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Efficient numerical evaluation of Feynman integrals”
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Abstract:

Feynman loop integrals are a key ingredient for the calculation of higher order radiation effects, and

are responsible for reliable and accurate theoretical prediction. We improve the efficiency of numerical integration in

sector decomposition by implementing a quasi-Monte Carlo method associated with the CUDA/GPU technique. For

demonstration we present the results of several Feynman integrals up to two loops in both Euclidean and physical

kinematic regions in comparison with those obtained from FIESTA3. It is shown that both planar and non-planar

two-loop master integrals in the physical kinematic region can be evaluated in less than half a minute with 0(1073)

accuracy, which makes the direct numerical approach viable for precise investigation of higher order effects in multi-
loop processes, e.g. the next-to-leading order QCD effect in Higgs pair production via gluon fusion with a finite top

quark mass.
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1 Introduction

The scalar particle predicted by the Standard Model,
the Higgs boson, has been finally discovered at the CERN
Large Hadron Collider (LHC)[1, 2]. This milestone has
inspired various exciting investigations of the further de-
tails of the Higgs boson and related research. Recently
the launch of LHC Runll at 13 TeV collision energy
brings physics exploration to a new era. With the highest
ever center-of-mass energy and luminosity, many scatter-
ing processes that potentially answer some fundamen-
tal physics questions will be able to reach an accuracy
in the percent range or better, while the appropriate
analysis on high precision data demands that the un-
certainties of theoretical prediction reach the same accu-
racy. In order to achieve this, higher order QCD effects
must be included in theoretical predictions. For instance,
state-of-the-art investigations on Higgs inclusive produc-
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tion have explored next-to-next-to-next-to-leading order
(NNNLO) effects for the quark pair annihilation initial
state [3] and for the gluon fusion initial state [4]. Mean-
while, next-to-next-to-leading order (NNLO) theoretical
predictions have been provided for Higgs pair production
[6] and the associated production of Higgs with jet [6-8]
or vector boson [9-12]. As the accumulated luminosity
at the LHC increases, the investigation of higher order
QCD effects will be wanted for more processes, e.g. top
quark production and jet cross sections. In the higher
order effects, one of the most important ingredients is
virtual correction, which always relies on evaluation of
Feynman loop integrals.

After decades of effort, various algorithms have been
proposed for evaluating Feynman loop integrals, includ-
ing both analytical and numerical approaches. The an-
alytical approaches can provide explicit expressions for
Feynman integrals, and can further reveal significant
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physical characteristics. However, when complicated
processes are encountered, it becomes difficult to ob-
tain analytical solutions, while the numerical approaches
can solve more challenging problems in spite of a heavy
burden of evaluation time. Sector decomposition, one
of the numerical algorithms, was introduced as a sys-
tematic approach by Binoth and Heinrich [13, 14]. Fol-
lowing a certain choice of decomposition strategies, this
algorithm divides the domain of loop integration into
sectors. In each individual sector, proper transforma-
tion of integration variables is performed to explicitly
reveal the ultraviolet (UV) and infrared (IR) singulari-
ties. Ultimately the coefficients of a Laurent series in e
of the Feynman integral can be evaluated numerically.
Initially, sector decomposition was implemented for the
Feynman integral in the Euclidean kinematic region [13—
15], where the Cauchy singular integral can be avoided.
Later, inspired by Nagy and Soper [16, 17], integration
contour deformation was proposed [18] as a systematic
scheme to extend sector decomposition to the physical
kinematic region.

Several programs [19-21] have implemented the sec-
tor decomposition algorithm for the numerical evaluation
of Feynman loop integrals. Normally they use Monte
Carlo (MC) integration methods, which have been widely
used in high energy physics research. For instance, Vegas
[22], an adapative Monte Carlo method, can achieve an
integration convergence rate of O(1/4/n). In this paper,
we implement the quasi-Monte Carlo (QMC) method for
the numerical evaluation of the integrals in sector decom-
position. As a better choice, QMC can have a conver-
gence rate close to O(n™!) for differentiable integrands.
Furthermore, we adopt the technique of CUDA/GPU to
improve the performance of numerical evaluation.

This paper is organised as follows. In Section 2 we re-
view the sector decomposition algorithm, then Section 3
gives a brief description of the QMC integration method.
In Section 4 we compare the performance of our program
with FIESTA[20]. Our conclusions are then presented in
the final section.

2 Sector decomposition

Generically an L-loop Feynman integral has the fol-
lowing representation:

1:/ <1£[ dPk,

o 1
1
P i7tD/2>j1j[1 (¢} —m3+ig)i’ (1)

where D =4 —2¢; g; is the momentum of relevant inter-
nal propagator, and is a linear combination of the loop
momenta {k;} and external momenta; m; is the mass of
the relevant internal propagator; and v; is the power of
the corresponding propagator.

After Feynman parameterisation and integration over
the loop momenta, one can obtain
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where N, = E;\rzl v;, and U and F are polynomials of
{z;} and can be straightforwardly derived from the mo-
mentum representation, or constructed from the topol-
ogy of the corresponding Feynman graph [23].

Further treatment of the Feynman integral requires
careful consideration since U and F' can vanish when
some of {x;} approach zero, which may be related to
UV or IR divergence. Direct numerical integration is
impossible for divergent integrals. A sector decomposi-
tion algorithm is designed to systematically extract the
divergence, and is briefly described as follows [24].

Firstly, the integration domain is equally split into N
sub-domains, which are called primary sectors:
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Then in the i-th sector we implement the variable trans-
formation,

xX; t] 1 ] > 1.

Thereafter z; integration is performed associated with
the step function, and now the Feynman integral can be
expressed as
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Obviously for any given primary sector I;, the domain of
integration is an (N — 1)-dimensional unit cube.

Next, following an iterative decomposition strategy
[19] or geometric strategy [25, 26], each primary sector
is finally divided into some subsectors {I;,} so that in
any subsector polynomials U; and F; can be factorised
into the form

N-1
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after proper variable transformation. In each subsector,
the new variables and Jacobian generated by the trans-
formation are required to be monomials of original vari-
ables, and meanwhile the transformation projects the do-
main of integration to the (N—1)-dimensional unit cube.
In the above expressions, by,; and bj,; are non-negative
integers. H,, and H,, are polynomials of {¢;} such that
H,,(0,---,0)=0 and H/,(0,---,0)=0.

Now the primary sector becomes the combination of
subsectors,

m 1 1 /N-1
Il:ZDla/ / (H dtj t;‘laj+ﬁlajs>
a=1 0 0 j=1

(1+Hla(t1,"' ,tN,l))Nl’i(L‘Fl)D/Z
(1+H{a(t1,... ,thl))NV*LD/2 )

where the powers of ¢; are collected into oy,;+ i, €, and
D,, contains the coefficients from the Jacobian and C,
and CJ,.

In the practical evaluation of Feynman integrals, we
will adopt the geometric strategy since it can be guar-
anteed to succeed and results in the smallest number of
subsectors.

After sector decomposition, the singularities in the
Feynman integral have been collected into the regulators
in the form of t*#¢, which can explicitly present the pole
of the integral by using a Laurent series or integration by
parts (IBP). Without loss of generality, we rewrite the
integral with a certain regulator as

(9)

I= /1dt t* o f(t,e), (10)

where f(0,€) is non-zero and finite. Then if a < —1, the
above integral contains a singularity on the lower bound.
By expanding f(t,€) into a Laurent series around ¢ = 0,
the singularity can be explicitly extracted as
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Thereafter, the integrands can be expanded by small e,
and the coeflicients of the Laurent series in € can be eval-
uated numerically order by order. However, numerical
evaluation of r(t) may suffer numerical instability from
large number cancellation. An alternative approach to
the pole extraction that can avoid this problem is IBP,
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It can be seen that the power of ¢ increases by one.
Therefore, by repeating the above IBP formula enough
times, the power of ¢ will not generate singularity, and
then the numerical approach can be implemented to eval-
uate the coefficients of the Laurent series in e.

However, occasionally the integral contains Cauchy
singularities in the physical kinematic region. In this
case, the sign of F' cannot be guaranteed definite, so the
Cauchy singular Feynman integral is only valid under
a proper contour according to the conventional ie pre-
scription of the Feynman propagators. Practically such
an infinitesimal shifted contour will sabotage the stabil-
ity of numerical integration. Fortunately an interesting
prescription of contour deformation has been proposed
[27]

- OF(t
ot;
where an appropriate choice of \; can guarantee the sign
of Im(F(2')) is always negative as required convention-
ally.

3 Quasi-Monte Carlo

After the implementation of the sector decomposition
algorithm reviewed in Section 2, the Feynman integral is
expressed as a Laurent series in €. The coefficients of the
series are composed of convergent integrals, which can
be numerically evaluated. A one-dimensional integral
can be easily evaluated by a numerical approach such as
the trapezoidal rule, while numerical evaluation of multi-
dimensionals integral is usually much more difficult.

For instance, an s-dimensional integral can be writ-
ten as

L= [ aere) (15)

Given a predefined set of n points {%;| Z; € [0,1]°; i =
0,---,n—1}, the above integral can be estimated by

QualN) =23 F@) ~ L. (16)

This method is called the quasi-Monte Carlo method,
and the point set is called the quasi-Monte Carlo rule
[28]. Conventionally two families of QMC rules attract
most interest. One consists of digital nets and digital se-

quences, while the other is the lattice rule. In this paper
we adopt the rank-1 lattice rule (R1LR) defined by [28]

:E_{E} i=0,n—1, (17)

n
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where 2z, known as the generating vector, is an s-
dimensional integer vector. The integer components of
Z are all relatively prime to n. The braces around the
vector in Eq. (17) means only the fractional part of each
component in the vector is taken.

The previous R1LR will result in a biased estimation,
since it is fully deterministic. To achieve an unbiased re-
sult, we need to introduce appropriate randomisation.
For R1LR, we can use the simplest form of randomisa-
tion, called shifting, which will yield so-called shifted lat-
tice rule. The QMC algorithm utilising random shifted
RI1LR is explained as below [28].

1) A set of m independent random vectors called
shifts, {jl,--- ,57,L}7 is generated with uniform distri-
bution in [0,1]°.

2) For each shift, the integral estimation in Eq. (16)
is repeated to obtain a set of m integral estimations,

{Qns1(f), Qunsm(f)}, where

QusD=23 1 ({E+a}). h=tm 9

3) Then the average of these m integral estimations

QuenlF)= =3 Quas(h) (19)

is finally taken as an unbiased approximation of the in-
tegral I,(f).

4) Furthermore, an unbiased estimation for the mean-
square error of Q,, ...(f) can be obtained by

o 2@k = QP (20

=1

The above algorithm improves the practicability of
the RILR QMC method. Moreover, in the case that
the integrand f is a 1-periodic function and all par-
tial derivatives of f exist, the convergence rate can be
improved to O(n™!) [29, 30] if the generating vector is
obtained by the component-by-component construction.
However, in practice even when the integrand f is a non-
periodic function, one can implement the transformation
x; =3y? — 2y? to obtain a periodic integrand as below:

L= [ aer@)

:%;P&yﬂmmﬂjm%u_%» (21)

=1
= / d*yg(¥),
[0,1]¢

where it can be seen that g() =0 once ¥ reaches bound-
ary of [0,1]%, as long as f is bounded at the edge.

Beside the O(n~!') convergence rate, the shifted
RILR QMC method has some intrinsic advantages. In
the shifted RILR QMC method the lattice rule is deter-
ministic and therefore the complexity of random number
generation only depends on the number of shifts. By con-
trast, in the MC method, since the evaluation points are
independent random vectors, a large amount of pseudo
random number generation consumes much more of the
GPU resources. Besides, since the QMC method is a
non-adaptive method, it can easily deal with integrals in
complex space, which is inevitable for Feynman integrals
in the physical kinematic region. However, for adaptive
algorithms, e.g. Vegas, it is difficult to define an appro-
priate rule to handle such integrals.

4 Numerical results

In this section, we present some numerical results for
several Feynman integrals up to two loops for certain
choices of kinematic parameter as a demonstration. In
the Euclidean kinematic region we show the evaluation of
massless scalar double box diagrams, and in the physical
kinematic region we take several master integrals from
the investigation of Higgs pair production via gluon fu-
sion. The Higgs and top quark masses are chosen as
My =125 GeV and M, =172 GeV [31]. By comparing"
with FIESTA3([20] using the Vegas algorithm [22, 32] as a
benchmark of CPU efficiency, we illustrate the improve-
ment in the efficiency of numerical evaluation of Feyn-
man integrals. The sample codes for the Feynman inte-
grals in this section were generated by MIRACLE, which
is a general purpose package in preparation.

4.1 One-loop Feynman integral in physical kine-
matic region

The leading order (LO) contribution to Higgs pair
production via gluon fusion contains the one-loop box
Feynman diagram as shown in Fig. 1. For the evaluation
of this diagram, the most complicated master integral is

s _/ dPk 1
A7) m)P (=k2 4 M2 +ie)[—(k+p1)? + M2 +ie]
1
[—(k—p2)2+ M2 +ic][—(k+p1 —pa)? + M2 +ie]
(22)

X

The initial states are on-shell gluons p? =p2 =0, and
the final states are on-shell Higgs bosons p3 = pj = M7,.
The Mandelstam variables are defined as (p; +p2)*> = s
and (py —ps)?=t.2

1) Our program was deployed with NVIDIA Tesla K20 GPU, while FIESTA3 used four cores of Intel Core i7 3770 CPU (3.4GHz).
2) For simplicity, in the following the dimension of scale is set as GeV by default.
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== —
P P4
P2 Ps
e
Fig. 1. One-loop box diagram for Higgs pair pro-

duction via gluon fusion, where the initial state
momenta are incoming and the final state mo-
menta are outgoing.

As shown in Fig. 2, we evaluate 1000 points between |
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Fig. 2.

4.2 Two-loop Feynman integral in Euclidean
kinematic region

For the demonstration of a two-loop Feynman inte-
gral in the Euclidean kinematic region, we choose the

ﬁ ‘_
P P4
P2 Ps

_) (_

Fig. 3. Massless double box diagram with two legs

off-shell [14], where all the external momenta are
incoming.

s/10°

s = 70000 and s = 500000, while ¢t = —6000 is fixed.
The average time to evaluate one point is 83 ms, which
is acceptable for practical calculation of one-loop Feyn-
man integrals. We can find that the threshold effect is
explicitly shown at s =4M?=118336. Below the thresh-
old Re(1,) vanishes since at the moment the sign of the
F-term in each decomposed subsector is definite. Mean-
while Im(74) peaks on the threshold, where we can see
an obvious large relative error due to slow convergence
of some integrals. Fig. 2 also presents the comparison
with results from LoopTools[33]. It can be seen that the
relative errors of our results are within 1072, and the
relative errors can be smaller than 10~* for most of the
points.

_
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Comparison of single box master integral with loopTools.

massless double box diagram with two legs off-shell [14],
as shown in Fig. 3. Explicitly this Feynman integral is
written as

. _/ APk, dPk, 1
B ] imPr2 inP /2 (—k2 +ie)[— (ky — p1 )? + i)
1
X - -
[ (k1 +p2)? +ie] [ (k1 — k2 — p1)* + €]
1
X
(—k3 +ie)[— (ki +p2 — ka+p3)* +ie]
y ! (23)

[— (k1 — ko +p2)? +ic]

033103-5



Chinese Physics C Vol

. 40, No. 3 (2016) 033103

Because this Feynman integral contains divergences, the
results are expressed in form of a Laurent series in €,

i=4
P

IB — e*2€'YES*3*2€ § -t

e’
i=0

(24)

During the numerical evaluation, the Mandelstam vari-
ables are set as s = (p1+p2)° = —2/3, t = (potp3)* = —2/3,
and u=(p; +p3)*=—-2/3.

In Table 1, we compare our results (marked as QMC)
with those from FIESTA3 [20]. It can be seen that all the
results are consistent to O(1072), while our program is
much (about 50-200 times) faster than FIESTA3. This
implies that our program can provide the results of Feyn- |

man integrals with much higher accuracy in the Eu-
clidean kinematic region. One of the reasons for the
improvement is the QMC algorithm, which has been
proved to have better convergence rate compared to con-
ventional MC algorithm [29, 30]. Another reason is the
implementation of the GPU-accelerated computing. A
GPU has a specified parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously. In contrast, a
CPU consists of a few cores optimized for sequential se-
rial processing. The combination of the QMC algorithm
and GPU-accelerated computing provide an efficient way
to evaluate the Feynman integrals.

Table 1. Comparison of double box Feynman integral in Euclidean kinematic region.
(p%7p§7p§7p121) (_1)070»_1) (07_170’_1) (0707_17_1)
Vegas/CPU QMC/GPU Vegas/CPU QMC/GPU Vegas/CPU QMC/GPU
Py 0.254+3x 1076 0.25+1x 1077 0 0 0.250140.0001  0.25+2x 1077
P3 0.4054740.00004  0.40546 £0.00006 0 0 0.4057+£0.005 0.40544+0.00003
P> 0.6500+£0.0003 0.6489+0.0005 1.0582£0.0001  1.0579940.00003 3.118£0.002 3.118+£0.001
P —1.18340.001 —1.1823+0.0006 1.0938 £0.0005 1.094740.0009 12.52240.007 12.5334+0.007
Py —8.798 £0.004 —8.8014+0.005 —3.000£0.001 —3.003+0.002 35.60+0.03 35.60+0.03
integration time 500 s 2.2s 45 s 0.84 s 117 s 2.2s
4.3 Two-loop Feynman integral in physical kine- |
matic region
& o [ %k 4Pk 1
The next-to-leading order (NLO) contribution to ¢~ | GaD/2 jmD/2 (—k24ie)[—(ky —p1)? +ig]
Higgs pair production via gluon fusion contains the two- 1
. . . >< - -
100P dQuble box Feynman diagram as shovan in Fig. 4, [— (k1 4 p2)? +ie] [ (k1 — by — p1)? + M2+ ic]
which is one of the challenges for an analytical approach 1
with a finite top quark mass. To evaluate this diagram X - -
it s (—k3+ M7 +ie) =k +p2 — ks —ps)? + M7 +ic]

we will confront the complicated master integral

= -5
Pi P4
P2 %
—>

Fig. 4. Two-loop double box Feynman diagram for
Higgs pair production via gluon fusion, where the
initial state momenta are incoming and the final
state momenta are outgoing.

1

X .
[— (k1 — ko4 p2)? + M2+ €]

(25)

This Feynman integral contains IR divergences, so we
express the results in form of a Laurent series in €,

=2
P
_ —2evp o—3—2¢ -t
Ic=e s E o
=0

(26)

Here the initial states are on-shell gluons p? = p2 =0, and
the final states are on-shell Higgs bosons p; = p3 = M7,.
The Mandelstam variables are set as s = (p; +p2)? =
160000 and t = (p, —p3)* = —6000.

Feynman integral in physical kinematic region.

QMC/GPU

Table 2. Comparison of two-loop double box
Vegas/CPU
P —7.95940.009 — 10.5867 %+ 0.009:
P 3.94£0.1-28.19£0.1%
Py —3.94+0.8492.3:£0.8¢

—7.94940.003 — 10.5857 +0.005¢
3.8314+0.005 — 28.0227 +0.005%
—4.63+0.07+92.13: £ 0.07%

integration time 45540 s

19 s
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As shown in Table 2, after more than 12 hours, the
relative error of the finite term from FIESTA3 can only
reach 1072, By comparison, in 19 seconds our program
can obtain an accuracy of about 1073, which may cost
FIESTA3 more than a thousand hours. Moreover, com-
pared with the efficiency improvement obtained in the
Euclidean kinematic region in Section 4.2, we can find a
much better improvement in the physical kinematic re-
gion due to the advantages of the QMC algorithm for
complex integrals as explained in Section 3. Besides, it
can be seen that the efficiency of our program for two-
loop Feynman integrals makes the numerical approach
viable for the evaluation of the NLO virtual contribu-
tion to Higgs pair production via gluon fusion with a
finite top quark mass. Therefore an investigation of the
finite top quark mass effect in Higgs pair production can
be accomplished within months.

4.4 Non-planar two-loop Feynman integral in
physical kinematic region

The non-planar two-loop diagram shown in Fig. 5
also contributes to Higgs pair production via gluon fu-
sion at NLO. During the evaluation of this diagram, the
most complicated master integral is

, _/de1 Pk, 1
P ) imP/2 P2 (—k2 +ie) [— (ki +p1 )2 +i€]
1
X , .
[— (k1 —p2)?+ie][— (k1 +p1 — k2)? 4+ M2 +i€]
1
X
(—k2+ M2 +ie)[— (ko —pa)? + M2 +ic]
1

(27)

X R
[— (k1 +p1— ko —p3)? + M2 +ic]

Fig. 5.
diagram for the Higgs pair production via gluon
fusion, where the initial state momenta are incom-
ing and the final state momenta are outgoing.

Non-planar two-loop double box Feynman

which contains IR divergences, and can be expressed
in form of a Laurent series in ¢,

=2
I~ = 6726WE57372€ E
D § p .
=0

(28)

The same as the configuration in Section 4.3, the initial
states are on-shell gluons p? = p2 =0, and the final states
are on-shell Higgs bosons p3 = p3 = M?. The Mandel-
stam variables are set as s = (p; +p2)? = 160000 and
t = (ps —p3)* = —6000.

In Table 3, we can see that our program can obtain
a result with O(107%) accuracy in 20 seconds, while the
relative error of the FIESTA3 result takes over 15 hours
to reach near that order of accuracy. By comparing with
the results in previous section, it is obvious that the
non-planar double-box master integral has a slower con-
vergence rate. This is consistent with the conventional
conclusion that the evaluation of non-planar diagrams is
more difficult than planar ones. Nonetheless, it can be
seen that efficiency of our program for the evaluation of
non-planar master integrals is acceptable for the practi-
cal numerical approach, which can provide NLO numer-
ical results for Higgs pair production within months.

Table 3. Comparison of non-planar two-loop double box Feynman integral in physical kinematic region.
Vegas/CPU QMC/GPU
P> —3.848+0.004 +0.0005¢ 4-0.003: —3.8482+0.0007 4-0.0004% £ 0.00037
P, 3.81£0.03—-6.415£0.03¢ 3.83£0.02 —6.40:£0.02¢
Py 77.2+£0.2420.1¢4+0.2¢ 77.24+0.1419.914+0.1¢
integration time 54290 s 20 s

5 Conclusion

We have implemented the shifted RILR QMC
method associated with CUDA/GPU to numerically
evaluate Feynman loop integrals by using a sector de-
composition algorithm. Some examples are presented
to show the promising efficiency of our program on the
numerical evaluation of Feynman loop integrals. For a
one-loop box Feynman integral, we can obtain an accu-

racy of about 10™* in tens of milliseconds. For two-loop
double box Feynman integrals, the accuracy can reach
about 1073 in several seconds in the Euclidean kinematic
region, while in the physical kinematic region less than
half a minute is needed. The efficiency of our program
can make the direct numerical approach viable for the
precise investigation of some important processes, e.g.
Higgs pair production via gluon fusion at NLO with the
finite top quark mass effect.
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