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No-core Monte Carlo shell model calculations with unitary correlation

operator method and similarity renormalization group *
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Abstract: The unitary correlation operator method (UCOM) and the similarity renormalization group theory (SRG)

are compared and discussed in the framework of the no-core Monte Carlo shell model (MCSM) calculations for 3H

and 4He. The treatment of spurious center-of-mass motion by Lawson’s prescription is performed in the MCSM

calculations. These results with both transformed interactions show good suppression of spurious center-of-mass

motion with proper Lawson’s prescription parameter βc.m. values. The UCOM potentials obtain faster convergence

of total energy for the ground state than that of SRG potentials in the MCSM calculations, which differs from the

cases in the no-core shell model calculations (NCSM). These differences are discussed and analyzed in terms of the

truncation scheme in the MCSM and NCSM, as well as the properties of the potentials of SRG and UCOM.
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1 Introduction

Nuclear ab initio calculation is one of the most effec-
tive approaches for investigating the structure of nuclei.
By using realistic nuclear interactions, ab initio nuclear
many-body calculations have been performed in the past
decade. In Green’s function Monte Carlo (GFMC) calcu-
lations the exact ground-state wave function is calculated
by treating the many-body Green’s functions in a Monte
Carlo approach [1–3]. The GFMC calculations of light
nuclei up to 12C with the Argonne interaction reproduce
the experimental nuclear binding energies and radii as
well as the spectra. Another ab initio approach for nu-
clei up to A=14 is the no-core shell model (NCSM) [4–6].
The Monte Carlo shell model (MCSM) has been intro-
duced recently to study some light nuclei and might be
considered as a new method to push the limit of present
ab initio calculations because it reduces the dimension
of basis dramatically compared with other shell model
calculations [7, 8].

However, the straightforward application of the re-
alistic interactions in nuclear many-body calculations
is still difficult due to the strong short-range repulsion
which generates strong correlations in the nuclear many-
body state. The unitary correlation operator method
(UCOM) is one of the methods used to tackle this prob-

lem by introducing a unitary transformation such that
the transformed many-body states contain the informa-
tion on the dominant correlations in the nuclear many-
body system [9–11]. The similarity renormalization
group is another unitary transformation which aims at
the pre-diagonalization of a matrix representation of the
Hamiltonian in a chosen basis by means of a renormal-
ization group flow evolution [12, 13]. It has been proved
to be an effective approach not only for ab initio calcu-
lations, but also in nuclear covariant density functional
theory to investigate the symmetries of Dirac Hamilto-
nian very recently [14].

It is interesting to make a comparison of the MCSM
and NCSM with different transformed potentials: simi-
larity renormalization group theory (SRG)-transformed
and UCOM-transformed interactions, in order to provide
some benchmarks for the MCSM and NCSM. In Ref. [15],
the SRG-transformed and UCOM-transformed poten-
tials in the NCSM calculation are discussed from matrix
elements to many-body calculations. In this work, we
focus on the properties of SRG-transformed and UCOM-
transformed potentials in the MCSM calculations for 3H
and 4He. In Section 2, the theoretical framework for the
MCSM is briefly outlined. The numerical details, results,
and discussion of many-body calculation results are pre-
sented in Section 3. Finally, a brief summary is given in
Section 4.
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2 Theoretical framework

The main idea of the MCSM is to diagonalize the
Hamiltonian in a subspace spanned by the MCSM basis,
which is generated in a stochastic way.

We begin with the acting of an imaginary-time evo-
lution operator on a state |Ψ (0)〉

e−βH |Ψ (0)〉=
∑

i

e−βEici|ψi〉, (1)

where H is a given general (time-independent) Hamilto-
nian and β∝T−1 is a real number with T being analogous
to a temperature. In Eq. (1), Ei is the i-th eigenvalue
of H . |ψi〉 is the corresponding eigenstate and ci its am-
plitude in the initial state. For β large enough, only the
ground and low-lying states survive. But the actual han-
dling is very complicated for H containing a two-body
(or many-body) interaction.

The Hubbard-Stratonovich (HS) transformation [16,
17] can be used to ease the difficulty mentioned above.
We then move to the formula

|Φ(σ)〉∝e−βh(σ)|Ψ (0)〉, (2)

where h(σ) is a one-body Hamiltonian obtained through
the HS-transformation and σ is a set of random numbers
(auxiliary fields). The right-hand-side of this relation can
be interpreted as a means to generate all basis vectors
needed for describing the ground state and the low-lying
states. For different values of the random variable σ, one
obtains different state vectors |Φ(σ)〉, by Eq. (2). These
vectors are labeled as candidate states and selected as an
MCSM basis by a procedure of energy comparison.

During the MCSM generation of the basis vectors,
symmetries, e.g. rotational and parity symmetry, are re-
stored before the diagonalization as more basis vectors
are included. All MCSM basis states are projected onto
good parity and angular momentum quantum numbers
by acting with the corresponding projection operators.
We diagonalize the Hamiltonian in a subspace spanned
by those projected basis vectors. The number of the
MCSM basis states is referred to as the MCSM dimen-
sion. The basis generation process for general cases is
outlined in Ref. [18].

As more than one major shell is included in the
MCSM calculation, the spurious center-of-mass motion
must be taken into account. Lawson’s prescription is
adopted to suppress the spurious center-of-mass motion
in good approximation for major shell truncation [19].
The total Hamiltonian can be separated into an intrinsic
part and a center-of-mass part

H ′=Hint.+βc.m.Hc.m., (3)

where Hint. is the intrinsic Hamiltonian. Hc.m. is defined

by

Hc.m. =
P

2

2AM
+

1

2
MAω2

R
2−

3

2
~ω, (4)

where R and P are the coordinate and momentum of
the center of mass, respectively. In general, by tak-
ing sufficiently large values of βc.m., the spurious com-
ponents become smaller and smaller for the low-lying
eigenstates of H ′. More details of the MCSM can be
found in Refs [7, 18].

The basic idea of the SRG approach in the formula-
tion of Wegner [11, 12] is to transform the initial Hamil-
tonian H of a many-body system into a diagonal form
with respect to a given basis. The renormalization group
flow equation governing the evolution of the Hamiltonian
is of the form

dHα

dα
=[ηα,Hα], (5)

where α is the flow parameter andHα the evolved Hamil-
tonian with H0=H . Analogous equations can be formu-
lated for the operators of all observables one is interested
in. In general terms the anti-hermitian generator ηα of
the flow can be written as

ηα=[diag(Hα), Hα], (6)

where diag(Hα) refers to the diagonal part of the Hamil-
tonian in a given basis. This choice can be understood
in intuitive terms: if the Hamiltonian commutes with its
diagonal part with respect to a given basis, then the gen-
erator vanishes and the evolution has reached a fix point.
More details of SRG can be found in Refs. [12, 15].

The main idea of the UCOM can be interpreted by
the expression

〈Ψ |H |Ψ ′〉=〈Φ|C†HC|Φ′〉=〈Φ|Ĥ|Φ′〉, (7)

where |Ψ〉 and |Ψ ′〉 are correlated wave functions. H

is the nuclear Hamiltonian including realistic nucleon-
nucleon interaction. Ĥ is a transformed potential by
operator C. In the UCOM, C=CrCΩ indicates that C is
composed by central correlation operator Cr and tensor
correlation operator CΩ. More details can be found in
Refs. [9, 10].

Generally speaking, the UCOM and the SRG are
two methods to tackle short-range correlations in the
nuclear many-body problem by means of unitary trans-
formations. Though both methods start from a differ-
ent conceptual background-coordinate-space picture of
short-range correlations and pre-diagonalization via a
flow evolution, respectively-both lead to a decoupling of
low-momentum and high-momentum modes.

3 Results and discussion

Here we discuss the interactions and model spaces
used for the no-core MCSM and provide some bench-
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mark calculations for the 3H and 4He ground states. The
model space of the MCSM is spanned by a harmonic os-
cillator basis truncated with respect to the unperturbed
single-particle energies emax = 2n+l. Our calculations
are performed in the model space with emax = 3. We
use SRG-transformed realistic two-nucleon interactions
(hereinafter referred to as VSRG) and UCOM-transformed
ones (VUCOM) as the input potential in the MCSM. The
transformed potentials are derived from the N3LO inter-
action [20–22]. The Coulomb interaction in all of our
calculations is neglected throughout this work for sim-
plicity as discussed in Ref. [7].

As discussed in Section 2, the spurious center-of-mass
motion should be removed to obtain the intrinsic to-
tal energy if they are mixed in calculated eigenfunctions
when different major shells are included in the MCSM
calculations. Fig. 1 shows the expectation values Ec.m. of
Hc.m. for 3H calculated by the MCSM with VSRG (dashed)
and VUCOM (solid) in the model space emax=3 as a func-
tion of βc.m., which is the Lawson’s prescription param-
eter. The harmonic oscillator parameter ~ω is adopted
as 28 MeV. The expectation values Ec.m. for both VSRG

and VUCOM cases decrease rapidly and are less than 50
keV when βc.m. is greater than 20. In this way, the spu-
rious center-of-mass motion can be suppressed to a large
extent by choosing a suitable βc.m. value, for instance,
βc.m. = 30. At this point, these two transformed in-
teractions do not make differences with the treatment
of spurious center-of-mass motion in the no-core MCSM
calculations.

Fig. 1. (color online) The center-of-mass motion
energies Ec.m. of 3H with VUCOM (solid) and VSRG

(dashed) potentials in the MCSM calculations
as a function of Lawson’s prescription parameter
βc.m. defined in Eq. (3). The model space is se-
lected as emax=3. The oscillator parameter ~ω is
adopted as 28 MeV.

Figure 2 shows the same expectation values Ec.m. of
Hc.m. but for 4He calculated by the MCSM with VSRG

(dashed) and VUCOM (solid) in the model space emax=3

as a function of βc.m.. The harmonic oscillator parameter
~ω is adopted as 36 MeV for 4He. The expectation val-
ues Ec.m. for both VSRG and VUCOM cases decrease rapidly
and are less than 30 keV when βc.m. is greater than 20.
The spurious center-of-mass motion can be treated prop-
erly with βc.m. > 30 in both cases. Moreover, the Ec.m.

calculated by MCSM with VUCOM is more close to zero
than that with VSRG with βc.m.>30.

Fig. 2. (color online) The center-of-mass motion
energies Ec.m. of 4He with UCOM (solid) and
SRG (dashed) potentials in the MCSM calcula-
tions as a function of Lawson’s prescription pa-
rameter βc.m. defined in Eq. (3). The model space
is selected as emax =3. The oscillator parameter
~ω is adopted as 36 MeV.

With Lawson’s prescription parameter βc.m.=30, the
total intrinsic energy for the ground state of 3H and 4He
can be evaluated. Likewise, the no-core MCSM calcu-
lation results are dependent on the harmonic oscillator
parameter ~ω due to the truncation of the model space
like other shell model calculations. In Fig. 3, the total en-
ergies of 3H calculated by the MCSM with (a) VSRG and
(b) VUCOM in model space emax = 1 (dash dot), 2 (dot)
and 3 (solid) as a function of harmonic oscillator param-
eter ~ω are shown. The ground state energy for small
model spaces, e.g., emax=1, shows a sizable dependence
on ~ω in both cases. By increasing the size of the model
space, the ground state is lowered and dependence on
~ω is reduced since the basis in the shell model is close
to a complete set. About 4 MeV of the ground state
energy variations are presented for a range of oscillator
frequencies ~ω from 16 to 52 MeV. However, the MCSM
results with VUCOM reveal a lower total energy than that
with VSRG. This differs from the results calculated by the
no-core shell model, in which the SRG potential presents
a lower total energy, or in another words, faster conver-
gence than the UCOM potential [15].

In Fig. 4, the total energies of 4He calculated by the
MCSM with (a) VSRG and (b) VUCOM in model space
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emax = 1 (dash dot), 2 (dot) and 3 (solid) as a func-
tion of harmonic oscillator parameter ~ω are also shown.
The same properties are presented as shown in Fig. 3
for 3H. The ground state energy for small model spaces
also shows a sizable dependence on ~ω in both cases. The
ground state is lowered and dependence on ~ω is reduced
for large model spaces. About 5 MeV of the ground state
energy variations are presented for a range of oscillator
frequencies ~ω from 16 to 52 MeV. Similarly, the UCOM
potentials obtain lower total energy than SRG poten-
tials. The SRG-evolution causes a pre-diagonalization
at all momentum scales, i.e. it also leads to a decou-
pling among the high-q or large-n states. The UCOM-

transformed interaction generates a stronger coupling
among high-lying states, i.e., the pre-diagonalization in
the high-q or large-n regime is not as perfect. The no-
core shell model employs the single particle excitation
energy truncation scheme. However, the no-core MCSM
calculation adopts major shell truncation. The large-n
components of SRG-transformed nuclear interaction can
be considered to a large extent in the no-core shell model,
and can be omitted somehow in the no-core MCSM.
In other words, UCOM-transformed potentials are more
suitable than SRG potentials for the MCSM calcula-
tions, and SRG potentials show better performance in
the ab initio no-core shell model.

Fig. 3. (color online) Calculated total energies of 3H with (a) SRG and (b) UCOM potentials in the MCSM as a
function of oscillator parameter ~ω in model spaces emax= 1 (dash dot), 2 (dot) and 3 (solid).

Fig. 4. (color online) Calculated total energies of 4He with (a) SRG and (b) UCOM potentials in the MCSM as a
function of oscillator parameter ~ω in model spaces emax= 1 (dash dot), 2 (dot) and 3 (solid).
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4 Summary

In summary, the UCOM and SRG are compared
and discussed in the framework of no-core MCSM for
3H and 4He. The treatment of spurious center-of-mass
motion by Lawson’s prescription are performed in the
MCSM calculations. The calculation results with both
transformed interactions show good suppression of spu-
rious center-of-mass motion with βc.m. > 20. Although
both the SRG-evolved and the UCOM-transformed in-
teractions lead to a rapid convergence of NCSM cal-
culations for light nuclei, the UCOM potentials obtain
lower total energy than SRG potentials in the MCSM

calculations. The SRG-evolution leads to a decoupling
among the high-q or large-n states. However, the pre-
diagonalization in the high-q or large-n regime is not as
perfect as the UCOM-transformed interaction. Hence,
the excitation energy truncation in NCSM is proper to
the SRG, in which more high-n components can be in-
cluded. The MCSM with major shell truncation takes
more correlations among orbits in one shell and is more
suitable for UCOM potentials.
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