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Critical behavior of higher cumulants of order

parameter in the 3D-Ising universality class *
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Abstract: QCD deconfinement phase transition is supposed to be the same universality class as the 3D-Ising

model. According to the universality of critical behavior, the Binder-like ratios and ratios of higher cumulants

of order parameter near the critical temperature in the 3D-Ising model are studied. The Binder-like ratio is

shown to be a step function of temperature. The critical point is the intersection of the ratios of different

system sizes between two platforms. The normalized cumulant ratios, like the Skewness and Kurtosis, do

not diverge with correlation length, contrary to the corresponding cumulants. Possible applications of these

characters in locating critical point in relativistic heavy ion collisions are discussed.
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1 Introduction

One of the main goals of current relativistic heavy

ion experiments is to locate the critical point of QCD

deconfinement phase transition. The critical charac-

ter is that the correlation length ξ becomes infinitely

larger in an infinite system. For a finite system, like

the one formed in relativistic heavy ion collisions,

the correlation length should be a finite maximum

at the critical point. Therefore, various correlation

length related observables were suggested for rela-

tivistic heavy ion collisions [1].

It has been recently shown that near the criti-

cal point, the density-density correlator of the baryon

number follows the same power law behavior as the

correlator of the sigma field, which is associated with

the chiral order parameter [2, 3]. Therefore, the

baryon number is considered as an equivalent or-

der parameter of the system formed in nuclear col-

lisions [4].

From statistical physics, it also shows that the sus-

ceptibilities of order parameter are directly related to

the cumulants of conserved charges, e.g.,

〈δN 2〉= V Tχ2. (1)

χ2 is the second susceptibility. 〈δN 2〉 = 〈(N − N̄)2〉

is the fluctuations of the conserved charge N . For

three flavor QCD, the conserved charges are baryon-

number, strangeness, and electric charge [5].

The third and fourth cumulants of conserved

charges are defined respectively as,

K3 = 〈δN 3〉, K4 = 〈δN 4〉−3〈δN 2〉2. (2)

In the vicinity of the critical point, they are argued

to be proportional to the higher power of correlation

length, i.e., ξ4.5 and ξ7 [6, 7], respectively. So they are

more sensitive to the correlation length, and highly

recommended for locating the critical point in rela-

tivistic heavy ion collisions.

In experiments [8], properly normalized cumu-
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lants, i.e., Skewness and Kurtosis,

K3/K3/2
2 =

〈δN 3〉

〈δN 2〉3/2
, K4/K2

2 =
〈δN 4〉

〈δN 2〉2
−3, (3)

were actually presented. As the second cumulant in

denominator is also proportional to a certain power of

correlation length [9], whether such normalized skew-

ness and kurtosis still diverge with the correlation

length is not clear from the theoretical point of view.

From the theoretical side, the ratios of higher-

order cumulants to the second one, e.g.,

R3,2 =
K3

K2

=
〈δN 3〉

〈δN 2〉
,

R4,2 =
K4

K2

=
〈δN 4〉

〈δN 2〉
−3〈δN 2〉,

(4)

are estimated [10–14]. The lattice QCD with two

light quark degrees of freedom shows that these ra-

tios of the baryon number, strangeness, and electric

charge have pronounced peaks from low to high tem-

perature in the transition region of chiral symmetry

breaking [10]. The effective potential models in the

mean-field approximation also shows that there are

peak, valley, and oscillating structures near the de-

confinement and chiral phase transitions [11, 12, 14].

However, all these are obtained under some approxi-

mations due to the difficulties in lattice QCD calcu-

lations [15] and model estimations [13].

The universality argument indicates that the

static critical exponents of the second-order phase

transition are only determined by the dimensionality

and symmetry of the system. The critical end point of

the QCD deconfinement phase transition, if it exists,

belongs to the same universality class as liquid-gas

phase transitions and the 3D-Ising model [4, 16–18].

Its universal critical properties are discussed to be

valid for various models and relevant to heavy ion col-

lisions [19–23], in particular the event-by-event fluc-

tuation of baryon number [21].

Therefore, if the formed system in heavy ion col-

lisions reaches thermal equilibrium [24], the freeze-

out curve is close to the transition line [25], and the

critical fluctuations survive in the final state [6, 7].

The critical behavior of corresponding higher cumu-

lant ratios of order parameter in the 3D-Ising model

may serve as good guidance in locating the critical

point in heavy ion experiments.

It is known in statistical physics that the Binder-

like ratio of order parameter is a direct location of

critical point [26]. Generally, the Binder-like ratios

are normalized raw moments of order parameter. The

third and fourth Binder-like ratios can be simply de-

fined as,

B3 =
〈|M |3〉

〈M 2〉3/2
, B4 =

〈M 4〉

〈M 2〉2
. (5)

Here we take the 3D-Ising model as an example. The

order parameter in the model is the magnet M of spin

~s in all lattice sites NL, i.e., M =

NL∑

i=1

~si/NL.

Equivalently, in relativistic heavy ion collisions,

the order parameter is the baryon number [4]. The

incident energy, or the controlling parameter, may

be directly mapped to the temperature and baryon

chemical potential [27]. The size of the formed sys-

tem is mainly determined by the overlapped area, i.e.,

centralities. So if incident energy passes through the

critical region, the Binder-like ratios of net-baryon

number may serve as a good location of the critical

point of QCD deconfinement phase transition.

In this paper, we first present the critical behav-

ior of Binder-like ratios in the 3D-Ising model, and

demonstrate why they are helpful, in particular, in

locating the critical point in relativistic heavy ion col-

lisions. Then, the critical behavior of skewness and

kurtosis, R3,2 and R4,2, are presented and discussed,

respectively. Meanwhile, from finite-size scaling of

the susceptibilities, the critical behavior of those ra-

tios are estimated and modeled independently. Fi-

nally, the summary is presented in Section 4.

The simulation of the 3D-Ising model is based on

the single-cluster algorithm formulated by Wolff [28].

It is a global update algorithm with a much smaller

autocorrelation time and dynamical exponent. At a

given temperature, 1.0 million independent configu-

rations, each one with 10 intervals, are used in the

calculations. The samples of 4 lattice sizes, L =8,

12, 16, 20, are simulated. From the generated sam-

ples, the critical temperature can be determined with

a very good precision [29].

2 Critical behavior of Binder-like ra-

tios of the order parameter

The critical behavior of Binder-like ratios, B3 and

B4, in the 3D-Ising for 4 different lattice sizes are pre-

sented in Fig. 1(a) and (b), respectively. We can see

that both B3 and B4 show a step jump in the vicin-

ity of critical temperature. The physical meaning of

this jump is clear. When the temperature is much

lower than the critical one, the system is almost or-

dered and the fluctuation of the order parameter is

very small, i.e.,

〈|M |n〉∼ 〈|M |〉n (for n = 2,3,4 · · · ). (6)
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So it results in the lower platform, which is 1 for all or-

ders of Binder-like ratios at all system sizes, as shown

in Fig. 1.

Fig. 1. (color online) The temperature depen-

dence of Binder ratios in Eq. (5) in the vicinity

of critical temperature in the 3D-Ising model

for 4 different lattice sizes.

When the temperature approaches the critical

one, the correlation length starts to increase with

temperature and the fluctuations become larger and

larger. Their critical behavior is system size depen-

dent and described by finite-size scaling, i.e., 〈|M |n〉

can be written in a scaling form [30],

〈|M |n〉= L−nβ/νFn(tL1/ν), (7)

where β(0.3262) and ν(0.6297) [29] are the critical ex-

ponents of order parameter and correlation length, re-

spectively. t = (T−Tc)/Tc is the reduced temperature

and Tc is the critical temperature. Correspondingly,

the Binder-like ratios become,

Bn = Un(tL1/ν), n = 3,4. (8)

All size curves intersect at the fixed point only at

the critical temperature, where they are system size

independent [31], as shown in Fig. 1.

When the temperature is much higher than the

critical one, the system is totally disordered. It again

approaches to a constant. This forms the platform at

high temperature. It is 1.6 and 3 times larger than

the lower platforms for the third and fourth Binder-

like ratios, respectively. So the higher the order of

Binder-like ratio, the larger the gap of the step func-

tion is.

This step function of Binder-like ratios of baryon

number may serve as a good locator of the critical

point in relativistic heavy ion collisions, where the

critical incident energy is unknown a priori. If we

scan incident energies, and observe two platforms in

low and high energy regions, respectively, then the

critical one is most probably between them. We can

finely tune the incident energy in the region and pre-

cisely determine the critical energy and exponents.

3 Critical behavior of the ratios of

higher cumulants of order parame-

ter

If we replace net-baryon, δN , by Ld(|M |−〈|M |〉)

in Eq. (3), the skewness and kurtosis of the order

parameter in the 3D-Ising model become

Skewness=
〈(|M |−〈|M |〉)3〉

〈(|M |−〈|M |〉)2〉3/2
,

Kurtosis=
〈(|M |−〈|M |〉)4〉

〈(|M |−〈|M |〉)2〉2
−3,

(9)

where Ld = NL, and d is the spacial dimension. The

skewness and kurtosis from the 3D-Ising model for

4 different lattice sizes are presented in Fig. 2(a) and

(b), respectively. We can see from the figure that they

change sharply in the vicinity of the critical temper-

ature. The skewness first drops down and then goes

up, and kurtosis oscillates with temperature. Their

values are system size dependent. Their signs change,

respectively, near the critical point. The former in

Fig. 2(a) changes from negative to positive when the

temperature is increased through the critical point,

while the latter in Fig. 2(b) becomes negative only

when the temperature is close to the critical point.

The sign changes in skewness and kurtosis are ob-

served in effective models [32, 33].
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Fig. 2. (color online) The temperature depen-

dence of skewness (a) and kurtosis (b) in

Eq. (3) in the vicinity of critical temperature

in the 3D Ising model for 4 different lattice

sizes.

As we know, the skewness and kurtosis measure

the symmetry and sharpness of the distribution, re-

spectively. The distributions of order parameter M

at system size L = 8 near various critical tempera-

tures are shown in Fig. 3. We can clearly see that the

long tail of the distributions changes from the left

to the right side when the temperature is increased

through the critical point, and the peak of the distri-

bution varies from sharp to flat when the temperature

approaches the critical one. In the 3D bond perco-

lation model, the same changes of the largest cluster

size distribution have been observed in the transition

region [34].

Those sign changes can also serve as a signal as-

sociated with the appearance of the critical point in

relativistic heavy ion collisions. If we observe the sign

change of baryon number skewness and kurtosis in a

certain incident energy region, it most probably in-

dicates the appearance of the critical point in the

nearby incident energy region [32, 33].

Fig. 3. (color online) The distributions of or-

der parameter near the critical temperatures

in the 3D-Ising model at system size L = 8.

The skewness and kurtosis also converge to two

constants when the temperature is away from the crit-

ical point, as shown in Fig. 2(a) and (b). But the two

constants at low and high temperatures are between

zero and 1. The gap between them is small and does

not change very much with the order of cumulants,

unlike the Binder-like ratio.

From the definition δN ≡ Ld(|M | − 〈|M |〉) and

the scaling form of 〈|M |n〉, the ith cumulants of Ising

model can be written as

Ki = Li(d−β/ν)Pi(tL
1/ν) . (10)

At the critical point t = 0, K3 ∼ L3(d−β/ν) and

K4 ∼ L4(d−β/ν). Correspondingly, the skewness and

kurtosis have the scaling forms

K3/K3/2
2 = FS(tL

1/ν), K4/K2
2 = FK(tL1/ν). (11)

They no longer diverge with correlation length, or

system size. At the critical temperature t = 0, the

scaling function, i.e., FS(0) or FK(0), is a system size

independent constant. All size curves intersect at the

fixed point [31].

The R3,2, and R4,2 of the order parameter in the

3D-Ising model for 4 different lattice sizes are pre-

sented in Fig. 4(a) and (b), respectively. We can

see again from Fig. 4(a) that R3,2 changes its value

sharply from negative to positive when the temper-

ature is increased through the critical point. R4,2 in

Fig. 4(b) oscillates greatly with temperature near the

critical point. These qualitative features, i.e., the sign

change in the third moment and oscillating structure

in the forth cumulants, are consistent with the esti-

mations of the effective models [32, 33].
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Fig. 4. (color online) The temperature depen-

dence of R3,2 (a), and R4,2 (b) in the vicinity

of critical temperature in the 3D-Ising model

for 4 different lattice sizes.

R3,2 and R4,2 are very sensitive to the system size

or correlation length. Their values become very large

when the system size increases. From Eq. (10), the

finite-size scaling forms of R3,2, and R4,2 are

R3,2 = Ld−β/νF3,2(tL
1/ν),

R4,2 = L2(d−β/ν)F4,2(tL
1/ν).

(12)

They diverge with the system size as Ld−β/ν and

L2(d−β/ν), respectively.

4 Summary

In this paper, using the 3D-Ising model, the same

universality class of QCD de-confinement phase tran-

sition, the critical behavior of Binder-like ratios, and

higher cumulant ratios of order parameter are pre-

sented. It is shown that near the critical temperature,

the Binder-like ratios are step functions of tempera-

ture. The gap of the step function is 1.6 and 3 times

wider for the third and fourth-order Binder-like ra-

tios, respectively. The critical point is the intersection

of Binder-like ratios of different size systems between

two platforms.

The critical behaviors of Skewness, Kurtosis, R3,2

and R4,2 at various system sizes are also studied by

using the 3D-Ising model, and estimated by finite size

scaling. When the temperature is increased through

the critical point, the ratios of the third-order cumu-

lants change their values from negative to positive in a

valley shape, and the ratios of the fourth-order cumu-

lants oscillate around zero. All size curves of skewness

(kurtosis) intersect at the critical point. The normal-

ized ratios, like the skewness and kurtosis, do not di-

verge with correlation length. While, un-normalized

ratios, R3,2 and R4,2, are divergent with correlation

length. They are proportional to ξ3−β/ν and ξ6−2β/ν ,

respectively, and very sensitive to the system size near

the critical temperature.

In relativistic heavy ion collisions, the correspond-

ing measurements are higher cumulant ratios of the

net-baryon. If the formed system in heavy ion col-

lisions reaches thermal equilibrium, the incident en-

ergy passes through the critical region, and the criti-

cal net-baryon fluctuations survive in the final state.

All those critical characters observed in the 3D-Ising

model may show up correspondingly. So it is inter-

esting to observe the Binder-like ratios and higher

cumulant ratios of net-baryon at RHIC beam energy,

SPS, and FAIR.
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