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Dirac equation with a magnetic field in 3D

non-commutative phase space *
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Abstract: For a spin-1/2 particle moving in a background magnetic field in noncommutative phase space, the Dirac

equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to. It

is shown that the motion of the charged particle along the magnetic field has the effect of increasing the magnetic

field. In the classical limit, matrix elements of the velocity operator related to the probability give a clear physical

picture. Along an effective magnetic field, the mechanical momentum is conserved and the motion perpendicular to

the effective magnetic field follows a round orbit. If using the velocity operator defined by the coordinate operators,

the motion becomes complicated.
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1 Introduction

The idea of space-time non-commutativity was pro-
posed to resolve the problem of infinite energies in quan-
tum field theory [1]. Discoveries in string theory and M-
theory that the effects of noncommutative (NC) spaces
may appear near the string scale and at higher energies
[2–4] motivate studies in these areas greatly. Recently,
a lot of problems have been investigated on the theory
of NC spaces [5–25] such as the quantum Hall effects [5–
9], the harmonic oscillator [10–14], the coherent states
[15], the thermodynamics [16], the classical-quantum re-
lationship [17], the motion of the spin-1/2 particle under
a uniform magnetic field [18], various kinds of relativis-
tic oscillators [19, 20, 23, 24], etc. In [18], the particle is
confined to the plane the applied magnetic field is per-
pendicular to. In this article, we discuss the case that
the particle is allowed to move off the plane.

In the next section, we derive the energy spectrum
and wave functions in 3D NC phase space. It is shown
that the 3D NC phase space induces an effective mag-
netic field in a new direction. Matrix elements of velocity
and momentum operators give solutions to the semiclas-
sical equations of motion. The final section is the sum-
mary.

2 Three-dimensional motion

Without loss of generality, we assume that the

magnetic field is along the z-axis. In the symmetry
gauge, components of the vector potential in 3D space
have the form (Â1,Â2, Â3)=(−B0x̂2/2,B0x̂1/2,0), where
B0 is the field strength. For a charged spin-1/2 particle
moving in this background magnetic field, the Hamilto-
nian reads

Ĥ3D=c(α1p̂1+α2p̂2+α3p̂3)+βmc
2, (1)

where p̂1=P̂1+qB0x̂2/2, p̂2=P̂2−qB0x̂1/2 and p̂3=P̂3 are
the mechanical momentum operators with (P̂1, P̂2, P̂3)
being the canonical momentum operators. From here on,
small p̂j (j=1, 2, 3) represents the mechanical momen-

tum operators, while the capital P̂j (j=1, 2, 3) stands
for the canonical momentum operators. As the compo-
nent Â3 of the vector potential is zero, the mechanical
and canonical momentum operators along the magnetic
field are the same, which means p̂3 = P̂3. The matrices
αj (j=1, 2, 3) and β in (1) have the forms

αj =

[

0 σj

σj 0

]

, β=

[

I 0

0 −I

]

, (2)

with σj being the 2×2 Pauli matrices and I the identity
matrix. In commutative spaces, there are the commuta-
tion relations [p̂1, p̂3]=[p̂2, p̂3]=0 and so the operator p̂3

commutes with the Hamiltonian. In another words, the
momentum along the z-axis is conserved. In this case,
the 3D problem is a trivial extension of the 2D system.
However, in 3D NC phase space, the momentum oper-
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ator p̂3 does not commute with the Hamiltonian and is
thus not conserved.

In NC phase space, the coordinate and momentum
operators obey the commutation relations

[x̂1,x̂2] = [x̂2,x̂3]=[x̂3,x̂1]=iµ,

[P̂1,P̂2] = iν,[P̂2,P̂3]=[P̂3,P̂1]=iν0, (3)
[

x̂1,P̂1

]

=
[

x̂2,P̂2

]

=
[

x̂3,P̂3

]

=i~,

with µ, ν and ν0 being the NC parameters. To show
clearly the NC effects between (P̂1, P̂2) and P̂3, the two
parameters ν and ν0 are written using different symbols.
However, ν and ν0 can be equal numerically. The Heisen-
berg equations of motion for the mechanical momentum
operators are

dp̂1

dt
= υ̂2mωe−υ̂3ma0,

dp̂2

dt
= −υ̂1mωe+υ̂3ma0, (4)

dp̂3

dt
= υ̂1mωe−υ̂2ma0,

where υ̂j =cαj (j=1, 2, 3) and

a0=ν0/(m~), ωe=qB0/m+ν/~+q2B2
0µ/(4~). (5)

The three equations in (4) can be rewritten in the vector
form as

d
⇀̂

p

dt
=q

⇀̂

υ×
⇀

Bθ, (6)

where
⇀

Bθ = mω0
⇀

n3θ/q,ω0=
√

ω2
e+2a2

0,

⇀

n3θ = (sinθ,sinθ,
√

2cosθ)/
√

2, (7)

sinθ =
√

2a0/ω0,cosθ=ωe/ω0.

Clearly, Eq. (6) describes a charged particle moving in a

effective magnetic field
⇀

Bθ. The mechanical momentum

operator is
⇀̂

p and the velocity operator is
⇀̂

υ = c
⇀

α. The
unit vector

⇀

n3θ is along the effective magnetic field. From
(5, 7), we know that the motion along the magnetic field
or the parameter ν0 increases the effective magnetic field
through a0.

The time derivative of the coordinate operator gives

another velocity operator
⇀̂

u = (û1, û2, û3), the compo-
nents of which are

û1(t)=
dx̂1

dt
=

1

i~
[x̂1,Ĥ ]=cα1

(

1+
qB0µ

2~

)

,

û2(t)=
dx̂2

dt
=

1

i~
[x̂2,Ĥ ]=cα2

(

1+
qB0µ

2~

)

, (8)

û3(t)=
dx̂3

dt
=−cα1

qB0µ

2~
−cα1

qB0µ

2~
+cα3.

In the case of µ = 0, this velocity operator
⇀̂

u reduces
to c

⇀

α. We see that the velocity operator defined by
the time derivative of the coordinates and that from the
Heisenberg Equation (6) are not the same. Next we give
a further analysis about the velocity operator from the
point of view of probability. Using the Dirac equation
Ĥψ=i~∂ψ/∂t and its Hermitian conjugate, one derives
the equation

∂ρ
∂t

+
1

i~

[

(
⇀̂

P
∗

ψ†)·c⇀

αψ−ψ†c
⇀

α·
⇀̂

Pψ

]

=0, (9)

where ρ=ψ†ψ, which can be considered as the probabil-
ity density without ambiguity. In commutative case and
in the coordinate representation, the canonical momen-

tum operator is
⇀̂

P =−i~∇ and its complex conjugate is
⇀̂

P
∗

=i~∇. Now, Eq. (9) becomes the law of probability
conservation

∂ρ
∂t

+∇·
⇀

J=0, (10)

where
⇀

J =ψ†c
⇀

αψ is the probability current density. In
the noncommutative case, the situation becomes compli-
cated. To see the meaning of Eq. (9), we make a com-
mutative realization of the noncommutative coordinate
and momentum operators

x̂1 = ρ(x1−σP2), x̂2=ρ(x2−σP3), x̂3=ρ(x3−σP1), (11a)

P̂1 = P1+νx2/~, P̂2=P2+νx3/~, P̂3=P3+νx1/~, (11b)

where

ρ=
(

1+
√

1−4µν/~2

)

/2,σ=µ/(~ρ2). (12)

In deriving (11a, b), the relation ν0 = ν has been used
for mathematical simplicity. The quantities xj and Pj

(j=1, 2, 3) in (11a, b) are the coordinate and momen-
tum operators in commutative spaces. Using (11b) and

the realization
⇀

P = −i~∇, it is found that Eq. (9) can
still be written as (10). The current still has the form
⇀

J =ψ†c
⇀

αψ. So, c
⇀

α can be considered as a velocity op-
erator related to the probability. The velocity operator
⇀̂

u does not have this meaning. From the definition (8),

we can see that the velocity operator
⇀̂

u changes with the
potential in the Hamiltonian.

The mechanical momentum operator along the effec-
tive magnetic field is

p̂3θ=
⇀

n3θ·⇀̂p=
(

1/
√

2
)

(p̂1+p̂2)sinθ+p̂3cosθ. (13)

The plane perpendicular to this effective magnetic field
is spanned by the two orthogonal unit vectors

⇀

n1θ =
(1,−1,0)/

√
2 and

⇀

n2θ=(cosθ, cosθ, −
√

2sinθ)/
√

2, which
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are orthogonal to the effective magnetic field. The me-
chanical momentum operators along these two directions
are

p̂1θ=
⇀

n1θ ·⇀̂p=(p̂1−p̂2)/
√

2,

p̂2θ=
⇀

n2θ ·⇀̂p=cosθ(p̂1+p̂2)/
√

2−p̂3sinθ.

(14)

It is not difficult to show the following commutation re-
lations

[p̂1θ,p̂2θ]=im~ω0,

[p̂1θ,p̂3θ]=[p̂2θ,p̂3θ]=0.
(15)

Defining αjθ =
⇀

α·⇀njθ (j=1, 2, 3), it is found that
⇀

α·⇀̂p=
α1θp̂1θ+α2θp̂2θ+α3θp̂3θ. From this result and the commu-
tations (15), we get [p̂3θ ,Ĥ]=0, which means the momen-
tum along the effective magnetic field is conserved, which
is similar to the commutative case. Using p̂jθ, Eqs. (4)
or (6) are rewritten as

dp̂1θ

dt
=qυ̂2θBθ,

dp̂2θ

dt
=−qυ̂1θBθ,

dp̂3θ

dt
=0, (16)

where υ̂jθ=
⇀̂

υ·⇀njθ. One sees that p̂3θ is constant. Writing
the eigenstates of p̂3θ as |η〉 or p̂3θ |η〉= η |η〉, the eigen-
value η is real as p̂3θ is Hermitian. As the motion along
the effective magnetic field is clear, next we focus on the
motion perpendicular to the effective magnetic field or
we consider the case η=0.

Writing the wave function as

|ψ(t)〉=|ψ〉exp

(

− i

~
Et

)

, |ψ〉=
[

|ψ1〉
|ψ2〉

]

, (17)

the stationary Dirac equation Ĥ3D |ψ〉=E |ψ〉 becomes

mc2 |ψ1〉+⇀

σ·⇀̂pc|ψ2〉 = E |ψ1〉, (18)

⇀

σ·⇀̂pc|ψ1〉−mc2 |ψ2〉 = E |ψ2〉. (19)

From (19), we have

|ψ2〉=
⇀

σ ·⇀̂pc
E+mc2

|ψ1〉. (20)

Substituting (20) into (18), after some calculations we
get

[
⇀̂

p
2

c2+m2c4−~
⇀

σ·⇀n3θω0mc
2]|ψ1〉=E2 |ψ1〉. (21)

To solve Eq. (21), we notice that
⇀

σ ·⇀n3θ commutes with
⇀̂

p
2

and the function |ψ1〉 can be written as |ψ1〉= |φ〉|λ〉
with

⇀

σ ·⇀n3θ |λ〉=λ|λ〉, (22)

[(p̂2
1θ+p̂

2
2θ)c

2+m2c4−~λω0mc
2]φ=E2 |φ〉. (23)

It is easy to see that (
⇀

σ ·⇀n3θ)
2=1 and so the eigenvalues

λ=±1. The operators in (11) can be rewritten in the
form

p̂1θ=P̂1θ+qB0X̂2θ/2,

p̂2θ=P̂2θ−qB0X̂1θ/2,

(24)

where

P̂1θ=(P̂1−P̂2)/
√

2, X̂1θ =(x̂1−x̂2)cosθ/
√

2,

P̂2θ=(P̂1+P̂2)cosθ/
√

2−P̂3sinθ,X̂2θ=(x̂1+x̂2)/
√

2,

(25)

which satisfy the following commutation relations

[X̂1θ , P̂2θ ]=[X̂2θ, P̂1θ ]=0,

[X̂1θ, X̂2θ ]=iµcosθ≡iµe,

[P̂1θ , P̂2θ ]=iν(cosθ+
√

2sinθ)≡iνe,

[

X̂1θ , P̂1θ

]

=
[

X̂2θ , P̂2θ

]

=i~cosθ≡i~e.

(26)

Defining

Â=
p̂1θ+ip̂2θ√

2m~ω0

, Â†=
p̂1θ−ip̂2θ√

2m~ω0

. (27)

Eq. (23) becomes

[2mc2~ω0(Â
†Â+1/2)+m2c4−~λω0mc

2]|φ〉=E2 |φ〉. (28)

The operators (27) obey [Â, Â†]=1, which means that
the eigenvalues of Â†Â are integers

Â†Â|n〉
A
=n|n〉

A
, (29)

where the integer n takes the values 0, 1, 2, 3, ···. Using
the ground state |0〉

A
defined by Â|0〉

A
= 0, any state

|n〉
A

can be written as |n〉
A

=(Â†n)|0〉
A
/
√
n!. Replacing

|φ〉 by |n〉
A

in (28), we get the energy spectrum

Enλ=±
√

2mc2~ω0(n+1/2)+m2c4−~λω0mc2. (30)

In quantum field theory, the negative energy corresponds
to the antiparticle.

For the motion on the plane, the state cannot be de-
scribed by |n〉

A
completely. For a 2D problem, we usually

need two quantum numbers to describe the states of the
system. Define two new operators

q̂1θ=P̂1θ−ρX̂2θ, q̂2θ =P̂2θ+ρX̂1θ. (31)

When ρ = (νe+qB0~e/2)/(~e+qB0µe/2), the operators
(31) commute with (p̂1θ , p̂2θ). Using the operators (28),
one can construct a new Hermitian operator such as
(q̂2θ − iq̂1θ)(q̂2θ +iq̂1θ). We write the eigenstates of the
new Hermitian operator as |k〉

B
, the wave function for
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the motion on the plane perpendicular to the effective
magnetic field is finally

|ψnλk(t)〉=|n〉
A
|k〉

B
|λ〉exp(−iEnλt/~). (32)

In the classical limit or the large quantum number
limit (which is the Bohr’s correspondence principle), q-
numbers become c-numbers. Or, the momentum opera-
tors p̂1θ, p̂2θ , p̂3θ in (16) become classical momenta p1θ,
p2θ, p3θ. In commutative quantum mechanics, it is known
that the sum of the possible matrix elements gives solu-
tions to the classical equations [26–29] in the classical
limit. Here we show that such conclusions can be ap-
plied to the noncommutative spaces. Define the sum of

the possible matrix elements

υj(t)=

∞
∑

l=0

〈ψlλk(t)|cαj |ψnλk(t)〉,

pj(t)=

∞
∑

l=0

〈ψlλk(t)|p̂j |ψnλk(t)〉.
(33)

As the positive and negative energies correspond to the
particle and antiparticle states respectively, we calculate
the quantities for the positive energy or the particle state.
In this case, the matrix elements 〈ψ1lλk|p̂1,2θ |ψ1nλk〉 are
nonzero only when l=n±1 (this fact can be obtained by
using the inverse form of formulas (24)). Through some
lengthy calculations, we have

υ1θ(t) =

∞
∑

l=0

〈ψlλk(t)|c⇀

α|ψnλk(t)〉·⇀n1θ=〈ψ1n+1,λk|
[

σ1θ
⇀

σ·⇀pc2
Enλη+mc2

+
⇀

σ ·⇀pσ1θc
2

En+1,λη+mc2

]

|ψ1nλk〉exp

[

i

~
(En+1,λ−Enλ)t

]

+〈ψ1n−1,λk|
[

σ1θ
⇀

σ·⇀pc2
Enλη+mc2

+
⇀

σ ·⇀pσ1θc
2

En−1,λη+mc2

]

|ψ1nλk〉exp

[

i

~
(En−1,λ−Enλ)t

]

→〈ψ1n+1,λk|2p1θc
2 |ψ1nλk〉

Enλ+mc2
exp

[

i

~
(En+1,λ−Enλ)t

]

+〈ψ1n−1,λk|
2p1θc

2

Enλ+mc2
|ψ1nλk〉exp

[

i

~
(En−1,λ−Enλ)t

]

→ 2c2

Enλ+mc2
{〈ψ1n+1,λk| p1θ |ψ1nλk〉eiΩ t+{〈ψ1n−1,λk| p1θ |ψ1nλk〉 e−iΩ t

}

→ c
√

2mc2n~ω0

Enλη+mc2
[
√
n+1exp(iΩt)+

√
nexp(−iΩt)]→ 2c

√
2mc2n~ω0

Ec+mc2
cos(Ωt), (34a)

υ2θ(t) =

∞
∑

l=0

〈ψlληk(t)|c⇀

α|ψnληk(t)〉·⇀n2θ→
2c
√

2mc2~ω0

Ec+mc2
sin(Ωt). (34b)

In the derivations, the following relations are used.
In the large quantum number limit

Enλ →
√

2mc2n~ω0+m2c4=Ec, (35a)

En+1,λ−Enλ

~
=

En+1,λ−Enλ

(n+1)~−n~

∼= ∂Enλ

∂(n~)

=
mc2

Ec

ω0≡Ω, (35b)

(En−1,λ−Enλ)/~ = −mc2ω0/Ec≡−Ω. (35c)

From (34), we see that υ2
1θ+υ

2
2θ is really a constant. The

forms (34) describe a round orbit. For the velocity op-
erators (8), u2

1θ+u2
2θ is not a constant. In other words,

the velocity operators defined by the time derivative of

the coordinates do not give a clear physical picture. By
some calculations, we also get

p1θ(t)→
2Ec

√
2m~ω0

Ec+mc2
cos(Ωt),

p2θ(t)→
2Ec

√
2m~ω0

Ec+mc2
sin(Ωt).

(36)

There are the relations pjθ(t)=Ecυjθ(t)/c
2, which agrees

with the ones in special relativity. One can check that
(34, 36) are the solutions to the classical equations corre-
sponding to (6) or (16). In relativistic quantum mechan-
ics, the eigenvalues of the velocity operator are not the
actual velocity of the particle. Quantum matrix elements
in the classical limit provide the desired results.
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3 Summary

Starting from the Dirac equation, the motion of a
charged spin-1/2 particle in a background magnetic field
is studied in 3D NC phase space. The motion of the
particle off the plane that the magnetic field is perpen-
dicular to tends to increase the effective magnetic field.
The matrix elements of velocity operators from the prob-
ability give classical solutions. The velocity operators
defined by the coordinate operators are quite different
from those related to the probability current.

Finally, let us analyze the effects of the noncommuta-
tivity. From (30), there is a relation between the squared
energies of the two states n+1 and n

E2
n+1,λ−E2

nλ

2mc2~
=ω0. (37)

On the noncommutative parameters, there are actually
no specific results. From the free fall in a uniform grav-
itational field, it is said that µ 6 10−13 m2 [30]. In
Ref. [31], it is pointed out that the bounds for the non-
commutative parameters are

µ64×10−40 m2,ν61.76×10−61 kg2·m2·s−2. (38)

The appearance of such a situation is due to the fact
that it is difficult to detect the values of the noncom-
mutative parameters using present experimental tech-

niques in direct way. Using the values µ=4×10−40 m2,
ν=1.76×10−61 kg2·m2·s−2, for the electron we have

E2
n+1,λ−E2

nλ

2mc2~
≈ ωe=

qB0

m
+

ν

m~
+
q2B2

0µ

4m~

= −(1.76×1011b)Hz

+(2×104+1.3×10−14b2)Hz, (39)

where b is a constant. The value of b is equal to the mag-
nitude of the magnetic field B0 when B0 is measured
in unit of Tesla. In deriving (39), the electronic mass
m=9.11×10−31 kg, the electronic charge q=−1.6×10−19C
and the Planck constant ~=1.05×10−34 J·S have been
used. The first term on the right-hand side of the equal-
ity is the frequency qB0/m when the noncommutative
parameters are zero. The terms in the brackets are the
modification due to the noncommutativity. Noncommu-
tativity needs super high energies, which demands that
the quantum number n is large and the magnetic field is
super strong. For a super strong magnetic field on the
surface of neutron stars B0 ∼ 109 T [32], the absolute
value of the modification induced by the noncommuta-
tivity is measurable. However, it is very small compared
to the first term. So, to detect the noncommutative ef-
fects directly needs extremely high precision.
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