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Holographic cusped Wilson loops in q-deformed AdS5×S5 spacetime *
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Abstract: In this paper, a minimal surface in q-deformed AdS5×S5 with a cusp boundary is studied in detail. This

minimal surface is dual to a cusped Wilson loop in dual field theory. We find that the area of the minimal surface

has both logarithmic squared divergence and logarithmic divergence. The logarithmic squared divergence cannot

be removed by either Legendre transformation or the usual geometric subtraction. We further make an analytic

continuation to the Minkowski signature, taking the limit such that the two edges of the cusp become light-like, and

extract the anomalous dimension from the coefficient of the logarithmic divergence. This anomalous dimension goes

back smoothly to the results in the undeformed case when we take the limit that the deformation parameter goes to

zero.
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1 Introduction

Integrability [1] and localization [2] now allow us to
compute some important quantities in N=4 super Yang-
Mills theory as non-trivial functions of ’t Hooft coupling
λ and the rank of the gauge group N 4). These com-
putations lead to results in strong coupling and give a
non-trivial test of the famous AdS/CFT correspondence
[3–5]. The cusp anomalous dimension f(λ) is among
these interesting quantities and its value at finite λ in
the planar limit can be computed using this powerful
integrability method [6, 7]. This function appears as a
cusp anomaly of a light-like Wilson loop [8, 9]. It also
appears as the coefficient in front of logS of the anoma-
lous dimension of large spin twist-two operators (here S
is the spin of the operator) [10, 11]. The fact that these
two approaches give the same function f(λ) was proved
in perturbative gauge theory in Refs. [12–14].

Both approaches for the cusp anomalous dimension
have dual descriptions in the gravity side of gauge/string
duality. The twist-two operator is dual to folded spinning
strings in AdS5 found by Gubser–Klebanov–Polyakov
(GKP) [15]. The anomalous dimension of the operator
can be obtained from the energy of the semi-classical
string. The Wilson loop is dual to an open F-string

in AdS5, and the contour of the Wilson loop is just
the boundary of the F-string worldsheet [16, 17]. The
holographical dual of cusped light-like Wilson loops was
studied in detail in Ref. [18] (see also Ref. [19]) by per-
forming a nontrivial analytic continuation of the F-string
solution dual to cusped Wilson loops in Euclidean space
in Ref. [20]. The cusp anomalous dimension obtained
from the open F-string solution coincides with the re-
sults from the closed string solution obtained in Ref. [15].
In Ref. [18], this was taken as evidence that [15] made
the correct identification for string theory dual of the
twist-two operators. In Ref. [21], the scaling limits of
the above closed string solution and open string solution
was shown to be equivalent through an analytic contin-
uation and an AdS5 isometry rotation. This explained,
on the gravity side, why these two approaches give the
same results for the anomalous dimension. This can be
thought of as a kind of open-closed duality in the AdS
background.

It is obviously of great value to search for integrable
structures in AdS/CFT correspondence with fewer su-
persymmetries. Such examples are very rare. Orbifolds
[22–24], β- and γ-deformations [25–28], and adding suit-
able fundamental matters [29–32] are almost the only
known examples where the four-dimensional field theo-
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ries are still the usual local gauge theories and integrabil-
ity in the planar limit is preserved [33]. Many other four-
dimensional theories and their gravity duals are not in-
tegrable. Instead they display chaotic behaviors [34–39].
In the gravity dual of the orbifolds and β (γ)-deformation
examples, the AdS5 part is untouched. For the first case,
the five-sphere is replaced by its orbifolds. For the second
case, the metric on S5 is deformed with other background
fields turned on. Since the AdS5 part of the metric is un-
changed and the NS-NS field has vanishing components
in the AdS5 part for both cases, the computations for
both GKP folded strings in AdS5 and F-strings dual to
cusped Wilson loops are not changed. The above men-
tioned open-closed duality in AdS space is preserved in
a trivial manner. We also notice that this open-closed
duality was also found for string theory on AdS3×S3×M4

with both NS-NS and RR three-form fluxes [40].
It is then quite interesting to search for integrable

models with a gravity dual involving more complicated
geometry replacing the AdS part. One such integrable
deformation on the worldsheet theory was constructed in
Ref. [41]. Many aspects of such deformation had already
been studied in Refs. [42–59]. The background was called
q-deformed AdS5×S51). The field theory dual of string
theory on this background is still unclear. There is hope
that the studies of various aspects on the string theory
side can give us some hints of the possible dual field the-
ory. Many classical string solutions in this background
were studied in detail in Refs. [46, 48, 49, 52, 53, 55].
There are already several interesting features for the clas-
sical strings, which are different from the case without
deformations. The GKP spinning string solutions found
in Refs. [52, 53] cannot be smoothly connected with the
original solutions in Ref. [15] when we take the limit that
the deformation parameter goes to zero, and the energy
E and spin S of these spinning strings will not have the
relation E−S∼f(λ)logS in the large S limit. Another
interesting result [55] is that the open F-string solution
with a circular boundary has a finite area without per-
forming geometric subtraction or Legendre transforma-
tion, which was used for the undeformed case, though
there are divergences in the action when the boundary
is a straight line [52]. Here the deformation parameter
plays the role of UV regularization [55].

The above features led us to the study of the F-string
solution with a cusp boundary in q-deformed AdS5×S5.
We also consider the case when there is a jump in the
deformed S5 at the cusp. The solution was found by
computing the conserved charges from the symmetry of
the system. We find the area of the worldsheet has be-
havior different from both the case with a circle as the
boundary and the holographic dual of cusped Wilson
loops in the undeformed case. The area has logarith-

mic squared divergence, in addition to the logarithmic
divergence. The logarithmic squared divergence is softer
than the linear divergence in the undeformed case. How-
ever, the UV regularization provided by the deformation
parameter does not make it finite. We then turn to at-
tempts to renormalize the area. Two commonly used
methods, Legendre transformation and geometric sub-
traction, are considered. We find that neither of these
can remove the logarithmic squared divergence, and the
two methods are no longer equivalent to each other. Fi-
nally, by continuation to the Minkowski signature and
subtracting the logarithmic squared divergence by hand,
we compute the cusp anomalous dimension for the de-
formed case. We find that this result can be smoothly
connected with the result in the undeformed case when
we take the limit that the deformation parameter tends
to zero.

The rest of this paper is structured as follows. In
the next section, we will find the F-string solution in q-
deformed AdS5×S5 dual to cusped Wilson loops. The
cusp anomalous dimension will be extracted from the
cusped Wilson loops in Section 3. The final section is
devoted to discussion and conclusions.

2 F-string solution dual to cusped Wil-

son loop

2.1 q-deformed AdS5×S5

In Ref. [41], an integrable deformation of type IIB
superstring theory on AdS5×S5 was constructed. From
this, the string frame metric and B-field for this string
background was given in Ref. [42]. Later a new coordi-
nate system was introduced in Ref. [52] which was in-
spired by studies of GKP (Gubser–Klebanov–Polyakov)
strings [15] in q-deformed AdS5. A related Poincare-like
coordinate system for q-deformed AdS5 was introduced
in Ref. [55]. This will be our starting point. We now list
the results of metric and B-field in these Poincare-like
coordinates. The metric for the q-deformed AdS part in
Poincare coordinates is:

ds2 =
√

1+C2R2

[

dy2+dr2

y2+C2(y2+r2)
+

C2(ydy+rdr)2

y2(y2+C2(y2+r2))

+
(y2+C2(y2+r2))r2

(y2+C2(y2+r2))2+C2r4 sin2ζ
(dζ2+cosζ2dφ2)

+
r2 sin2ζdψ2

y2+C2(y2+r2)

]

. (1)

The metric for the q-deformed S5 part is:

ds2 =
√

1+C2R2

[

cos2γdθ2+
dγ2

1+C2cos2γ

1) Some people choose the name η-deformation.
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+
(1+C2cos2γ)sin2γ

(1+C2cos2γ)2+C2sin4γsin2ξ
(dξ2+cos2ξdφ2

1)

+
sin2γsin2ξdφ2

2

1+C2cos2γ

]

. (2)

The action of the Wess-Zumino term for the deformed
AdS part is

LWZ
1 =

C
√

1+C2R2

4πα′
εµν

× r4 sin2ζ∂µφ∂ν ζ
[C2r2+(1+C2)z2]

2
+C4r4 sin2ζ

, (3)

and for the deformed S5 part is

LWZ
2 = −C

√
1+C2R2

4πα′
εµν

× sin4γsin2ξ

(1+C2cos2γ)2+C2sin4γsin2ξ
∂µφ1∂ν ξ. (4)

It is easy to see that C plays the role of deformation pa-
rameter and when we take the limit C→ 0, we will go
back to the undeformed case.

2.2 Cusped Wilson loop

2.2.1 Loops without a jump in deformed S5

We now begin our computation of a minimal surface
with a cusped loop boundary. This minimal surface is
the worldsheet of an F-string in deformed AdS5×S5 dual
to a cusped Wilson loop in the dual field theory. First
we study the case with trivial dependence on the coordi-
nates of deformed S5, that is to say that the coordinates
of deformed S5 take constant values on the worldsheet.

At the boundary the Wilson loop is put in two lines:

r∈[0,∞), ψ=0, ζ=
π

2
, φ=0, (5)

and
r∈[0,∞), ψ=Ω, ζ=

π

2
, φ=0. (6)

The string worldsheet will extend to the bulk of deformed
AdS5. Let us choose r and ψ to be the coordinates of
string worldsheet and start with the following ansatz:

y=y(r,ψ), ζ=
π

2
, φ=0, (7)

with the boundary condition

y(r,0)=y(r,Ω)=0. (8)

Taking into account the invariance of the metric in
Eq. (1) under the scaling transformation

y→λy, r→λr, (9)

we expect the solution for y(r,ψ) to take the form

y(r,ψ)=
r

f(ψ)
. (10)

The boundary condition now gives

lim
ψ→0

f(ψ)= lim
ψ→Ω

f(ψ)=∞. (11)

One can also check that the Wess–Zumino term in the
worldsheet action will not affect the equation of motion
for the ansatz chosen above1).

Substituting the ansatz back into the target space
metric in Eq. (1), we obtain the induced metric on the
worldsheet,

ds2ind = R2
√

1+C2

[

1+f 2

r2
dr2−2f ′

rf
drdψ

+
1

f 2

(1+C2)f ′2+f 4

1+C2(1+f 2)
dψ2

]

. (12)

Then the area of the surface is

A=
√

1+C2R2

∫
drdψ

1

r

√

f 2+f 4+f ′2

1+C2+C2f 2
. (13)

So the Nambu–Goto action of the string is

SNG =
1

2πα′
A=

√
1+C2R2

2πα′

∫
drdψ

1

r

√

f 2+f 4+f ′2

1+C2+C2f 2
.

(14)

Therefore, finding the minimum surface in the bulk in
this case reduces to a one dimensional variational prob-
lem with the Lagrangian,

L=

∫
dψ

√

f 2+f 4+f ′2

1+C2+C2f 2
. (15)

We can solve this extreme value problem by making use
of the translation invariance in ψ (L does not depend on
ψ explicitly), and the corresponding conserved charge is:

E=
1√

1+C2+C2f 2

f 4+f 2

√
f 4+f 2+f ′2

. (16)

Due to the symmetry of the system, f will achieve its
minimal value f0 at ψ=Ω/2, then we have ∂ψf |ψ=Ω/2=0.
Thus we can also express E in terms of f0,

E=
f0

√

1+f 2
0

√

1+C2+C2f 2
0

. (17)

We can work out f ′ by equating these two expressions of
E,

(

df

dψ

)2

= (f 4+f 2)(f 2−f 2
0 )

×1+f 2
0+f 2+C2(1+f 2

0+f 2+f 2
0 f

2)

f 2
0 (1+f 2

0 )(1+C2+C2f 2)
. (18)

1) Things will be different if we choose ζ=0, ψ=0 and a worldsheet along the y, r, φ directions. In this case, though the WZ term will
not contribute to the worldsheet action, it does affect the string equation of motion.
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From this, we get the relation between f0 and Ω as

Ω

2
=f0

√

1+f 2
0

∫
∞

f0

df

f

√

1+C2+C2f 2

(f 2−f 2
0 )(1+f 2)(1+f 2+f 2

0 +C(1+f 2
0 )(1+f 2))

. (19)

By making the transformation f=
√

z2+f 2
0 , we get

Ω

2
=f0

√

1+f 2
0

∫
∞

0

dz

√

1+C2(1+z2+f 2
0 )

(z2+f 2
0 )

√

(1+z2+f 2
0 )(1+2f 2

0 +z2+C2(1+f 2
0 )(1+f 2

0 +z2))
. (20)

Substituting Eq. (18) back into the Lagrangian, we obtain:

L=2
√

1+C2R2

∫ r

ε

f0

df

√

(1+C2+f 2
0C2)f 2(1+f 2)

√

(f 2−f 2
0 )(1+C2+C2f 2)(f 2

0 +(1+C2+f 2
0C2)(f 2+1))

, (21)

where we have imposed an infrared cutoff for y, y > ε
or f < r/ε. We can further make the transformation
f=

√

z2+f 2
0 as above and the integral becomes

L=L(r,ε)=
2
√

1+C2R2

C

∫√

r
2

ε
2
−f2

0

0

dz

√
z2+a

√

(z2+b)(z2+c)
,

(22)
with a,b,c listed below:

a=1+f 2
0 , (23)

b=
1+C2+C2f 2

0

C2
, (24)

c=
1+2f 2

0+C2(1+2f 2
0+f 4

0 )

1+C2+f 2
0C2

. (25)

Here we will give an approximate analysis since a special
function solution requires additional constraints for the
parameters f0 and C and will not make the result clearer.
By making a change of variable z=1/t and noticing that

√

r2

ε2
−f 2

0 ≈
r

ε
, (26)

for small ε, we have

L(r,ε)≈ 2
√

1+C2R2

C

∫
∞

ε/r

dt

t

√

1+at2

(1+bt2)(1+ct2)
. (27)

To extract the divergent part of the integral, we expand
the integrand around t=ε/r,

L(r,ε)≈ 2
√

1+C2R2

C
log

r

ε
+Lfinite. (28)

Hence, the area can be evaluated as,

SNG≈
√

1+C2R2

2πα′C
log2 L

ε
− 1

2π

F (Ω,C)log
L

ε
, (29)

where L is the cutoff for the length of the two rays of the
Wilson loop and the function F comes from the finite
part of L(r,ε). We find that the area is composed of two
kinds of divergences - the logarithmic and the logarith-
mic squared divergence - while for the undeformed case

there is a linear divergence plus a logarithmic one [20].
Unlike the undeformed case where the linear divergence
can be removed by means of Legendre transformation, we
cannot manage to subtract any divergence in this way in
the deformed background, as will be demonstrated in the
next subsection.

2.2.2 Loops with a jump in deformed S5 at the cusp

We continue to study a cusped loop where the points
on the two edges correspond to two different points in de-
formed S5. In this work, we will only consider the case
where the dual of the two edges have a relative angle of
Θ only along the θ direction of deformed S5. For the
undeformed case, a complete and analytical solution is
given in Ref. [60].

Since the cusp is still invariant under the rescaling of
r, we consider the following ansatz:

y(r,ψ) =
r

f(ψ)
, ζ=

π

2
, φ=0,

γ = ξ=φ1=φ2=0, θ=θ(ψ). (30)

Then the induced metric on the worldsheet turns out to
be:

hrr=R
2
√

1+C2·1+f 2

r2
, (31)

hrψ=R2
√

1+C2·−f
′

rf
, (32)

hψψ=R2
√

1+C2

[

(1+C2)f ′2+f 4

f 2+C2f 2(1+f 2)
+θ′2

]

. (33)

The area becomes:

A=
√

1+C2R2

∫
dr

r

∫Ω
0

dψ

√

f ′2+f 2+f 4

1+C2+C2f 2
+(1+f 2)θ′2.

(34)
We focus on the Lagrangian density,

L=

√

f ′2+f 2+f 4

1+C2+C2f 2
+(1+f 2)θ′2. (35)
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It is then easy to find the two conserved charges of the
system, the energy and the canonical momentum conju-
gate to θ:

E =
1√

1+C2+C2f 2

× f 4+f 2

√

f ′2+f 2+f 4+(1+C2+C2f 2)(1+f 2)θ′2
, (36)

J =
1+f 2

L θ′. (37)

For the convenience of calculation, we introduce two
new conserved quantities which are the combinations of
J and E,

p =
1

E
, (38)

q =
J

E
=

1+C2+C2f 2

f 2
θ′. (39)

We find immediately θ′=qf 2/(1+C2+C2f 2) and by sub-
stituting it into p, f ′ is easily obtained:

(

dψ

df

)2

=
1

f 2(1+f 2)

1+C2+C2f 2

f 2((1+f 2)p2−q2−C2)−C2−1
.

(40)
The extreme value f0 is determined from the condition
∂ψf |ψ=Ω/2=0 as follows:

f 2
0 (1+f 2

0 )p2−f 2
0 q

2

1+C2+C2f 2
0

=1. (41)

The relation between Ω and f0 is

Ω

2
=

∫
∞

f0

df
√

1+C2+C2f 2

f
√

(1+f 2)(f 2((1+f 2)p2−q2−C2)−C2−1)
. (42)

As in the previous subsection, we make the transforma-
tion f=

√

f 2
0 +z2 and obtain

Ω=2

∫
∞

0

dz
√

1+C2(1+f 2
0+z2)

(f 2
0 +z2)

√

(1+f 2
0 +z2)(p2z2+p2(1+2f 2

0 )−q2−C2)
. (43)

The relation between Θ and f0 is

Θ =

∫Ω
0

qf 2

1+C2(1+f 2)
dψ (44)

= 2

∫
∞

f0

qfdf
√

(1+C2(1+f 2))(1+f 2)(f 2((1+f 2)p2−q2−C2)−C2−1)
(45)

= 2q

∫
∞

0

dz
√

(1+f 2
0+z2)(1+C2(1+f 2

0 +z2))(p2z2+p2(1+2f 2
0 )−q2−C2)

. (46)

The area becomes:

A =
√

1+C2R2

∫
dr

r

∫Ω
0

dψL=
√

1+C2R2

∫
dr

r

∫Ω
0

dψ
pf 2(1+f 2)

1+C2+C2f 2

= 2
√

1+C2R2

∫
dr

r

∫r/ε
f0

df
pf

√

(1+f 2)√
1+C2+C2f 2

1
√

f 2((1+f 2)p2−q2−C2)−C2−1

=
2
√

1+C2R2

C

∫
dr

r

∫√

r
2

ε
2
−f2

0

0

dz

√
z2+k1√

z2+k2

√
z2+k3

, (47)

where

k1 = f 2
0 +1, (48)

k2 =
1+C2+C2f 2

0

C2
, (49)

k3 =
p2(2f 2

0 +1)−q2−C2

p2
. (50)

We can analyze the integral approximately by using a

new variable t=1/z,

∫√

r
2

ε
2
−f2

0

0

dz

√
z2+k1√

z2+k2

√
z2+k3

≈
∫
∞

ε

r

dt
1

t

√
1+k1t2

√

(1+k2t2)(1+k3t2)

≈ log
r

ε
+finite terms. (51)

Therefore the area is

A≈
√

1+C2R2

C
log2 L

ε
− 1

2π

F (Ω,Θ,C)log
L

ε
. (52)
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We find that the structure of the divergences is the same
as the no-jump case.

2.3 Renormalization of the area

Let us first recall the story in the undeformed case.
When the contour of the Wilson loops is smooth, the
bare area of the F-string worldsheet diverges universally
as L/ε [62] where L is the length of the loop and ε is
the cut-off as introduced in this paper. This divergence
can be removed either via a Legendre transformation [20]
or by a geometric subtraction [17], and these two meth-
ods are equivalent to each other. For the case with a
cusp, beside this L/ε term, there is a subleading diver-
gence term growing as log(L/ε). The leading divergence
can be removed by either of the two methods, and the
subleading log(L/ε) term will remain. This is consistent
with the perturbative computations from the field theory
side [20].

2.3.1 Legendre transformation

Firstly, we consider the loop with no dependence on
the deformed S5, where the only coordinate that needs
to be replaced by its conjugate momentum is the radial
coordinate y. From the Nambu–Goto action (29), it can
be easily obtained as

Py=

√
1+C2R2

2πα′r2
−f ′f 2

√
1+C2+C2f 2

1√
f 4+f 2+f ′2

. (53)

Near the boundary y= ε or f = r/ε, we can evaluate f ′

approximately from (18),

(

df

dψ

)2

≈ r6

ε6
1+C2(1+f 2

0 )

C2f 2
0 (1+f 2

0 )
, (54)

which indicates f ′2 � f 4 � f 2. Thus, we obtain from
Eq. (53),

Py≈
√

1+C2R2

2πα′Crε
. (55)

So the boundary term is

−2

∫L
ε

dr(Pyy)|y=ε≈−
√

1+C2R2

πα′C
log

L

ε
. (56)

Notice this cannot be used to cancel the leading log2

divergence found in the previous section. The computa-
tion of the Legendre transformation for the case with a
jump in deformed S5 is similar and we arrive at the same
conclusion.

2.3.2 Geometric subtraction

We may consider a geometric subtraction scheme
which is performed by discarding two ‘flat’ planes in the
deformed AdS space with the metric

ds2 = R2
√

1+C2

[

dy2+dr2

y2+C2(y2+r2)

+
C2(y2dy2+r2dr2+2yrdydr)

y2(y2+C2(y2+r2))

]

. (57)

So the area to be subtracted is:

As = 2

∫
dydr

√

GyyGrr−G2
ry

= 2R2
√

1+C2

∫y2
y1

dy

∫r2
r1

dr
1

y
√

y2+C2(y2+r2)

≈ 2R2
√

1+C2

C

(

log
2C√
1+C2

log
y2

y1

+logr2 log
y2

y1

−1

2
log2y2+

1

2
log2y1

)

, (58)

where y1,r1≡ε and y2,r2≡L are the IR and UV cutoffs
respectively. In other words, we have

As ≈ 2R2
√

1+C2

C

(

log
2C√
1+C2

log
L

ε
+logLlog

L

ε

−1

2
log2L+

1

2
log2ε

)

. (59)

From this result, one can see that the leading log2

divergence cannot be canceled using this geometric sub-
traction. One can also see that the Legendre transfor-
mation is not equivalent to the geometric subtraction, as
we indicated earlier.

3 Anomalous dimension from cusped

Wilson loop

The anomalous dimension can be obtained by the
vacuum expectation value of a light-like Wilson loop with
a cusp [18]. We will only consider the case without a
jump in deformed S5 at the cusp. The light-like system
can be reached from the solution we have found by an-
alytically continuing f0 → if0 and taking f0 to a fixed
value which will be given later. Thus, the cusp angle Ω
becomes π+iγ, with1)

γ=P.P.

∫+∞

−∞

dz
f0

√

1−f 2
0

√

1+C2−C2f 2
0 +C2z2

(z2−f 2
0 )

√

1−f 2
0 +z2

√

z2−2f 2
0+1+C2(1−f 2

0 )(1−f 2
0 +z2)

. (60)

1) The real part of Ω, which equals π, comes from the residual at z=f0.
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The (renormalized) area A now becomes

A =
√

(1+C2)(1+C2−f 2
0C2)R2 log

L

ε

∫+∞

−∞

dz

×
{

√

1+z2−f 2
0

√

1+C2−C2f 2
0 +C2z2

√

z2−2f 2
0+1+C2(1−f 2

0 )(1−f 2
0 +z2)

− 1

zC
√

1+C2−C2f 2
0

}

. (61)

As discussed in the previous section, neither Legendre transformation nor geometric subtraction can cancel the
leading log2 divergence, and to extract the anomalous dimension which comes from the coefficient of the logarithmic
divergence, we subtract the leading divergence by hand in the above expression. In order to make the above two
integrals real when z→0, we can choose f 2

0 to satisfy

f 2
0 6

C2+1−
√
C2+1

C2
. (62)

We then make the transformation

f 2
0 =

C2+1−
√
C2+1+C2δ

C2
, (63)

which gives
δ=1−2f 2

0+C2(1−f 2
0 )2, (64)

and the integral can be expressed in terms of δ as

γ=

∫+∞

−∞

dz

√

C2+1−
√
C2+1+C2δ

C2

√√
1+C2+C2δ−1

C2

√√
1+C2+C2δ+C2z2

C2z2−C2−1+
√
C2+1+C2δ

C2

√√
1+C2+C2δ−1

C2
+z2

√√
C2+1+C2δz2+δ

. (65)

In order for the two edges of the cusped Wilson loops
to be light-like, we need to take a limit such that γ→∞.
This limit is given by δ→0 (which obviously corresponds

to f 2
0 → C2+1−

√
C2+1

C2
), and one can see the largest

contribution stems from the term
√√

C2+1+C2δz2+δ
around z≈0, i. e. z∈(−ε,ε). When δ�ε�1,we get

γ≈ C
√

C2+1−
√
C2+1

logδ. (66)

The same method can be applied to compute the area,
which gives

A≈−R
2(C2+1)1/4

√√
C2+1−1

C
logδ log

L

ε
. (67)

So the cusp anomaly is

Γ̄cusp=− A

2πα′|γ|log
L

ε

=−R
2(1+C2−

√
1+C2)

2πα′C2
. (68)

In the C→0 limit, we have

Γ̄cusp=− R2

4πα′
. (69)

By using the relation R2=α′

√
λ in the undeformed case

with λ the ’t Hooft of the N=4 super Yang–Mills theory,

we get

Γ̄cusp=−
√
λ

4π

, (70)

which coincides with the results obtained in Ref. [18].

4 Discussion and conclusions

q-deformed AdS5×S5 is quite an interesting back-
ground of type IIB string theory. It is integrable, and its
dual field theory is still unclear; it is probably dual to
certain non-local field theories. We hope various compu-
tations on the string theory side could give some hints
on the possible dual field theory. The study in this paper
adds one more example of such computations. We stud-
ied the F-string theory solution dual to cusped Wilson
loops on the field theory side. Both the case with a jump
in deformed S5 at the cusp and the case without such a
jump were studied.

The first interesting aspect we find for the cusped
Wilson loops is the divergence behavior of the area of the
F-string worldsheet before renormalization. In Ref. [55],
it is shown that the F-string dual to a circular Wilson
loop has finite area, before any renormalization or Leg-
endre transformation though the action of F-string dual
to straight line is divergent [52]. The first result was ex-
plained by the deformation parameter C providing UV
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regularization [55]. For the Wilson loops with a cusp,
the bare area goes like

√
1+C2R2

C
log2 L

ε
− 1

2π

F (Ω,Θ,C)log
L

ε
.

Now, the leading divergence scales as log2 L

ε
which is not

made finite due to the deformation, however it is less di-
vergent than L/ε. In other words, q-deformation softens
the divergence although it does not soften it into a finite
term. This divergence can be removed neither by the
Legendre transformation nor by geometric subtraction,
and these two methods are no longer equivalent to each
other. In general, q-deformation will spoil the asymp-
totic AdS geometry of the spacetime and the dual field
theory will probably be a non-local one. Therefore the
usual subtraction schemes suitable for the undeformed
case may not be appropriate here. The results of our
calculations strongly support the above analysis.

Another feature of our solution is that the cusped
anomalous dimension obtained from the solution with-
out a jump in deformed S5 can be smoothly connected
with the result in the undeformed case when we take the
limit that the deformation parameter C tends to zero1).
This is quite different from the case for the spinning
folded GKP-like string [52, 53]. For the GKP string,
the relation E−S∼f(λ)logS for large S was destroyed
by the deformation. This makes us unable to extract
the anomalous dimension from the GKP string side and
compare it with the results given here from the cusped
Wilson loops. The equivalent of these two approaches
for the undeformed case is broken down by the deforma-
tion, partly because the background has a much smaller

isometry group after deformation.
For the undeformed case, the solution dual to the

cusped Wilson loop with two light-like edges in Ref. [18]
was found to actually have four cusps using the embed-
ding coordinations [61]. This observation made this so-
lution play a key role in the holographic computations
of four-gluon planar amplitudes at strong coupling. It
should be interesting to try to embed the deformed AdS5

into a higher-dimensional spacetime and study the geom-
etry of the minimal surface dual to the cusped Wilson
loop from this point of view.

It should be interesting to compute the holographic
entanglement entropy [63–65] from this background to
investigate whether the area law [66, 67] of the entangle-
ment entropy is lost or not, since the dual field theory
is probably a non-local one. However, to perform this
computation, we need to know the metric in the Einstein
frame. Since the metric in the string frame is known,
we need to know the dilaton field. Some progress has
been made in Refs. [54, 57], but a complete solution is
still unknown. It should be valuable to find a consistent
solution, including dilaton and Ramond–Ramond fields,
and compute the holographic entanglement entropy. We
hope to work on this point in the near future.
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