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Abstract:

We revisit the compositeness theorem proposed by Weinberg in an effective field theory (EFT) and

explore criteria which are sensitive to the structure of S-wave threshold states. On a general basis, we show that the

wave function renormalization constant Z, which is the probability of finding an elementary component in the wave

function of a threshold state, can be explicitly introduced in the description of the threshold state. As an application
of this EFT method, we describe the near-threshold line shape of the D*°D° invariant mass spectrum in B—D**D°K
and determine a nonvanishing value of Z. It suggests that the X(3872) as a candidate of the D*°D° molecule may

still contain a small cc core. This elementary component, on the one hand, explains its production in the B meson

decay via a short-distance mechanism, and on the other hand, is correlated with the D*°D° threshold enhancement

observed in the D*°DP invariant mass distributions. Meanwhile, we also show that if Z is non-zero, the near-threshold
enhancement of the D*°D° mass spectrum in the B decay will be driven by the short-distance production mechanism.
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1 Introduction

Recently the observations of many new resonances,
namely the so-called XYZ states, have initiated inten-
sive studies of their properties in both experiment and
theory. An interesting feature about most of these new
resonances is that their masses are generally close to
S-wave two-particle thresholds and their coupling to
the corresponding S-wave two-particle channel is impor-
tant. For example, the famous X(3872) is one of the
earliest observed states correlated to the D**D° thresh-
old. We use the notation D*°D° to denote both D*°D°
and D*°DP. The structure of these near-threshold reso-
nances are still under debate and there are various exist-
ing theoretical interpretations, which include proposals
for treating them as either conventional quark-antiquark
states or QCD exotics such as tetraquarks, hybrid states,
dynamically generated states or molecular states. In
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some scenarios, they are treated as mixed states of the
above mentioned configurations. It is worth mention-
ing that the recent experimental signals for the charged
quarkonium states Z,(10610) and Z,,(10650) [1] and their
analogues in the charmonium sector Z.(3900) [2-4] and
7.(4020/4025) [5, 6] appear to be strongly correlated to
the thresholds of either B or D™ pairs. Since most of
those newly observed states are in the vicinity of an S-
wave open threshold, a theoretical method to distinguish
whether such a near-threshold state is an elementary
state of overall color singlet or a composite state consist-
ing of open channel hadrons as constituents is thus cru-
cial for our understanding of their nature. Although this
issue has been explored for a long time and by many theo-
rists (e.g. one can refer to the early literature of Refs. [7—
10] and recent review [11] and references therein), our
knowledge about such non-perturbative phenomena is
still far from complete.
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The aim of this present work is to develop an effec-
tive field theory (EFT) approach to identify the struc-
ture of the near threshold states and explore its appli-
cation to the structures of the recently discovered XYZ
states. In particular, we shall study the X(3872) which,
since its first observation by the Belle collaboration in
B* —K*ntn=J/¥ [12], has initiated tremendous inter-
est in both experiment and theory. Due to the small mass
difference between the measured mass of the X(3872) and
the D*°D° threshold, the X(3872) is the best candidate
for an S-wave D*°D® molecule [13-19]. However, it has
also been recognized that the structure of the X(3872)
could be rather profound because its large production
rates in the B-factories and at the Tevatron seem to
favor a compact structure in its wave function rather
than a loosely bound molecular state [20-22]. Taking
both the production and decay properties into account,
it seems reasonable to identify the X(3872) to be a mixed
state between the JF¢ = 1+ ¢¢ component and the
D*D° component [20, 21]. This scenario can also ex-
plain why the X/, cC state around 3950 MeV predicted by
the single-channel theory is missing in experiment [23].
It is worth noting the recent lattice QCD result that
a candidate for the X(3872) about (11£7) MeV below
the D°D** threshold was identified in a lattice simula-
tion with m, = 266(4) MeV [24]. Tt was also shown
that the pion mass dependence of the binding energy
can provide important information on the structure of
the X(3872) [25-27].

Obviously, more experimental data and theoretical
development are required to clarify the nature of the
X(3872). Very recently the LHCb collaboration found
evidence for the decay mode X(3872)—1(25)y in BT —
X(3872)K*. The measured ratio of the branching frac-
tion of X(3872) — P (25)y to that of X(3872) — J/y
is

B(X(3872) —(25)7)
B(X(3872)—J /y)

[28]. Such a large value for Ry,, does not support a pure
D*°D° molecular interpretation of the X(3872), because
Ry, is predicted to be rather small for a pure D*°D°
molecular [29].

Since the pure molecular interpretation of the
X(3872) is not favoured, it is then important to study
quantitatively how large the compact component is in the
wave function of the X(3872). This is the main subject
of this study. By analyzing the compositeness relation
proposed by Weinberg in the effective field theory, we
will establish the relationship between experimental ob-
servable and the wave function renormalization constant
Z such that the hadron structure information encoded in
Z can be probed via the measurement of some of those
sensitive observables. Specifically, we will show that the
line shape of D*°D° in B—X(3872)(—D**D®)K could be

Ry, = —=2.46+0.64+0.29

useful for shedding important light on the structure of
the X(3872), see also a recent study in Ref. [30].

2 Weinberg’s compositeness theorem in
EFT

To proceed, we first give a short review of Wein-
berg’s method to evaluate the coupling constant between
a near-threshold state and its two-particle channel [8, 9].
Without losing generality, a total Hamiltonian H of in-
terest can be split into a free part Hy and an interaction
part V to an open channel near the threshold:

H=Hy+V. (1)

The eigenstates of the free part H, include the contin-
uum states |a) and the possible discrete bare elementary
particle states |n), with

Hyla)=E(a)|e),
Hy|n)=E,|n),

(B} =0(6—a),
(an)=0,  (m|n)=bmn,  (2)

where the energies are defined relative to the two-particle
threshold throughout this paper. The completeness re-
lation for the eigenstates of H, reads

1= )} + [dafa) o] 3)

A physical bound state |d) is a normalized eignestate of
the total Hamiltonian H, with

H|d)==B|d), (dld)=1, (4)

where B >0 is the binding energy. We call |d) a phys-
ical bound state in the sense that it has the two open
channel particles as constituents in its wavefunction and
its mass is below the two-particle threshold or equally,
B>0. With the completeness relation in Eq. (3) and the
normalization of |d) we can have

1:Z+Jda|<a|d>|2, Z=Y"|(nld)P?, (5)

where Z is the probability of finding an elementary state
in the physical bound state. Hence Z = 0 indicates
that the physical bound state is purely composite, while
0 < Z <1 indicates that there also exists an elementary
component inside the physical state. The determination
of the value of Z would thus enable us to distinguish a
pure composite state from a mixture of a composite and
elementary configuration.
With the relation |d) =[H—H,]|"'V|d) and Eqgs. (2)
and (4), we can obtain
(o]d)=(a|[H—Ho] ' V|d)
__falVia) o
E(a)+B’

Then, Eq. (5) can be written as
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[(alV]d)[* 7)
(E(a)+B)*
For small B, the above integral nearly diverges, so it can
then be approximately evaluated by restricting |a) to
low-energy two-particle states. If the coupling between
|d) and the two-particle state is an S-wave coupling, we
can then replace [(a|V|d)| by g, and replace the « inte-
gral with

1—Z:Jdo<

47tp2dp u3/2
da: =

(2m)*  /2m2

where p is the reduced mass of the two constituents. Af-

ter these replacements we then obtain the effective cou-
pling constant

EY?dE,  E=p*/2u, (8)

, 2m/2uB

g:
/1’2

which encodes the structure information of the compos-
ite system [31]. Notice that our definition for g* has a
relative factor (271)® compared with that in Ref. [9]. We
use this convention, because this makes it convenient to
incorporate the compositeness theorem in the EFT ap-
proach.

Now we will incorporate the compositeness theorem
in the EFT approach. Consider a bare state |B) with
bare mass — B, and coupling g, to the two-particle state.
If |B) is near the two-particle threshold, then the lead-
ing two-particle scattering amplitude can be obtained by
summing the Feynman diagrams in Fig. 1. Later, we will
provide a power counting argument to justify the sum-
mation. Near threshold, the momenta of these two par-
ticles are non-relativistic. Therefore, the loop integral in
Fig. 1 can be done the same way as that in Ref. [32, 33].
With the minimal subtraction (MS) scheme, the result
of the loop integral can be written as

s _ J Py i
) (2m)P [po—22/(2my ) +i€]
% _ 1
[E—00—02/(2m)+i€]
i ouE—ie.

=]—

2m
Thus, the Feynman amplitude for Fig. 1 reads

(1-2), (9)

(10)

yu 9%
=— T —.
E+Bo—gg%\/ —2‘U,E—l€

Because a physical bound state |d) corresponds to a pole
at F=—DB, we have

(11)

BO—QS%E\QMBEB, = BO:B+93%\/2HB. (12)
Then, the amplitude can be written as
6/
(13)

A=
E+B+Y/(E)

9

 1+g3u2/(2my/2uB)

bound state pole, and

where §' = is the residual of the

S| B e V2B
X/(E)=6 5V 2B it (E-B)|. (14)

Since ¢’ is the residual of the bound state pole, it natu-
rally leads to the connection of §’=—g? where g2 is de-
fined in Eq. (9) as the effective coupling constant. There-
fore, the leading order amplitude for the two-particle
scattering can be written as

2

9

S (15)
E+B+%'(E)

where %’(E) can now been written as

S'(E)=—g? {% 4@—1&%@—3)}. (16)
OO

Fig. 1. Feynman diagrams for the two particle
scattering. The double line denotes the bare state.

One can easily check that the amplitude given in
Eq. (15) satisfies the unitary condition. Actually, the
same solution as Eq. (15) was obtained by Weinberg
fifty years ago, but with a different approach [9]. With
§’'=—g* and Eq. (9), we obtain

oy/2uB 1—7
932T7:92/Z- (17)

Combining Eq. (12) and (17) together we obtain

2-7

By= Z B.
The limit By — oo corresponds to Z — 0, which is con-
sistent with the condition discussed in Ref. [8]. Also,
Eq. (17) defines the wave function renormalization con-
stant of |B), i.e. Z=1/[1+g2u?/(2m\/2uB)], which is the
same as the result in Ref. [34]. Comparing Eq. (15) with
the effective range expansion formula

27 1
A=— ,

1
H —1/a—|—§rop2—ip+(9(p4)

(18)

(19)

we have the famous relations which were first obtained
by Weinberg [9]

21-2) 1 Z 1
a= , To=——— , (20)
2—-7Z J2uB 1-Z\2u
where a is the scattering length and r, is the effective
range.
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It is interesting to examine the behavior of the tree
diagram amplitude in Fig. 1 near threshold. The tree
diagram amplitude reads

%
ree=— . 21
A== 2 (21)
In the limit Z—0, we have By — oo and gy — co. How-

ever, Aqee is still well defined. With Egs. (17) and (18),

we have

2m

2uB’
Equation (22) is just the equivalence of the four-Fermi
theory and Yukawa theory found in Ref. [10]. To be
explicit, in the limit Z — 0, the S-channel resonance
exchange interaction will reduce to the contact interac-
tion. Since we are interested in the low energy physics,
the binding momentum v = (2uB)*/? and the three-
momentum of the two-particle state p is small. We
can count these two momenta as the same order, i.e.
v, p~QO(p). One can see that due to the existence of the
bound state the coefficient of the leading contact term
can be enhanced to the order of (2uB)~'/2 ~ O(p~!).
Hence in such a case all the bubble diagrams of the lead-
ing contact term are equally important and should be
resummed at the leading order. It is straightforward to
apply this power counting argument to the case Z #0.
One then finds that all the Feynman diagrams in Fig. 1
are at the same order of O(p~1), therefore they should
be resummed. A similar power counting argument to
support the summation of the leading contact term is
provided in Ref. [32, 33], in which a new subtraction
scheme i.e. power divergence subtraction (PDS) scheme,
is proposed. If we use the PDS scheme, then Eq. (11)
will become

%I%Anee:_ (22)

2
0 . (23)
E+Bo—gg%(\/—2/j/E—i6—Ast)

where Appg is the dimensional regularization parameter.
By extracting the bare mass similar to what we have
done above, we find that Eqgs. (15)—(17) still hold but
Eq. (18) will be changed to
BO:¥B_%\/2B/.UJAPDS- (24)
If Z+#0 and Z #1, the bare mass B, determined from
Eq. (24) will depend on the regularization parameter
Apps, which can be arbitrary. It means that the deter-
mination of the bare mass will inevitably depend on the
scheme as emphasized in Ref. [35]. As a consequence, one
presumably need not worry too much about the physical
meaning of a bare mass. In contrast, the physical ob-
servable such as Eq. (15) is scheme-independent and can
be determined by measuring the line shape.
In the above, we have incorporated the composite-
ness theorem in the EFT, and we obtain the leading or-

APDS:_

der amplitude for the low energy S-wave two-particle
scattering when a bound state exists, which is given in
Eq. (15). It is interesting and important to compare the
amplitude with other low energy amplitudes which are
widely used in studying the structure of the XYZ states.
In Refs. [36, 37], the authors use the following low energy
amplitude

1

I )= e

(25)

One can find that f(FE) is just the amplitude given in
Eq. (19) if the term %ropz is ignored. From Eq. (20),
one can find that if Z =0, then r, =0, and the term
%r0p2 disappears in the amplitude. However, if Z #0,

1
ETOPZ is at the order of O(p), which is the same as the

1
term /—2uFE—ie or —ip. Therefore the term §r0p2 can-

not be ignored in the low energy amplitude for Z # 0.
This suggests that f(E) can only be used if a bound
state is a pure molecule.

In Refs. [38-40], the authors use the Flatté
parametrization for the low energy amplitude. Consid-
ering only the single channel coupling, the Flatté ampli-
tude reads

F(E):—% — — (@0

Ignoring I', one can find that F(FE) is essentially the
same as our amplitude given in Eq. (11). By comparing
F(FE) with Eq. (11), one can find that

G=gop/m,  Ey=—DB,. (27)
With Eq. (17) and Eq. (18), one can realize that F(E)
can only be applied if Z is not very small, or the bound
state contains a substantial compact component, be-
cause in the limit Z — 0, the Flatté parameters g,
and F; become infinite. In such a case the fitting with
Flatté parametrization will exhibit scaling behavior as
was found in Ref. [39]. Therefore, if Z — 0, in order
to obtain the parameters of the near threshold state, one
had better use F(E) in the form that both the numerator
and denominator are multiplied by a factor Z. One can
easily find that in such form F(F) is just f(F), which
is given in Eq. (25). In short, f(F) can only be applied
if the bound state is purely dynamically generated or
Z =0, and F(FE) can only be applied if the bound state
contains a substantial compact component. In contrast,
the low energy amplitude given in Eq. (15) can be used
in both cases, and in the study of the XYZ states, it is
better to use the amplitude given in Eq. (15).
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3 Study of the X(3872) in the EFT ap-
proach

We show how to incorporate Weinberg’s composite-
ness theorem in the EFT and apply it to the study of
threshold states in which both elementary and molecu-
lar configurations could be present. Although most of
the formulae we present above had been obtained with
the quantum mechanical approach [9, 31], it is still use-
ful to reproduce them in the EFT approach. The idea
is that with the EFT, we can obtain the relevant Feyn-
man rules for the near-threshold states. These Feynman
rules can then be directly applied to processes involv-
ing such states as a more realistic prescription for their
threshold behaviors. What is more important is that
with the EFT approach, we can set up the power count-
ing and study the higher order corrections systemati-
cally. Therefore the EFT approach can be applied much
more easily to phenomenological studies and may pro-
vide a clearer physical picture for some of those threshold
states. We also mention that some of those points have
been addressed or demonstrated in the recent analyses
of Refs. [41-43].

In the following, as an application we will use the
EFT approach to study the structure of the X(3872).
Before proceeding, we would like to clarify that our ap-
proach for the X(3872) is different from the XEFT ap-
proach [44] where the X(3872) is assumed to be a weakly
bound molecule of the D*°D° pair. This corresponds to
the special case with Z =0 in the EFT approach. In-
stead, we do not make any assumption on the structure
of the X(3872) in advance, i.e. we leave the Z as a free
parameter which can be determined by the physical ob-
servables.

First, we give the relevant Feynman rules for the
X(3872) in our EFT approach. The propagator of the
X(3872) is

0 (25)
E+B+X'(E)+il/2

where I denotes the width of the X(3872) which comes
from the decay modes that do not proceed through its
D*°D° component. Our convention is that a factor of
v2Mx has been absorbed into the field operator of the
X(3872). It is convenient to use this convention for the
boson in the nonrelativistic formalism. Hence a boson
field has the dimension of 3/2 and the Feynman rule for
an external boson should be v2M. Actually, the cou-
pling constant ¢ in Eq. (9) is defined under this con-
vention. The Feynman rule for the XD*°D° coupling is

given as
9o 9 vz
lﬁ =1 <ﬁ) 5 (29)

where the factor 1/ /2 is due to the definition of the

C-even state (D*°D°+D°D*%)//2.

As mentioned before, near threshold, there are two
small momenta, the binding momentum v = (2uB)*/?
and the three momentum of the charmed meson p. We
can count these two momenta as the same order, i.e. 7,
p~O(p). Therefore, we can find that F, B~O(p?) and
g~O(p*?). One can then easily check that the elastic
scattering amplitude given in Eq. (15) is at the order of
O(p™') which is consistent with the result in Ref. [32, 33].

Now we come to describe the line shape of D*°D? in
B — X(3872)K — D*°D°K in this EFT approach. For
studies of the line shape with other approaches one can
refer to Refs. [36-40]. In Ref. [36, 37], the authors use the
amplitude f(E) which is given in Eq. (25) in their analy-
sis. As we have mentioned before, f(FE) can only be used
for a pure molecule. However, a pure molecule assign-
ment for the X(3872) seems to conflict with the recent
LHCb measurement [28]. In Refs. [38-40], the authors
describe the D*°D° line shape with Flatté parametriza-
tion. Assuming the X(3872) production via the short-
distance process, Ref. [40] further addresses the ques-
tion of a possible x., charmonium admixture in the
wave function of the X(3872). The idea is to integrate
the spectral density which can be expressed in terms of
Flatté parameters. However, in this approach the inte-
gration bounds are somewhat arbitrary, hence this ap-
proach is inevitably model dependent. Comparing with
these approaches, the advantage of the our approach is
that we make no assumptions on the structure of the
X(3872) in advance. In this way, one can then clearly
address the question whether a bound state is a pure
molecule or it contains a substantial compact compo-
nent. Another advantage of our approach is that instead
of making assumptions on the production mechanism of
the X(3872) as in Ref. [38-40], we systematically con-
sider both the short and long-distance production mech-
anisms of the X(3872). In the short-distance production
mechanism the X(3872) is produced directly at the short-
distance vertex of the B decay, while in the long-distance
production mechanism a D*°D° pair is produced first in
the B decay and then rescatters into the X(3872). The
answer to the question about which production mech-
anism is more important than the other would depend
on the structure of the X(3872). As follows, instead of
making assumptions on the structure of the X(3872) in
advance, we actually consider both these different pro-
duction mechanisms in our analysis.

The leading order Feynman diagrams for these two
different production mechanisms are presented in Fig. 2,
for which the Feynman amplitudes can be explicitly ex-
pressed as

V2 E+B+X/(E)+il)2 "

iM,=

)
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o g/ 2uF—ie _ _,
< . Px-€ (30)
21 E+B+ X' (E)+il/2

where px is the momentum of the K meson in the rest
frame of the B meson, and e is the polarization vector of
the outgoing D*°. We use Axk and Bppxk to denote the
first production vertices in Fig. 2, i.e. B—X(3872)K and
B—D*°DK, respectively. Near the threshold of D*°D°,
we can treat Axk and Bppk as constants. Note that we
have omitted the factors from the external D) mesons
in Eq. (30) which can be absorbed into Axk and Bppx.

i~/\/tb:lgDDK

& :
(@ . (b) e i
// /(//ﬁ:
B X B o X
Fig. 2. Feynman diagrams for B — X(3872)K —

D*°D°K. Solid lines in the loop and final state
represent the charm and anti-charm mesons.

It is easy to count the power of the above amplitudes
and one can find M,~O(p~*/?) and My, ~O(p°). From
the power counting, one may find that the short-distance
production mechanism is more important than the long-
distance one. However, it should be noted that M, is
proportional to the factor v/Z. Therefore, its contribu-
tion will be suppressed if the X(3872) is dominated by a
molecular component. It is interesting to note that with
Z =0 the term of M, will vanish, and then the produc-
tion of the X(3872) will only come from the long-distance
production mechanism M. This feature ensures that
our separation of the short-distance production mecha-
nism from the long-distance one makes sense.

Taking into account the non-resonance production
contribution, the full amplitude to describe B—D*°D°K
is expressed as

iM=iM,+iM,+Bppkpk-€* (D), (31)

where the term Bppxpxk - €*(D*) describes the non-
resonance production which is at the same order as iM,,.
Now we can use the above amplitude to describe the
Belle and BaBar data [45, 46]. The free parameters in
our calculation include I', B, Z, Axkx and Bppk. How-
ever, the experimental data have large error bars. To
reduce the uncertainty, we fix I" and B with the values
that are determined in X(3872)— J/YX, where X de-
notes the light hadrons. The reason is because the data
from the decay modes of X(3872)— J/1pX have higher
statistics and there the X(3872) appears as a narrow
Breit-Wigner structure. We adapt the PDG [47] value
Mx 3872y =3871.68 MeV for the mass of X(3872), which
is the average over the measurements from the decay
modes of X(3872) — J/PX. With Mp+0=2006.99 MeV
and Mpo = 1864.86 MeV [47], we can fix the binding
energy as B=0.17 MeV. The width of X(3872) is not

settled by the data for X(3872) — J/{X, but the upper
limit is given as I'<1.2 MeV. Since the width is small,
we fix the non-D*°D° width I'=0 in our fitting. We have
checked that the D*°DP line shape is not sensitive to B
and I" around the fixed values. Therefore, our fitting
parameters are Axk, Bppk and Z.

The fitting results are presented in Fig. 3 and com-
pared with the experimental data [45, 46]. Notice that
there is an arbitrary scaling factor between the BABAR
and Belle data; we fit the ratio Axk/Bppx and Z for
these two sets of data simultaneously but leave a free
scale factor to be fitted by the data. This, in prin-
ciple, introduces an additional parameter and leads to
x?/d.0.f=0.4 which indicates some correlations among
the parameters. This can be improved by future exper-
imental measurement. For the physical discussion, we
only list the fitted ratio Axk/Bppk and parameter Z as
follows

AXK
2R —(0.1540.65) GeV¥?,  Z=0.19+0.29. (32)
DDK
]5 T I T | T
® BABAR data
T — our result 7
- - - contribution from iM,
~ 10 - — contribution from iM, _|
Q
>
[
g _
@
|
[
5 5
0 T T T T T T T
15 T T T T T T T
17T m Belle data E
— our result
~ 10 - - contribution from iM, |
R . — — contribution from iM
> A
=
S )
3 \
g
()
>
L)

E/MeV

Fig. 3. The line shape of the D*°D° spectrum in
B —D*'D°K. The data are from Refs. [45, 46].
The solid line denotes the overall fitting result,
the dotted line is the contribution from iMa,,
and the dashed line that from iM, = iM +
Bopkpke*(D*). An arbitrary normalization is im-
plemented.
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In Fig. 3, we also show the contribution from dif-
ferent pieces of the amplitude, i.e. iM, and iM, =
iM,+Bppkpk € (D*) as the dotted and dashed line, re-
spectively. From Eq. (32) one can see that the fitted
parameters are with large uncertainties due to the large
error bars with the BABAR and Belle data. To reduce
the number of the free parameters one can only use the
leading order amplitude iM, in the fitting. The fitted
Z is Z =0.1240.11. The fitting quality is almost the
same as that of Eq. (32). Because the fitting line shape
is similar to that in Fig. 3, we will not bother to show it
again.

Due to the relatively large uncertainties with the fit-
ted parameters, we discuss the following possible scenar-
ios arising from the fitting results:

1) The main feature of Fig. 3 is that a small nonva-
nishing value of Z will result in a sizeable contribution
from the short-distance process, i.e. iM,. This indi-
cates that the production of the X(3872) in the B decay
is driven by the short-distance production mechanism.
Even a small component of the c¢ core will lead to a rel-
atively larger production rate for the X(3872) in compar-
ison with when it is treated as a pure D**D° molecule.
Nevertheless, the dominance of the short-distance pro-
duction mechanism seems to always produce the thresh-
old enhancement which may bring concerns about the
molecular feature of the X(3872). However, this may
provide a natural explanation for the sizeable production
rate for the X(3872) in the B decay, and also explain the
large isospin violations given that the compact c¢ com-
ponent can couple strongly to the charged D*D+c.c. pair.
This will give rise to enhanced isospin violation transi-
tions into J/1{p via the intermediate charged and neu-
tral D meson loops as discussed in the literature. If the
compact component of the X(3872) is x,, its production
rate in the B decay should be comparable with that of
Xe1 [20]. Meanwhile, if the X(3872) is a pure molecule, its
production rate will be strongly suppressed. The recent
PDG result gives Br(Bt —x,KT)=(4.79+0.23)x 1074,
while the production ratio of the X(3872) is constrained
as Br(BT—X(3872)KT)<3.2x107* [47]. Thus, it is not
conclusive for the structure of the X(3872) based on such
a measurement. We expect that a more precise measure-
ment of the decay rate of B—X(3872)K would provide a
quantitative constraint on the X(3872) structure in the
future.

2) It is interesting to discuss the behavior of the term
iM, in the line shape of D**D°. In the case where the
X(3872) is a pure molecule, i.e. Z=0, the line shape will
be determined by iM, with iM,=0. For convenience,
we can express iM, by a more compact form

iMl - 1Mb+BDDKﬁK€*(D*)
ZE+(2-Z)B , |
= Bppx o 222 2 (DY), 33
DDKE+B+E,(E)pK (D) (33)

where we have set I'=0 as discussed above. By setting
Z =0 the energy dependence of M, is just the same as
f(E), which is used in Ref. [36, 37]. As discussed before,
if we fix Z=0, these two approaches should indeed con-
verge as expected. However, the explicit Z-dependence
will bring novel aspects to the line shape description.

We can take a closer look at the Z-dependence of
iM,, which is illustrated by the line shape in Fig. 4.
Note that Fig. 4 is rescaled by an arbitrary factor due
to the unknown value of the cross sections. One can see
that the line shape is very sensitive to Z. If Z=0, the
line shape has a clear near-threshold enhancement. But
when Z increases, the near-threshold enhancement dis-
appears quickly. The reason is that if Z #0 the factor
ZE in the numerator of Eq. (33) will play an important
role in the line shape. From Eq. (33) one can also find
that, for Z=0, iM, is proportional to the small binding
energy B. Therefore, we can conclude that if Z is non-
negligible, the near-threshold enhancement of the D*°D°
mass spectrum in the B decay will be driven by the short-
distance production mechanism of the X(3872), although
the dominant component of the X(3872) is molecular.
This feature is again consistent with the success of treat-
ing the X(3872) as a pure molecule in the explanation
of the line shape [36, 37]. One should note that even if
the long-distance production is enhanced by some unex-
pected mechanism, the conclusion is still true.

3 T I T (4 | T | T

events

0 T T T T T T T
0 10 20 30 40
E/MeV
Fig. 4. The exclusive contribution from iM, to the

line shape of the D*°D° spectrum in B—D*°D°K
with different Z. Here, we set B = 0.5 MeV as
an illustration. The results with B =0.17 MeV
are similar. An arbitrary normalization is imple-
mented.

3) One may consider to further describe the line shape
measured from X(3872) — J/Pmtm~ [48, 49] in order
to have a better determination of Z. However, since
the coupling between X(3872) and J/{pmt7t~ is unclear,
namely, they may couple directly or through the interme-
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diate meson loops, the inclusion of the line shape mea-
sured in X(3872) — J/Ppmtn~ will inevitably introduce
more free parameters. This will be studied in the future
with the availability of more precise experimental data.
4) In obtaining the above amplitudes, the MS scheme
is adopted to evaluate the loop integral. It is still inter-
esting to discuss the results when the PDS scheme is
adopted. With the PDS scheme, the amplitude M, re-
mains the same but the amplitude M, will change to

iMZ:BDDK XﬁK'Eﬁ*

" ZE+(2—-Z)B—(1-2Z)+\/2B/udApps
E+B+X'(E) '
If Z=0, the arbitrary scale Appg can be absorbed into
the definition of Bppkx to make sure that the physical
amplitude M, does not depend on this arbitrary scale.
However, if 0 < Z < 1, it seems impossible to do that
due to the factor ZF in the numerator. Therefore, for
0 < Z <1 the amplitude M, will inevitably depend on
the arbitrary scale Appg if the PDS scheme is adopted.
Whether this means that the PDS scheme may not be
suitable for the study of the decay processes in our EFT
needs to be further investigated. We note that the same
problem does not occur in two-particle elastic scattering
in the EFT approach as discussed before.

(34)

4 Summary

In summary, we have proposed an EFT approach
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