance defines the poten-
tial, V(R). The residual symmetry means these poten-
tials are labelled by X = 0%,1/2,1,3/2,..., where there
are two spin-zero potentials since a mirror symmetry is
also a good symmetry for this case. The half-integer
spin potentials do not appear in a theory of gluons alone
but would be present in QCD. With two flavors of light
quarks, QCD energy eigenstates are classified with an
extra quantum number, light isospin, and this property
would be inherited by states built from static sources.
There would thus be a new multiplicity of spectra with
isospin I = 0,1/2,1,.... The isospin 0 and 1 spectra
would be the relevant ones for studies of hidden charm
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or bottom tetraquarks and in particular, since the Z¥
states are charged, the isospin 1 spectrum is of partic-
ular interest. This spectrum has not been computed in
lattice QCD to date.

For pentaquarks containing hidden charm cc or bot-
tom bb the isospin 1/2 and 3/2 potentials are relevant
for modelling these states. Again, there is no counter-
part for this potential in the theory of strongly-coupled
gluons alone. Another possible potential that might use-
fully be investigated and which has no counterpart in the
pure gauge theory are those associated with two color
sources, Q(x)Q(y) [20, 21]. In order to neutralize this
color charge, at least one light quark field must be in-
cluded in the creation operator. These potentials would
help model doubly-charmed or doubly-bottom baryons.

2.4 Compute form factors relevant to exotic
states

The determination of the elastic and inelastic form
factors of the XY Z resonances directly from lattice QCD
would have three major impacts. First, it would lead to
the theoretical reproduction of experimentally observed
production or decay rates in a model-independent way.
Second, it would give access to poorly constrained quan-
tities that would elucidate the nature and structure of
these exotic states. Examples of such quantities in-
clude the radii and electromagnetic moments of tenta-
tive molecular states. Third, it would guide future ex-
perimental searches of exotics. Although the studies of
resonant electromagnetic processes are presently at their
early stages, there have been a great deal of theoreti-
cal [23-27] and numerical [28, 29] studies that demon-
strate that they are in fact accessible from lattice QCD.
This progress resulted in the first calculation of a radia-
tive transition of a hadronic resonance [30]. This calcula-
tion was performed in the light sector for my* — p — 7.

Having determined the 7ry* — p — 7t amplitude for a
range of values of the center of mass energy of the final 77t
state, the authors of Ref. [30] were able to analytically
continue the amplitude onto the p-pole and determine
the 7T — p form factor.

The same technology will be applicable for future cal-
culations in the heavy quark sector.

2.5 Compute decay constants for exotic states

The decay constants of the vector resonances deter-
mine their rate of production in e*e™ and radiative tran-
sitions to lighter states offer a way to produce states
of other J¥¢. The rigorously correct way to determine
these in lattice QCD is to first determine the scatter-
ing amplitudes and their resonant content as described
above, and to then introduce an external vector current.
By extrapolating the calculated vector-current matrix el-
ements to the resonance poles, off in the complex energy

plane, the decay constants and radiative transition rates
for resonances can be obtained. This procedure closely
resembles that for the determination of form factors dis-
cussed above. The techniques necessary for implement-
ing this have been previously developed in Refs.[26, 31,
32]. The first calculations of this type have been of 77-
electroproduction y* — p — 77t [32, 33].

A slightly less rigorous approach, which may be ac-
ceptable for narrow resonances, is to ignore the hadronic
decay of the states by excluding meson-meson-like oper-
ators from the basis used to determine the spectrum of
states — a first round of calculations of this simplified type
may be justified to aid our phenomenological intuition of
the vector spectrum, extending the limited calculations
presented in Refs. [28, 34-38], using the excited state
technology presented in Ref. [29].

2.6 In-medium hadron properties

Several model calculations predict that charmonium—
nucleus exotic bound states should exist [39-42, 44—
48]. Two independent, equally important binding mech-
anisms have been identified: multigluon exchanges in the
form of color van der Waals forces [39-43], and D,D* me-
son loop contributions to charmonium self-energy with
medium-modified masses [45, 46]. A first, recent lat-
tice calculation [49] confirms model calculation expecta-
tions, finding relatively deeply bound states of J/1 and
1. to several light nuclei. Another interesting class of
charmed-hadrons nuclear bound states are D-mesic nu-
clei [50, 51], which are an important source of informa-
tion on chiral symmetry restoration in-medium [52]. A
lattice calculation of the D-meson interaction with nucle-
ons and of D-nuclei binding energies would be of great
importance for constraining models, given the present
lack of experimental information on the D-nucleon inter-
action.

3 Experiment

3.1 Publish upper limits for negative searches

Candidates for exotic hadrons have been observed in
many channels. While it is clearly important to find new
decay channels for these states, it is also important to
limit their decays to other channels when these searches
are negative. This is a reminder to experimentalists to
publish upper limits on cross sections and branching frac-
tions in a wide range of channels.

3.2 Confirm marginal states

A variety of signals have been observed that require
confirmation. There is some urgency in achieving this
because attempts to understand the data can be seri-
ously misled by the acceptance of spurious signals as
hadronic states. Alternatively, many signals are statisti-
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cally significant but contain unknown systematic errors
due to assumptions in modelling (for example using in-
terfering Breit-Wigner amplitudes to obtain asymmetric
line shapes). Additional and more varied amplitude anal-
ysis is required in these cases. Amongst states requiring
confirmation are X(3940), Y(4008), Z,(4050), X(4160),
Z,(4250), and X(4350).

3.3 Unravel the excited x.; spectrum

The masses of the charmonium 2P states are ex-
pected to be around 3.8-4.0 GeV/c? [53, 54|, while
Xeo(2P) and X.2(2P) are well above the DD threshold but
below D*D* threshold; they are expected to be wide. If
the mass of x.;(2P) is high enough, X.;(2P) — D*D+c.c.
will be its dominant decay mode. The X.2(2P) may de-
cay into D*D+c.c. as well.

So far the Z(3930) observed in yy — DD [55] is re-
garded as the X.2(2P) state, and the X(3915) observed in
Yy — wJ /1P [56] is supposed to be a x.0(2P) candidate,
although its mass is a bit too close to X.2(2P), and it
was not observed in yy — DD.

Further study on X.;(2P) decaying to DD and D*D+
c.c. should be performed to identify x.o(2P) and x.1(2P)
and to confirm the X2 (2P).

With more data collected in ete™ annihilation at the
1(4040) and 1(4160) peaks, the E1 transitions 1 (3.5)
and P (2D) — yx.;(2P) should be searched for; E1 tran-
sitions of X.5(2P) — v (25) are also expected to be large
compared with x.;(2P) —vyJ/{ and y{(1°Dy).

Hadronic transitions X.j(2P) — 77X (1P) should be
searched for, and the reaction X.;(2P) — wJ/1{ may oc-
cur if the mass difference between X.;(2P) and J/ is

large enough. The spin-parity of the x.o(2P) candidate,
X(3915), needs to be measured and its production and
decay patterns should be examined carefully to see if it
is the x.0(2P).

3.4 Measure ete cross sections

The region at center-of-mass energies above the open
charm threshold is of great interest due to the plethora
of vector charmonium states: the {(3770), {(4040),
1(4160), and 1(4415) observed in the inclusive hadronic
cross section, and the vector charmonium-like states, the
Y (4008), Y(4260), Y(4360), Y(4630), and Y(4660) ob-
served in exclusive hadronic modes. These states were
discovered in one specific mode and are not observed in
other modes. Searches for these states in all possible fi-
nal states are desired. This suggests high precision mea-
surements of as many as possible exclusive e™e~ annihi-
lation modes, including multi-body open charm modes,
hadronic transitions, radiative transitions, and even ex-
clusive light hadron final states.

Fig. 1 shows an example of measured cross sections
of two-body open charm final states and two- or three-
body hadronic transition modes. Common features of
the distributions are a richness of structures and a lack
of precision. With more data from open charm threshold
up to about 5 GeV and improved precision, better the-
oretical models will likely be needed to describe the line
shapes of all the final states simultaneously. In this way
better knowledge on the excited P and the Y states can
be extracted. This may result in an understanding of the
nature of these states and reveal if any are charmonium
hybrids.
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Fig. 1.

(color online) The cross sections of e™e™ annihilation into open charm final states (left

panel, from the

Belle experiment) and charmonium final states (right panel, the top is from Belle and the others from BESIII
experiments.) The vertical lines are at 4.23, 4.26, and 4.36 GeV.
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With the existing data samples, BESIII can already
improve precision of the open charm cross sections signif-
icantly [57], and considering the BESIII experiment will
continue run for another 6-8 years, better measurements
at more energy points are expected. Belle-IT [58] will
start data taking in 2018 with a data sample expected
to be fifty times larger than Belle’s. Thus the precision
of all the measurements with initial state radiation will
be improved.

The cross sections of eTe™ annihilation into open
bottom and bottomonium final states should also be
measured to understand the excited bottomonium and
bottomonium-like states. This can only be done at the
Belle-II experiment [58].

3.5 Search for flavor analog exotic states

The majority of recently discovered exotic states are
placed firmly in the charmonium spectrum. Flavor-
independence of gluon exchange implies that flavor ana-
log states should exist. For example, the Z,,(10610) and
Z,,(10650) are evidently hidden bottom partners to the
Z.(3900) and Z.(4020) multiquark candidate states. It
is possible that the Y(2175) is the hidden strange part-
ner of the Y(4260). Finding flavor-analog states will
yield valuable information on the dynamics underlying
the new states and will probe the robustness of putative
models.

The case of a bottomonium analog of the X(3872) is
interesting, both because of the novelty of the X and be-
cause of differences that may arise. For example, if the
X is a weakly bound DD* system then the X, would be
expected at mass of 10604 MeV. However, some models
[59] rely on the proximity of the hidden charm p-J/
and w-J/1 channels to stabilize the X. This coincidence
is not repeated in the case of the X, where the w-T
threshold lies 370 MeV away. This also implies that the
novel isospin-breaking features of the X will not be re-
peated in the X, (isospin symmetry breaking is related
to the hidden flavor mixing and to the splitting between
charged and neutral DD" channels — neither of which is
repeated in the case of the Xy,). Finally the proximity of
the x/, to the X(3872) is likely to be important. Again,
this numerical coincidence is not repeated in the case of
the X,,, where nearby X, states are at 10255 MeV (1P),
10512 MeV (2P), or 10788 MeV (3P[60]).

3.6 Search for flavor analogs of the P,

The recent evidence for the resonant P} structures
in J/Yp in the A, — J/PpK~ decays found by the LHCb
experiment has renewed the interest of the experimental
and theoretical communities in pentaquark states. Fur-
ther experimental work is critical for clarification of the
nature of these structures.

Most established and candidate exotic hadron states

contain hidden heavy flavor, QQ. This is mainly due to
experimental constraints for production and detection.
However, other sectors of flavor deserve to be investi-
gated. Let us give two examples.

The isospin partner (ccudd) and the strangeness part-
ners such as (ccuds) should be searched for, along with
their bb analogs. One should not restrict searches to
hidden heavy flavor. Pentaquark states (Qq*), where ¢*
denotes uuds, ddsu or ssdu were predicted in 1987 on the
basis of a chromomagnetic mechanism very similar to the
one leading to speculations about the H dibaryon. This
flavored pentaquark has been searched for at Fermilab
and HERA. Searches with higher statistics are desirable,
especially if more hidden-flavor states such as (Qq’q?) are
found [61, 62].

Exotic mesons with double heavy flavor, (QQ'qq),
have been predicted with many methods such as po-
tential models, QCD sum rules, lattice QCD and the
meson-meson molecular picture. It has also been
stressed that more effort should be put on double-charm
and other doubly-heavy baryons. We thus suggest a
search of doubly-heavy hadrons besides B.: double-
charm baryons, double-charm mesons and double-charm
dibaryons, and in the future, their analogs with charm
and beauty or double beauty [63, 64].

3.7 Search for quantum number partners of the
Y (4260)

If the Y(4260) is a hybrid state it represents the first
example of — what is expected to be — a large array
of novel hadrons. Specifically, a spin multiplet analo-
gous to those in the conventional spectrum is expected.
A lattice computation of the lightest charmonium hy-
brid multiplets is shown in Fig. 2. A clear structure
with quantum numbers 17~ and (0,1,2)~ " is seen. This
multiplet can be conveniently interpreted as arising due
to an effective constituent gluon with quantum numbers
(JF9), =17 mixing with conventional quark-antiquark
degrees of freedom[65, 66].

> 1500 |- = _ ] -] = -
=S . - . —mH
£ ] amy o L
L | 1= ¢+ 177

1000

Fig. 2. (color online) The lightest charmonium hy-

brid multiplets. Based on Ref. [67].

Given this information one can expect the spectrum
shown in Table 1. The increasing luminosity expected at
the colliders raises interesting possibilities for detecting
these states. For example, the 0~ and 1~ lie below the
Y (4260) and therefore should be accessible in radiative
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decays in P-wave. The hybrids can then be detected in
decay modes such as nx.; or {31, (see Table 2).

Table 1. Expected hybrid multiplet [28].
JPC mass/MeV
2—+ ~ 4320
1 4260
1-+ ~ 4200
0o—+ ~ 4190
Table 2. Possible production and decay modes of

hybrid charmonium.

Y (4260) —y1™T —ynxe1,vfine
Y (4260) — Y0~ —ynxco,Yfone
Y (4360) —y2™ T —ynxe2,vane

3.8 Pursue properties of the X(3872)

Although the properties of the X(3872) are rea-
sonably well known, additional experimental effort can
greatly assist in improving the understanding of this
state. For example, the rate for decays to light hadrons,
such as X — n7m, can be compared to those for x.; states
in an effort to determine the expected mixing of the X
with the bare x.1(2P).

Analog hidden charm states are predicted in some
models and can be searched for. For example a 0T+
D*D* state is expected at 4019 MeV in pion-exchange
models [1, 68].

Intriguing analog flavor-exotic states are also ex-
pected in QCD. In particular, it has been argued that
QQqq states must exist in the limit where the heavy
quark mass goes to infinity [64]. The phenomenology
of such states is discussed by Tornqvist [68] and was
anticipated long ago [63]. Specific possibilities include
isoscalar KK*, DD*, BB* states with J* =1~ and K*K*,
D*D*, B*B*, etc. Nevertheless, flavor exotic vector-
vector bound states are unlikely, except possibly in the
doubly charged bottom sector [68].

3.9 Measure additional channels to investigate
the P,

The interpretation of the LHCb pentaquark signal
remains open. Tightly bound pentaquarks, molecular
states, and rescattering effects have been proposed. More
accurate determination of the quantum numbers of the
pentaquark candidates would greatly help their inter-
pretation. Even before more data is accumulated by
the LHCb, improving parameterizations in the ampli-
tude fits to the existing data may help this end. For ex-
ample, models of A excitations, which dominate the data
via decays to pK~, need to be checked for completeness
since the previous experiments may have not discerned

all the relevant states, especially at high masses. Non-
resonant terms with slowly varying magnitude and phase
can also be significant. Alternative approaches to the iso-
bar model may be helpful, like, for example, the recently
published coupled-channel model by Fernandez-Ramirez
et al.[69]. See also Refs. [70-72].

It is important to confirm the P, via other channels.
There are already suggestions [70] such as Ay, — J/{ppm,
or 5, — J/WK p, which are Cabibbo suppressed, or
B — J/UPpp. The predictions of rescattering models for
the P;" amplitudes can be tested by fitting them directly
to the data. The presence (or lack thereof) of the same
structures in the other channels, like A, — J/{Ppm~ or
Ay — J/WpK°7mt~ is of great importance.

Rescattering models predict the presence of struc-
tures related to the Pt peaks induced by the ana-
lyticity in the coupled channels, like Ay, — X pK™,
Ay, — SHIFTDE0 and A, — AMFTDMO. Ideally, simul-
taneous coupled channel analysis of the related final
states should be performed. The investigation of pos-
sible structures, which may include depressions rather
than peaks, is a good start. Even total relative rates be-
tween the different channels would be interesting. Nega-
tive searches have theoretical implications and should be
published.

Bound-state models for the observed P} states pre-
dict other pentaquark states built by the same binding
mechanisms. The same P} states may be observable
in the other decay modes too. Thus, every accessible
decay mode of A, with ¢ and ¢ quarks among the fi-
nal state hadrons should be examined, e.g. n_ . Other
final states can be accessible from =, to charmonium
decays.

Different production mechanisms for the P, states,
or their siblings, should be investigated. —Examples
are prompt production at LHC or photo-production at
JLab.

3.10 Test ideas for meson-nuclear interactions

Presently there is a complete lack of experimental

information on the low-energy interactions of
charmed mesons and charmonium with nucleons and nu-
clei. We look forward to several forthcoming experi-
mental programs in this area: the near-threshold exper-
iments by the ATHENA collaboration [73] as part of the
12 GeV program at Jefferson Lab, the proton-antiproton
experiments by the PANDA collaboration at FAIR [74],
and the experiments with 50 GeV high-intensity pro-
ton beams at the J-PARC complex [75]. We also envis-
age opportunities for finding exotic charmonium-nucleon
and charmonium-nucleus bound states with the ongoing
heavy-ion experiments at RHIC and LHC. In particu-
lar, we suggest studies on the formation of such exotic
bound states by coalescence in the late-stage evolution
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of heavy-ion collisions, as their production yields should
be of comparable magnitude to those of anti-nuclei and
anti-hypernuclei recently observed at RHIC [76] and
LHC [77].

3.11 Improve meson classification scheme

There is a wide range in signal robustness in the spec-
trum of new states. Because this can lead to confusion
amongst theorists who are attempting phenomenological
descriptions of these new states, we recommend that a
star system for mesons be implemented by the Particle
Data Group for use in the Review of Particle Proper-
ties. Furthermore, the current exotic particle naming
scheme is somewhat confused and is applied inconsis-
tently; we therefore recommend that a consistent and
flexible nomenclature be implemented.

3.12 Search for pp in decays at LHC for PANDA

Heavy-flavor physics will benefit from experiments
with medium-energy antiproton beams. In the past, a
precursor signal of the h. was seen at the CERN ISR,
and many properties of the x.; and other charmonium
states were obtained from the pp experiment at the Fer-
milab accumulator.

To assist future experiments, it is desirable to get in-
formation on the coupling of heavy hadronic systems to
proton-antiproton pairs by detecting p production at B-
factories and at the LHC. This is already under way, and
this should be accompanied by more theoretical studies.
For instance, it remains rather mysterious that 1n.(15)
decays more often to pp than suggested by simple per-
turbative QCD, while 1.(25) is more weakly coupled to
that channel.

4 Theory and phenomenology

4.1 Study exclusive eTe~ cross sections using
better coupled-channel formalism

The identification of possible new resonances implied
by the XY Z phenomena requires studies of analytical
amplitudes that describe the relevant production and de-
cay characteristics [78, 79]. For example, in the case of
the Z.(3900) that is observed in the m*J/1{ spectrum
in decays of the Y(4260) to mwtnJ /1P, the relevant di-
rect channels involve the nearby open-charm, DD* +c.c
states and need to be included in a coupled channel for-
malism. The open charm resonances in the production
channel, e.g., the D;(2420) can produce rapid variations
of the direct channel partial waves near the Z. signal
and need to be taken into account in production. The
singularity structure of partial wave amplitudes is con-
strained by unitarity, therefore a comprehensive analy-
sis requires implementation of unitarity constraints in
all relevant channels. This requires simultaneous studies

of quasi two-to-two scattering amplitudes of open flavor
and heavy quarkonia, e.g. DD* — J /i, and eventually
a study of three-to-three scattering, i.e. DDm — DDt
amplitudes.

4.2 Develop tests for the dynamical diquark pic-
ture

In an alternate proposal for the structure of the heavy
quarkonium-like exotics, both for the tetraquarks [80]
and pentaquarks [81], the states are composed of com-
pact diquark-antidiquark (-antitriquark) pairs rapidly
separating and hence ultimately achieving large (=~ 1 fm
or greater) separation before decay. This picture has
features in common with the diquark models previously
mentioned [82, 83], but differs in that the states are ex-
tended, dynamical rather than compact, static objects,
and therefore does not necessarily admit a Hamiltonian
description. Nevertheless, in the limit of small separa-
tion, the two pictures should coincide. The first priority
in this case is therefore the development of a formal-
ism in which the spectrum can reliably be predicted. A
first attempt in the pentaquark sector [84], still using a
Hamiltonian formalism, gives a natural explanation for a

3~ +
broad 3 lying just below a narrow — , consistent with

the LHCD findings [85], but also predicts a large number
of undiscovered states. A lattice calculation of the po-
tential corresponding to a well-separated static diquark-
antidiquark pair may provide valuable information on
the possible spectrum. Since the exotics are so prominent
in the ¢ and bb channels, some hints of the same mech-
anism with s8 (hidden-strangeness pentaquarks) should
appear in processes such as A, — ¢7’p [86] or ¢ pho-
toproduction [87]. A primary benefit of the dynamical
picture is its natural explanation of strong overlaps with
spatially larger states, so a precision measurement of the
ratio Z(4475) —p(2S)7 vs. J/1p and to other states will
be illuminating. The dynamical and compact diquark
models share an expected enhancement of Z, — 1n.p com-
pared to the corresponding rate in molecular models [88].
The extended structure of the state may also offer inter-
esting opportunities for the production of unusual final-
state particle correlations. The multiparticle nature of
states produced via, say, electroproduction or pp annihi-
lation (at JLab or PANDA, respectively) can be probed
by means of constituent counting rules [89], and can help
to distinguish whether compact multiquark components
are produced.

4.3 Develop experimental tests for tetraquarks

Compact tetraquark configurations, in which all four
quarks participate in strong mutual interactions, can
be distinguished from the hadron molecular picture
or threshold effects through a variety of experiments.
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The most well developed tetraquark models are of the
diquark-antidiquark class [82, 83], and rely on Hamil-
tonians with spin-spin interactions between the quark
pairs. A comparison of the expected spectra in this
tetraquark model versus hadronic molecular models (and
also hadrocharmonium) [90] indicates that many more
states should arise if tetraquarks are the dominant ex-
otic component; for example, the X(3872) should have
isotriplet charged partners of the same G parity [and
opposite that of the Z(3900) and Z(4020)]. Due to the
proximity of thresholds, such states might exist only as
very broad yet-undiscovered resonances. Large prompt
production cross sections at colliders [91] argue against
X (3872) being a DD molecule forming through coales-
cence; indeed, an extrapolation [92] of data from AL-
ICE shows that production of loosely bound hadronic
molecules such as d and 3He at high p, will be quite
suppressed, unlike current indications for X(3872), an
effect that can be decisively checked in future ALICE
and LHCb experiments. The molecular and diquark pic-
tures also differ radically in the ratios of their branching
fractions of Z. —n.p vs. J/pm or h 7 [88, 89], the former
being dozens of times less frequent in molecular models.
Loosely bound molecules also must obey well-known uni-
versal relations (independent of the potential) between
binding energy and width, and precision measurements
of the resonance widths and constituent masses can help
determine whether these constraints are satisfied [94].

4.4 Develop techniques for 5q and 6q systems

Potential models provide some guidance for QCD cal-
culations. Two-body calculations are obvious once an
explicit potential is given. Three-body and four-body
computational methods now yield accurate spectra, al-
though they require more delicate tools. The case of
five-body and six-body systems are still debated. For
instance, with similar Ansatze for the interaction, the
H = (uuddss) can be found to be either stable or un-
bound. We suggest to publish a set of benchmark calcu-
lations to remove the ambiguities.

4.5 Pursue the Born-Oppenheimer method

(adiabatic surface mixing)

The presence of heavy charm or bottom quarks in
the new putative tetraquark mesons suggests that they
may be successfully studied using the Born-Oppenheimer
expansion. This approach was introduced by Born and
Oppenheimer in 1920 [95] to understand the binding of
atoms into molecules by exploiting the large ratio be-
tween the mass of an atomic nucleus and an electron,
which implies that the time scale for the motion of elec-
trons is orders of magnitude faster than that for the mo-
tion of the nuclei. The energies of stationary states of the
electrons in the presence of fixed nuclei can be calculated

as functions of the separation of the nuclei. The result-
ing functions are called Born-Oppenheimer potentials.
In the Born-Oppenheimer approximation, these func-
tions are used as potential energies in the Schrodinger
equation for the nuclei, under the assumption that the
electrons respond very rapidly to the motion of the nu-
clei. The Born-Oppenheimer ezpansion involves taking
the large mass ratio into account more systematically
by incorporating non-adiabatic couplings between differ-
ent stationary states of the electrons. This results in
coupled-channel Schrédinger equations that systemati-
cally improves the description of a molecule.

The Born-Oppenheimer expansion was applied to
mesons containing a heavy quark (Q) and antiquark (Q)
in 1999 [96], exploiting the fact that, since the mass of
the heavy quark is much larger than the typical energies
of the gluons and light quarks, the time scale for the evo-
lution of the gluon and light-quark fields is much faster
than that for the motion of the Q and Q. In Ref. [96], lat-
tice QCD was used to calculate the Born-Oppenheimer
potentials defined by the energies of the gluons in the
presence of fixed Q and Q as functions of the QQ sepa-
ration.

These energies were then used as the potential ener-
gies in the Schrédinger equation for the Q and Q. The
bound states in the Born-Oppenheimer potentials were
interpreted as meson resonances. These bound-state en-
ergies were compared with corresponding meson masses
computed directly using lattice QCD and agreement in
the level spacings to within 10% was found, strongly sup-
porting the validity of the Born-Oppenheimer expansion
for such systems.

The approach used in Ref. [96] should be extended to
apply to the XY Z mesons and to include nonadiabatic
effects that can be incorporated through coupled-channel
Schrédinger equations. The Born-Oppenheimer poten-
tials for heavy tetraquark mesons and the nonadiabatic
couplings between the potentials could be calculated us-
ing lattice QCD. The heavy quark and antiquark would
be treated as static, and the energies of the gluons and
light quarks could then be computed as a function of the
separation between the quark and the antiquark. The
resulting coupled-channel Schrédinger equations could
then be solved to determine the energies and widths of
resonances, which can be compared with the observed
XY Z mesons, and possibly to predict new tetraquark
mesons.

4.6 Revisit conventional meson models

While the successes of the constituent quark model
are well-known in the heavy quark sector, the efficacy of
the model is not expected to survive higher in the spec-
trum, where gluonic and coupled channel effects become
important. Of course, it should be possible to extend
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constituent models to include these additional degrees of
freedom, but experimental and theoretical guidance will
be required.

Even the simple problem of assessing the accuracy of
the constituent quark model above threshold has diffi-
culties. For example, there are eight charmonium states
below DD threshold that are all well-described by mod-
els. Alternatively, the situation above threshold is con-
siderably more confused; of the approximately twenty
claimed states, most of them are not understood, and
even well-known states such as the {(3770) lie 50 MeV
below the prediction of the Godfrey-Isgur model. In the
bottom sector the 14 states that lie below BB are well-
described. In this case there are only six states above
threshold, but, again, the experimental and theoretical
situation is confused.

Since the new experimental data lie firmly in the
continuum region, it is very likely that more sophisti-
cated versions of the quark model that respect unitarity
must be developed. Of course, this has been known in
the community for many decades, and much work has
been done [97-119]. There are daunting issues to be
overcome, including determining the form of the non-
perturbative gluonic transition operator and evaluating
the (divergent) sum over infinitely many virtual chan-
nels [120]. Nevertheless it is difficult to imagine progress
being made without a successful outcome to this effort.
Alternative approaches exist of course: lattice gauge the-
ory is rapidly making progress in working in the coupled
channel regime, and one hopes that effective field theory
approaches will be developed that can accommodate the
extra scales present.

4.7 Develop the Dyson-Schwinger formalism

The Dyson-Schwinger equations (DSEs) of QCD, to-
gether with various many-body equations for bound
states (Bethe-Salpeter equations for the two-body prob-
lem, Faddeev and Faddeev-Yakubovsky equations for the
three- and four-body problem) have the potential to re-
veal the connections between the physics in different
sectors of QCD. The equations encode the running of
QCD Green’s functions (for example, the quark mass
function) and therefore connect the perturbative cur-
rent quark region with the non-perturbative constituent
quark domain. Furthermore, they connect the heavy
quark regime, where NRQCD or potential models are
applicable, with the light quark sector, where the con-
cept of a potential is not very well defined.

The explanatory power of the DSE framework with
respect to exotic hadrons is still in its early exploration
stage. So far, light scalar mesons have been treated as
tetraquarks in an approach that takes into account two-
body correlations within the bound state equation for
two quarks and two antiquarks [121, 122]. The resulting

Bethe-Salpeter amplitude for scalar tetraquarks is dom-
inated by pseudoscalar meson-meson correlations. For
the lightest state, the f,(500), this explains its large de-
cay width into two pions, whereas the a, and f, are dom-
inated by their KK components. In general, it turns out
that all two-body correlations inside the tetraquark (i.e.,
(anti-)diquarks or mesons) contribute to the wave func-
tion and it is a question of the internal dynamics which
is the dominant cluster. For the light scalar mesons this
is the ‘meson molecule’ configuration, but other results
are in principle possible for other quantum numbers and
different quark flavors and masses.

Whether this mechanism has the potential to shed
some light on the question of the internal structure of
the tetraquarks among the XY Z-states, in particular
their (anti-)diquark, molecular or hadrocharmonium na-
ture, needs to explored. To this end, non-scalar quantum
numbers need to be studied and the framework needs to
be extended toward heavy-light systems. Furthermore,
more quantitative precision is needed to confirm the pre-
diction of an all-charm tetraquark in the 5.0-6.5 GeV
mass region [121, 122].

Complementary ongoing projects within the DSE
framework concern the glueball spectrum [123, 124]
and the question whether states with exotic quantum
numbers can be accounted for with relativistic quark-
antiquark systems (in contrast to the non-relativistic
quark model) [125].

4.8 The status of large N, considerations

One striking thing about modern exotics— the XY Z
states—is that they all involve the physics of heavy
quarks. This raises an interesting issue: are heavy quarks
necessary for the formation of exotics, or do exotics ex-
ist for light quark systems? The experimental data on
this is murky. The large N, limit may provide a bit
of insight. The subtle point is that the large N, and
heavy quark limits may not commute so that generic
large N. arguments based on scaling arguments really
apply for light quark systems. The standard version of
the large N, limit with quarks in the fundamental rep-
resentation of SU(N,) can be shown not to have nar-
row tetraquarks at large N, [126], apparently supporting
the proposition that the heavy quarks are necessary for
the existence of tetraquark states. However, there is a
variant of the large N, limit where quarks are in the
two-index anti-symmetric representation of SU(N,) in
which it can be shown that states with exotic tetraquark
quantum numbers must exist as narrow resonances (i.e.
states whose widths go to zero as N, goes to infinity) re-
gardless of the mass of the quarks [127]. Minimally this
shows that QCD-like gauge theories are not excluded
from having tetraquark states even if the quarks are
light.
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5 Theory-experiment collaboration

The following are a few suggestions that could help
facilitate collaboration between theory and experiment.

5.1 Improve parameterizations of the data

One of the challenges in many of the experimental
studies of the XY Z states is to develop correct param-
eterizations of the data. For example, amplitude anal-
yses often find a need to introduce non-resonant terms.
At present, very little theoretical guidance is provided
except for the amplitude formulations based on the K-
matrix approach. However, the latter is not always prac-
tical.

To improve this situation, we have two recommenda-
tions.

First, we encourage that, when appropriate and ben-
eficial, experimentalists and theorists directly work to-
gether on the analysis of data. This could be accom-
modated by theorists becoming co-authors on specific
experimental papers they substantially contributed to,
or joint submission of experimental and theoretical pa-
pers cross-referencing each other. The experiments are
encouraged to formalize procedures making such collabo-
ration possible, and theorists are encouraged to approach
the experiments when they think they might directly aid
specific data analysis topics. Further progress could be
made by more persistent forms of collaboration, includ-
ing direct involvement of theorists in the data analysis
process within the established procedures of the experi-
mental collaborations.

Second, we encourage theorists, when possible, to
publish complete functional forms (amplitudes, etc.)
that could be used in the fitting of data. One example
of this is in the parameterization of rescattering ampli-
tudes. The current theoretical calculations are depen-
dent only on the center of mass energy [72, 78, 128],
whereas amplitudes used in fitting require a flexible pa-
rameterization involving the angular information of the

100 I —4- data
N — total fit
[ ----- background fit
Y 80T - PHSP MC
E 60 :_ + I:l sideband
3 [
s L
Z 40
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Fig. 3.

decay. If theorists develop more complete rescattering
amplitudes, experimentalists could use them in analy-
ses. This would most likely involve some collaborative
effort in understanding both how the experimental anal-
ysis is performed and what the theoretical requirements
are for such amplitudes. Another example is in resonance
parameterizations: it would be useful for experimental-
ists if a number of alternate resonance parameterizations
were available that could be used in systematic studies.

5.2 Make experimental results more accessible
for subsequent interpretation

The analysis of data from many modern experiments
often necessitates complying with internal rules designed
to provide collaborative controls over the quality of sta-
tistical methods used and the proper evaluation of sys-
tematic uncertainties. Therefore it is unrealistic to ex-
pect that all data will be made available for analyses
outside of this collaborative setting. A correct analysis
of data would benefit from the types of closer interaction
between experiment and theory discussed in the previous
point.

A different issue is how published data (for exam-
ple, Dalitz plots) should be subsequently interpreted. It
often occurs that experimental results are made public
in a manner that does not easily allow for subsequent
interpretation.

One example is the discovery of the Z.(3900) decay-
ing to t*J /1 in the process ete™ — ntn=J /P [129, 130].
The data presented in the discovery papers include sev-
eral effects that are difficult to take into account when
performing theoretical fits. First, the BESIII data [129]
was taken at /s =4.26 GeV, while the Belle data [130]
includes a range of energies around the Y(4260) peak.
This makes the Belle data, in particular, hard to subse-
quently fit, since any changes (beyond the size of avail-
able phase space) in the 7t+J /\p mass spectrum as a func-
tion of 7wt~ J/1{ mass are unknown. Second, the two
experiments have different experimental efficiencies over
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(color online) The observation of the Z.(3900) from BESIII [129] (left) and from Belle [130] (right). The

different shapes at low M (7=J /1) mass are due to differences in experimental detection efficiencies.
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the Dalitz plot due to differing detectors and kinemat-
ics. These effects are not quantified in the publications.
The importance of these two effects can be seen when
comparing the M (n*J /1) plots from BESIII and Belle,
which differ substantially, especially in the low-mass re-
gion (Fig.3). It is therefore not clear how one could cor-
rectly analyze the published data with various new pa-
rameterizations to test, for example, differences between
cusp and resonant models of the Z.(3900).

When deemed appropriate, experiments are therefore
encouraged to make efficiency-corrected data available
for external analyses. Or, when possible or desired, ex-
periments could make published plots publicly available
along with efficiency curves and instructions for how to
use the plots for subsequent analysis. This could be
provided as supplemental information to a publication.
This may be easy for simple three-body final states (like
nireJ /1, where the Dalitz plot could be provided), but
impractical for more complicated final states.

Another suggestion, especially when amplitude anal-
yses have been performed, is to publish a complete pa-
rameterization of the data, including both the formulas
and the numerical values for each fit parameter.

Making data public in these ways could help facilitate

ongoing efforts to test and build models. It could also
permit combined fits of data from different experiments
or different channels, thus helping a more global picture
to emerge.

5.3 Preview upcoming analysis results

It may be useful, in some circumstances, for experi-
mental collaborations to provide a list of upcoming ex-
perimental results. This might be a fruitful way to elicit
new theoretical predictions or ideas. For example, if the
community knows a certain measurement is being per-
formed, there is then a chance to make predictions prior
to the publication of experimental results. It also per-
mits setting priorities in theoretical computations and
enhances the possibility of arranging collaborative effort.
Hosting such a list on a common platform may prove use-
ful and should be explored.

5.4 Create a list of publications in XY Z physics
It would be helpful to have a centralized running

bibliography of publications relevant for XY Z physics.

We are grateful to David Kaplan and the INT for
financial and logistics support.
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