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Radial excitation states of η and η
′ in

the chiral quark model *
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Abstract: A chiral quark model is applied to calculate the spectra of pseudoscalar mesons η and η′. By

analyzing the obtained spectra, we find that the mesons η′(2 1S0), η(4
1S0), η

′(3 1S0) and η′(4 1S0) are the

possible candidates of η(1760), X(1835), X(2120) and X(2370). The strong decay widths of these pseudoscalars

to all the possible two-body decay channels are calculated within the framework of the 3P0 model. Although

the total width of η′(2 1S0) is compatible with the BES Collaboration’s experimental value for η(1760), the

partial decay width to ωω is too small, which is not consistent with the BES result. If X(1835) is interpreted

as η(4 1S0), the total decay width is compatible with the experimental data, and the main decay modes will be

πa0(980) and πa0(1450), which needs to be checked experimentally. The assignment of X(2120) and X(2370)

to η′(3 1S0) and η′(4 1S0) is disfavored in the present calculation because of the incompatibility of the decay

widths.
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1 Introduction

In 2005, the BES Collaboration observed a narrow

peak in the η′π+π− invariant mass spectrum in the

process J/ψ→η′π+π− with a statistic significance of

7.7σ. Fitting with the Breit-Wigner function yields

mass and width [1]

M = 1833.7±6.1(stat)±2.7(syst) MeV/c
2

Γ = 67.7±20.3(stat)±7.7(syst) MeV/c
2
,

and the product branching fraction

B(J/ψ→γX(1835))B(X(1835)→π+π−η′)

= (2.2±0.4(stat)±0.4(syst))×10−4.

BES-0 confirmed it in the same process with statisti-

cal significance larger than 20σ. The fitted mass and

width are M = 1836.5±3.0(stat)+5.6
−2.1(syst) MeV/c2,

Γ=190 ±9(stat)+38
−36(syst) MeV/c2. Meanwhile, an-

other two new resonances, X(2120) and X(2370), are

also observed in the same process with the statistical

significance larger than 7.2σ and 6.4σ, respectively.

The fitted masses and decay widths are [2]

M = 2122.4±6.7(stat)+4.7
−2.7(syst) MeV/c

2
,

M = 2376.3±8.7(stat)+3.2
−4.3(syst) MeV/c

2
,

and

Γ = 83±16(stat)+31
−17(syst) MeV/c

2
,

Γ = 83±17(stat)+44
−6 (syst) MeV/c

2
,

respectively. η(1760), whose nature is still controver-

sial, was first reported by the Mark 0 Collaboration

in the J/ψ radiative decays to ωω [3] and ρρ [4].

Then the DM2 Collaboration observed a large bump

peaking at 1.77 GeV/c2 in ωω invariant mass distri-

bution in the process of J/ψ→ γωω (ω→ π+π−π0)

[5] and the study of the decays J/ψ→ γπ+π−π+π−

and J/ψ→γπ+π−π0π0 shows that both decays have

a large ρρ dynamics [6]. The fitted mass and width

are M = 1760±11 MeV and Γ = 60 ± 16 MeV.

Recently, BES Collaboration reported its results on
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the decays J/ψ → γωω, ω → π+π−π0 [7], the

mass and width of the state turned out to be M =

1744±10(stat)±15 MeV and Γ=244+24
−21±25 MeV.

Much work has been devoted to the underlying

structures of X(1835) and η(1760) [8]. For X(1835),

the pp̄ bound state is a plausible intepretation [9–

12]. By calculating the mesonic decays of a bary-

onium resonance, Ding et al. claimed that the pp̄

bound state favors the decay channel X→ η4π over

X→ η3π [9]. In fact, it is just this work that stim-

ulates the observation of the J/ψ→ η′π+π− process

in BES experiments. Using a semi-phenomenological

potential model that can describe all the NN̄ scat-

tering data, Dedonder et al. found a broad spin-

isospin singlet, the S-wave quasi-bound state of NN̄,

which can be used to explain the peak observed by

BES [10]. Z. G. Wang et al. also calculated the

mass of X(1835) as a baryonium in the framework

of the QCD sum rule and the Bethe-Salpeter equa-

tion, and obtained consistent results with experimen-

tal data [11]. The large-Nc QCD was also applied to

study the state X(1835) as a baryonium [12]. Inter-

pretation of X(1835) as a glueball or a glueball mixed

with pseudoscalar meson or baryonium is also pro-

posed using the QCD sum rule [13–16]. Apart from

these explanations for X(1835) as an exotic state, the

conventional qq̄ picture of X(1835) is also proposed.

Huang and Zhu studied the behavior of X(1835) and

thought that it could be taken as the second radial

excitation of η′(958), in the effective Lagrangian ap-

proach [17]. The two-body decays of X(1835) as a

3 1S0 meson were also calculated by the quark-pair

creation ( 3P0) model [18]. The results showed that

the decay width was sensitive to the mixing angle

of two states Xn = (uū +dd̄)/
√

2 and Xs = ss̄. Re-

cently J. Yu et al. systematically studied the two-

body strong decays and double pion decays of the

η-family and assigned the X(1835) to the second ra-

dial excitation of η′(958), X(2120) and X(2370) to the

third and fourth radial excitation of η(548)/η′(958),

respectively [19]. For η(1760), J. Vijande et al. as-

signed it to be a 2 1S0 state of ss̄ in the chiral quark

model [20]. The assignment of η(1760) to the second

radial excitation of η(548) was also proposed by J. S.

Yu et al. [19]. Li and Page suggested that it could

be a gluonic meson [21]. A glueball mixed with qq̄

picture of η(1760) was also suggested by N. Wu et al.

[22]. Stimulated by these experimental and theoreti-

cal works, we shall study whether η(1760), X(1835),

X(2120) and X(2370) can be described in the simplest

system-qq̄ system.

In this work, the pseudoscalar meson spectrum is

determined by the chiral quark model. The mixing

angle between Xn and Xs is fixed through the system

dynamics. Based on the mass spectra of η and η′, the

possible candidates of X(1835), X(2120), X(2370) and

η(1760) are assigned. Then the strong decay widths

of the states are calculated in the framework of 3P0

model, and to see the assignment is reasonable or not

by comparing it with experimental data. The pa-

per is organized as follows: a brief review of the 3P0

model is given in Section 2. The chiral quark model

is introduced and the meson spectrum and the wave

functions of the mesons are obtained in Section 3.

The numerical result of the strong decay is shown in

Section 4. The last section is a summary.

2 The 3P0 model of meson decay

The 3P0 model, also known as the quark-pair cre-

ation (QPC) model, applied to the decay of meson A

to meson B+C, was first proposed by Micu [23], and

then developed by Le Yaouanc, Ackleh, Roberts et al.

[24–26]. The 3P0 model assumes that there is a quark

and antiquark pair created in vacuum, the quantum

number of the pair is JPC = 0++. Since vacuum is

colorless and flavorless, the color and flavor singlet

should be satisfied. The created pair is recombined

with the quark-antiquark pair in initial meson and

forms two mesons in the final state in two possible

ways, which are shown in Fig. 1.

Fig. 1. The two possible diagrams contributing

to A→B+C in the 3P0 model.

In the non-relativistic limit, the transition opera-

tor T takes the form

T = −3 γ
∑

m

〈1m1−m|00〉
∫
dp3dp4δ

3(p3 +p4)

×Ym
1

(

p3−p4

2

)

χ34
1−mφ

34
0 ω

34
0 b

†
3(p3)d

†
4(p4), (1)

where the dimensionless parameter γ represents the

strength of the quark-antiquark pair creation from

vacuum and can be obtained by fitting the experi-

mental data. p3 and p4 denote the momenta of the

created quark and antiquark respectively. Ym
l (p) =

|p|lY m
l (θp,φp) is the l-th solid harmonic polynomial
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that gives the momentum-space distribution of the

created quark-antiquark pair. χ34
1−m reflects the

triplet state of spin. φ34
0 = (uū + dd̄ + ss̄)/

√
3 and

ω34
0 = (rr̄+ gḡ+bb̄)/

√
3 correspond to the flavor and

color singlets, respectively. b†3(p3), d
†
4(p4) are the cre-

ation operators of the quark and antiquark, respec-

tively.

To depict the meson state, we define

|A(n2SA+1
A LA JAMJA

)(PA)〉

≡
√

2EA

∑

MLA,MSA

〈LAMLA
SAMSA

|JAMJA
〉

×
∫
dpAχ

12
SAMSA

φ12
A ω

12
A

∣

∣

∣

∣

q1

(

m1

m1+m2
PA +pA

)

× q̄2

(

m2

m1+m2
PA +pA

)〉

, (2)

and the wave function is normalized as
〈

A(n2SA+1
A LA JAMJA

)(PA)
∣

∣

∣

× A(n2SA+1
A LA JAMJA

)(P ′
A)
〉

= 2EAδ
3(PA−P ′

A), (3)

where χ12
SAMSA

,φ12
A ,ω

12
A represent the spin, flavor and

color wave functions, respectively; PA is the cen-

ter of mass momentum of meson A, and pA =

(m2p1 − m1p2)/(m1 + m2) is the relative momen-

tum of qq̄ pair; nA is the radial quantum num-

ber; |LA,MLA
〉, |SA,MSA

〉, |JA,MJA
〉 are the quan-

tum number of orbit angular momentum between

qq̄ pair in meson A, the total spin and the to-

tal angular momentum of the pair, respectively;

〈LAMLA
SAMSA

|JAMJA
〉 denotes a Clebsch-Gordan

coefficient, EA is the total energy of the meson A.

The S-matrix describing a strong decay process of

A→B+C is written as

〈BC|S|A〉= I−2πiδ(EA−EB−EC)〈BC|T |A〉, (4)

and

〈BC|T |A〉= δ3(PA−PB−PC)MMJA
MJB

MJC , (5)

where MMJA
MJB

MJC is the helicity amplitude of A→
B + C. Taking the center of the mass frame of me-

son A: PA = 0, one can obtain MMJA
MJB

MJC for the

decay process in terms of overlap integrals,

MMJA
MJB

MJC = 3γ
∑

{M}

〈LAMLA
SAMSA

|JAMJA
〉〈LBMLB

SBMSB
|JBMJB

〉〈LCMLC
SCMSC

|JCMJC
〉

×〈1m1−m|00〉〈χ14
SBMSB

χ32
SCMSC

|χ12
SAMSA

χ34
1−m〉[〈ω14

B ω
32
C |ω12

A ω
34
0 〉〈φ14

B φ
32
C |φ12

A φ
34
0 〉

×IMLA
,m

MLB
,MLC

(P ,m1,m2,m3)+(−1)1+SA+SB+SC〈ω32
B ω

14
C |ω12

A ω
34
0 〉〈φ32

B φ
14
C |φ12

A φ
34
0 〉

×IMLA
,m

MLB
,MLC

(−P ,m2,m1,m3)], (6)

where {M}=MLA
,MSA

,MLB
,MSB

,MLC
,MSC

,m, the momentum space integral IMLA
,m

MLB
,MLC

(P ,m1,m2,m3) and

IMLA
,m

MLB
,MLC

(−P ,m1,m2,m3) are given by

IMLA
,m

MLB
,MLC

(P ,m1,m2,m3) =
√

8EAEBEC

∫
dpψ∗

nBLBMLB

(

m3

m1 +m3

P +p

)

ψ∗
nCLCMLC

(

m3

m2 +m3

P +p

)

×ψnALAMLA
(P +p)Ym

1 (p), (7)

IMLA
,m

MLB
,MLC

(−P ,m1,m2,m3) =
√

8EAEBEC

∫
dpψ∗

nBLBMLB

(

− m3

m1 +m3

P +p

)

ψ∗
nCLCMLC

(

− m3

m2 +m3

P +p

)

×ψnALAMLA
(−P +p)Ym

1 (p), (8)

where PB =−PC = P ,p = p3, and m3 is the mass of the created quark. The spacial wavefunction is taken as

the simple harmonic oscillator (SHO) wavefunction. In momentum space, the SHO wavefunction reads

ΨnLML
(p) = (−1)n(−i)LRL+ 3

2

√

√

√

√

√

2n!

Γ

(

n+L+
3

2

)×exp

(

−R
2p2

2

)

L
L+ 1

2
n (R2p2)YML

L (p), (9)
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where YML
L (p) is the solid harmonic polynomial; R

is the parameter of the SHO wavefunction; p is the

relative momentum between qq̄ pair within a meson;

L
L+ 1

2
n (R2p2) is the associated Laguerre polynomial.

The decay width can be written as follows

Γ =π2 |P |
M 2

A(1+δBC)

∑

JL

∣

∣

∣
MJL

∣

∣

∣

2

, (10)

where MJL is the partial wave amplitude, which is

related to the helicity amplitude MMJA
MJB

MJC via

the Jacob-Wick formula [27]

MJL(A→BC) =

√
2L+1

2JA +1

∑

MJB
,MJC

〈L0JMJA
|JAMJA

〉

×〈JBMJB
JCMJC

|JMJA
〉

×MMJA
MJB

MJC (P ), (11)

where J = JB+JC, JA = JB+JC+L, |P |= |PB|= |PC|.
According to the calculation of 2-body phase space,

one can get

|P |=
√

[M 2
A−(MB +MC)2][M 2

A−(MB−MC)2]

2MA

,

where MA, MB, and MC are the masses of the mesons

A, B, and C, respectively.

3 The masses of the mesons

To calculate the meson spectrum, a QCD-inspired

model, constituent quark model, is used. The model

incorporates the perturbative (one gluon exchange)

and nonperturbative (color confinement and spon-

taneous breaking of chiral symmetry) properties of

QCD. The constituent quark mass originates from

the spontaneous breaking of chiral symmetry and

consequently the constituent quarks should interact

through the exchange of Goldstone bosons [28], in

addition to the one-gluon-exchange. To describe the

hadron-hadron interaction, the chiral partner of pi-

ons, the σ-meson, is also used. So the model Hamil-

tonian is

H = m1 +m2 +
p2

2µ
+V C +V G +V χ +V σ, (12)

V C = λc
1 ·λc

2 [−ac (1−e−µc r)+∆]+V C
SO,

V C
SO = −λc

1 ·λc
2

acµce
−µcr

4m2
1m

2
2 r

[(m2
1 +m2

2)(1−2as)

+4mimj(1−as)] S ·L,

V G = V G
C +V G

SO +V G
T ,

V G
C =

αs

4
λc

1 ·λc
2

{

1

r
− σ1 ·σ2

6m1m2

e−r/r0(µ)

r r20(µ)

}

,

V SO
OGE = −αs

16

λc
1 ·λc

2

m2
1m

2
2

[

1

r3
− e−r/rg(µ)

r3

(

1+
r

rg(µ)

)]

× [((m1 +m2)
2 +2m1m2)S ·L] ,

V T
OGE = − 1

16

αs

m1m2

λc
1 ·λc

2

[

1

r3
− e−r/rg(µ)

r

×
(

1

r2
+

1

3r2g(µ)
+

1

r rg(µ)

)]

S12,

Vχ =
(

vC
π

+vT
π

)

3
∑

a=1

λa
1 λ

a
2 +
(

vC
K +vT

K

)

7
∑

a=4

λa
1 λ

a
2

+
(

vC
η

+vT
η

)

(λ8
1 λ

8
2 cosθP−λ0

1 λ
0
2 sinθP) ,

vC
χ

= C1

[

Y (mχ r)−
Λ3

χ

m3
χ

Y (Λχ r)

]

σ1 ·σ2,

vT
χ

= C1

[

H(mχ r)−
Λ3

χ

m3
χ

H(Λχ r)

]

S12,

C1 =
g2
ch

4π

m2
χ

12m1m2

Λ2
χ

Λ2
χ
−m2

χ

mχ, χ=π,K,η,

Vσ = −C2

[

Y (mσr)−
Λσ

mσ

Y (Λσr)

]

+V SO
σ
,

V SO
σ

= −C2

m2
σ

2m1m2

[

G(mσr)−
Λ3

σ

m3
σ

G(Λσr)

]

S ·L,

C2 =
g2
ch

4π

Λ2
σ

Λ2
σ
−m2

σ

mσ,

S12 = 3(σ1 · r̂)(σ2 · r̂)−σ1 ·σ2,

Y (x) =
e−x

x
, H(x) =

(

1+
3

x
+

3

x2

)

Y (x),

G(x) =

(

1+
1

x

)

Y (x)

x
,

where r= |r1−r2| and p = (p1−p2)/2, r0(µ) = r̂0/µ,

rg(µ) = r̂g/µ. Other symbols have their usual mean-

ings. The effective running coupling constant is given

by

αs(µ) =
α0

ln

(

µ2 +µ2
0

Λ2
0

) , (13)

where µ is the reduced mass of the qq̄ system. The

chiral coupling constant gch is determined from the
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πNN coupling constant through

g2
ch

4π
=

(

3

5

)2
g2

πNN

4π

m2
u,d

m2
N

. (14)

The meson spectrum is obtained by solving the

Schrödinger equation,

HΨ = EΨ, (15)

Ψ = [ψnLML
χSMS

]
JMJ

χcχf , (16)

where χSMS
, χc, χf are the spin, color and flavor

wavefunctions of the meson, respectively, and can

be constructed through the symmetry. The spa-

cial wavefunction ψnLML
= RnL(r)YLML

(Ω) is ob-

tained by solving the second-order differential equa-

tion. The efficient numerical method, i.e., the Nu-

merov method [29], is used here. The model param-

eters, which are listed in Table 1, are fixed by fitting

the experimental data of the meson spectrum. Parts

of the obtained meson spectrum are shown in Tables 2

and 3. The detailed results can be found in Ref. [20].

To calculate the strong decay of mesons analytically

in the 3P0 model, the obtained radial part of the spa-

cial wavefunction RnL(r) is fitted by the SHO,

RnL(r) = β(L+ 3
2
)

√

√

√

√

√

2n!

Γ

(

n+L+
3

2

) exp

(

−β
2r2

2

)

×rLL
L+ 1

2
n (β2r2) . (17)

The fitted values of parameter β are also listed in

Tables 2 and 3.

Table 1. Model parameters. The masses of

mesons π,K,η take the experimental values.

mu,d/ ms/ ac/ µc/ ∆/ as

MeV MeV MeV fm−1 MeV —

313 555 430 0.7 181.10 0.777

α0 Λ0/ µ0/ r̂0/ r̂g/

— fm−1 MeV (MeV·fm) (MeV·fm)

2.118 0.113 36.976 28.170 34.500

Λπ/ Λσ/ ΛK/ Λη/ g2
ch/4π θP/

fm−1 fm−1 fm−1 fm−1 — (◦)

4.20 4.20 5.20 5.20 0.54 −15

There are two types of I = 0 states. One is com-

posed of u, d-quark and ū, d̄-antiquark, another is

composed of the s-quark and the s̄-antiquark. They

are mixed in the flavor SU(3) symmetry to form fla-

vor singlet η1 and octet η8. However, flavor SU(3)

is broken. In experiments, we have η and η′ instead

of η1 and η8 for the pseudoscalar. In the present cal-

culation, flavor SU(3) symmetry is not used, so we

have I = 0 flavor wavefunctions Xn and Xs. As a

consequence of K-meson exchange, they are mixed.

To obtain the masses of the I = 0 states, the follow-

ing procedure is taken. First, the Schrödinger equa-

tion for Xn and Xs are solved separately (K-meson

exchange is not employed). Secondly, by using the

wavefunctions Ψn and Ψs obtained in the first step

and taking into account the K-meson exchange, the

eigenenergies and eigenstates can be obtained by di-

agonalizing the Hamiltonian matrix

(

Hnn Hns

Hsn Hss

)(

Cn

Cs

)

=E

(

Cn

Cs

)

, (18)

where Hnn = 〈Ψn|H |Ψn〉, Hns = 〈Ψn|VK|Ψs〉 = Hsn

and Hss = 〈Ψs|H |Ψs〉. The eigen-state is |Ψ〉 =

Cn|Ψn〉 + Cs|Ψs〉. The obtained eigenenergies and

eigenstates are shown in Table 3. From Table 3,

one finds that η(1760), X(1835), X(2120), X(2370)

may be interpreted as η′(2 1S0), η(4
1S0), η

′(3 1S0)

and η′(4 1S0), respectively, by comparing the theo-

retical masses with the experimental data. To check

these assignments, the decay properties of the states

should be calculated, which is discussed in the next

section.

Table 2. The mass of I =1,
1

2
mesons and the

values of fitted β.

mass/ β/ R/
n2S+1LJ states isospin

MeV fm−1 GeV−1

1 1S0 π 1 139 2.308 2.196

2 1S0 π(1300) 1 1288 1.434 3.534

1 3S1 ρ 1 772 1.438 3.522

2 3S1 ρ(1450) 1 1478 1.096 4.624

11P1 b1(1235) 1 1234 1.243 4.077

1 3P0 a0(980) 1 984 1.473 3.440

2 3P0 a0(1450) 1 1587 1.125 4.505

1 3P1 a1(1260) 1 1205 1.300 3.898

1 3P2 a2(1320) 1 1327 1.106 4.582

1 3P2 a2(1700) 1 1732 0.890 5.694

1 1S0 K 1/2 496 2.313 2.191

2 1S0 K(1460) 1/2 1472 1.545 3.280

1 3S1 K∗(892) 1/2 910 1.629 3.111

2 3S1 K(1630) 1/2 1620 1.262 4.016

11P1 K1(1400) 1/2 1414 1.371 3.696

1 3P0 K∗
0(1430) 1/2 1213 1.572 3.224

2 3P0 K∗
0(1950) 1/2 1768 1.243 4.077

1 3P1 K1(273) 1/2 1352 1.435 3.531

1 3P2 K∗
2(1430) 1/2 1450 1.572 3.224

1 3D1 K1(1680) 1/2 1698 1.205 4.206
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Table 3. The masses of I = 0 mesons and the value of fitted β (β = C2
nβn +C2

s βs).

(nL)JPC states mass/MeV Cn Cs β/fm−1 R/GeV−1

1 1S0 η 572 8.6564×10−1
−5.0066×10−1 1.732693 2.924

1 1S0 η′(958) 956 5.0066×10−1 8.6564×10−1 2.064307 2.455

2 1S0 η(1295) 1290 9.6360×10−1
−2.67323×10−1 1.183–1.666 3.041–4.284

2 1S0 η′(1760) 1795 2.6732×10−1 9.6360×10−1 1.183–1.666 3.041–4.284

3 1S0 η(3S) 1563 9.9350×10−1
−1.1380×10−1 0.929–1.360 3.726–5.455

3 1S0 η′(3S) 2276 1.1380×10−1 9.9350×10−1 0.929–1.360 3.726–5.455

4 1S0 η(4S) 1807 9.9935×10−1
−3.5928×10−2 0.6725–1.0995 4.607–7.530

4 1S0 η′(4S) 2390 3.5928×10−2 9.9935×10−1 0.6725–1.0995 4.607–7.530

1 3S1 ω(782) 691 9.9499×10−1 9.9967×10−2 1.547 3.276

1 3S1 φ(1020) 1020 −9.9967×10−2 9.9499×10−1 1.918 2.642

2 3S1 ω(1420) 1444 9.9852×10−1 5.4331×10−2 1.163 4.357

2 3S1 φ(1680) 1726 −5.4331×10−2 9.9852×10−1 1.506 3.365

11P1 h1(1170) 1257 1.0 0 1.202 4.216

11P1 h′
1 1511 0 1.0 1.581 3.205

1 3P2 f2(1270) 1311 1.0 0 1.112 4.557

1 3P2 f′2(1525) 1556 0 1.0 1.496 3.387

4 The strong decay of the candidates

for η(1760), X(1835), X(2120),

X(2370)

η, η′ and their radial excitations have the same

quantum numbers IJPC = 00−+. According to the
3P0 model discussed above, the isospins of mesons B

and C can take the values I = 0,1/2, or 1 with the con-

dition IB +IC = IA. All the allowed two-body decay

modes of η(η′) family and corresponding partial-wave

amplitudes are listed in Table 4.

To calculate the strong decay widths of mesons,

the strength of the quark-antiquark pair creation

from the vacuum, γ, has to be fixed. It is obtained

by fitting the experimental values of the strong decay

widths of light and charmed mesons, charmonium,

and baryons. In the present work, for the non-strange

quark pair creation, γ = 6.95, and for ss̄ creation,

γs=γ/3, which are adopted in many researches [30–

33].

4.1 η(2 1S0) and η
′(2 1S0)

From the mass of state η(2 1S0), it is natural to

assign the state η(1295) to it. In Fig. 2, the depen-

dence of the partial widths of the strong decay of

η(2 1S0) on RA is shown. Taking RA=3.0–4.3 GeV−1

discussed above, the total width ranges from 16 to

35 MeV, which is a little lower than the experimental

value of the total width Γ = 55± 5 MeV [34]. The

assignment is reasonable because the three-body de-

cay widths have not been taken into account in the

present work.

Fig. 2. The strong decay width of the η(2 1S0).

The experimental evidence for η(1760) is contro-

versial. There are large differences between the ob-

servations of the MARK 0, DM2 and BES collabora-

tions [1, 3–6]. In our calculation, the mass of η′(21S1)

is 1795 MeV, which is close to the experimental mass

of η(1760). So it can be taken as a candidate of

η(1760). In Fig. 3, we show the dependence of the

partial widths of the strong decay of the η′(2 1S0) on

the RA. Taking RA =3.0–4.3 GeV−1 discussed above,

the total width ranges from 256 to 404 MeV, which is

much larger than the results given by Mark 0 and the

DM2 Collaboration, but falls within the range of the

BES experimental data. In this range, η′(2 1S0) has a

sizable branching ration into πa0(980), πa2(1320), ρρ,

and KK∗, but the partial width toωω is rather small.

So the assignment of η(1760) to η′(2 1S0) is disfa-

vored in the present calculation. In Ref. [19], η(1760)

is taken as η(3S), the total decay width is between
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Table 4. The allowed decay modes and the amplitudes of the radial excited states of η and η′. For Xn decay,

φf =

√

1

2
,

√

1

3
,

√

1

6
, 0 for IB = IC = 1, 1/2, 0(Xn), 0(Xs) and for Xs decay, φf = 0,

√

2

3
, 0,

√

1

3
for

IB = IC =1, 1/2, 0(Xn), 0(Xs).

X→
1S0 + 3P0 πa0(980), πa0(1450), π(1300)a0(980), MJL =M00 = M000

KK∗
0(1430), KK∗

0(1950) M000 =

√

1

36
(I−1,−1

0,0 +I0,0
0,0 +I1,1

0,0 )φf

X→
1S0 + 3P2 πa2(1320), πa2(1700), KK∗

2(1430), ηf2(1270), MJL =M22 = M000

η′f2(1270), ηf′2(1525) M000 =

√

1

72
(I−1,−1

0,0 −2M0,0
0,0 +M1,1

0,0 )φf

X→
1S0 + 3S1 KK∗, KK∗(1410), K(1460)K∗ MJL = M11 =−M000

M000 =−

√

1

12
I0,0
0,0φf

X→
1S0 + 3D1 KK∗(1680) MJL = M11 =−M000

M000 =

(

√

1

40
I−1,−1
0,0 +

√

1

30
I0,0
0,0 +

√

1

40
I1,1
0,0

)

φf

X→
3S1 + 3P1 ρa1(1640), ρa1(1260), K∗K1(1273), ωf1(1285) MJL = M00 +M22

M00 =

√

1

3
(M0−11

−M000 +M01−1)

M22 =

√

1

6
(M0−11 +2M000 +M01−1)

M0−11 =−

√

1

24
(I0,0

0,0 +I1,1
0,0 )φf

M000 =

√

1

24
(I−1,−1

0,0 +I1,1
0,0 )φf

M01−1 =−

√

1

24
(I0,0

0,0 +I1,1
0,0 )φf

X→
3S1 + 3S1 ρρ, ρρ(1450), ωω, ωω(1420), MJL = M11 =

√

1

2
(M0−11

−M01−1)

K∗K∗, K∗K∗(1410), φφ M0−11 =

√

1

12
(I0,0

0,0 )φf , M0−11 =−

√

1

12
(I0,0

0,0 )φf

X→
3S1 + 1P1 ρb1(1235), K∗K1(1400), ωh1(1170) MJL = M00 +M22

M00 =

√

1

3
(M0−11

−M000 +M01−1)

M22 =

√

1

6
(M0−11 +2M000 +M01−1)

M0−11 =

√

1

12
I1,1
0,0φf , M000 =−

√

1

12
I1,1
0,0φf

M01−1 =

√

1

12
I−1,−1
0,0 φf

X→
3S1 + 3P2 ρa2(1320), K∗K∗

2(1430) MJL =M22 =−

√

1

2
(M0−11

−M01−1)

M0−11 =

√

1

24
(I0,0

0,0 −I1,1
0,0 )φf

M01−1 =

√

1

24
(I−1,−1

0,0 −I1,1
0,0 )φf
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Fig. 3. The strong decay widths of the η′(2 1S0).

60–100 MeV, which falls in the range of DM2’s re-

sults, but is far below the BES’s results.

4.2 η(3 1S0) and η
′(3 1S0)

The calculated mass of η(3 1S0) is 1563 MeV,

which is rather higher than the mass of the observed

state η(1475). The strong decay width of η(3 1S0) is

shown in Fig. 4. Compared with the experimental to-

tal width of η(1475), Γ = 85±9 MeV (the dominated

decay process is KK̄π), the assignment of η(1475) to

η(3 1S0) is possible. However, because of the large

mass difference, further study is needed.

Fig. 4. The strong decay widths of the η(3 1S0).

Besides confirming the existence of X(1835) in

the π+π−η′ invariant-mass spectrum in the process

J/ψ → η′π+π−, another two states X(2120) and

X(2370) are observed by BES0 with statistical sig-

nificance larger than 7.2σ and 6.4σ, respectively. By

comparing the masses of the η(η′) family, it is pos-

sible to take η′(3 1S0) as the candidates of X(2120).

Because of its large mass, many strong decay modes

are allowed. Because both Xn and Xs have contribu-

tions to the state ns̄sn̄, the partial width of the strong

decay to two isospin I =
1

2
mesons is generally much

larger than that to two isospin 1 or 0 mesons. So the

Fig. 5. The strong decay widths of the η′(3 1S0).
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main decay channels of η′(3 1S0) are KK∗
0 and KK∗.

In Fig. 5, the partial widths of their strong decays

are shown. For η′(3 1S0) with RA=3.7–5.6 GeV−1,

the decay widths are much higher than the exper-

imental value from BES0. So the assignment of

X(2120) to η′(3 1S0) is disfavored. In fact, the calcu-

lated mass of η′(3 1S0) is more close to the observed

state η(2225) with mass and width, 2226± 16 MeV

and Γ = 185+70
−40 MeV. The calculated width is at least

2 times the width of η(2225). Considering the uncer-

tainty of the 3P0 model, the assignment cannot be

excluded.

4.3 η(4 1S0) and η
′(4 1S0)

In the present calculation, the mass of η(4 1S0),

1807 MeV, is close to the mass of X(1835), so the

assignment of X(1835) to η(4 1S0) is possible, which

is different from the assignment of Ref. [19], η′(3S).

In Fig. 6, the dependence of the partial widths of

the strong decay of the η(4 1S0) on the RA is shown.

From the mass calculation, RA=4.6–7.5 GeV−1 is ob-

tained. In this range, the total width ranges from

54 to 692 MeV, which falls within the range of the

BES experimental data, and the main decay modes

are πa0(980) and πa0(1450). We strongly suggest an

experimental search for X(1835) in these modes to

justify the η(4 1S0) assignment.

The calculated mass of η′(4 1S0) is 2390 MeV,

which is close to the mass of X(2370), so the possible

candidate of X(2370) is η′(4 1S0). The partial decay

widths of η′(4 1S0) are shown in Fig. 7. For η′(4 1S0)

with RA =4.6–7.5 GeV−1, the main decay chan-

nels of η′(4 1S0) are KK∗, KK1(1352), KK∗
0(1430),

KK∗
0(1950) and the decay widths are much higher

than the experimental data of BES0. If we describe

X(2370) as η′(4 1S0) with parameters in this work , it

is obviously not appropriate.

Fig. 6. The strong decay widths of the η(4 1S0).

Fig. 7. The strong decay widths of the η′(4 1S0).
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5 Summary and discussions

By using chiral quark model, the mass spec-

tra of η and η′ families are calculated, where the

mixing between (uū + dd̄)/
√

2 and ss̄ is determined

by system dynamics, K-meson exchange. Based on

the mass spectra, the possible candidates of four

JPCIG = 0−+0+ mesons, η(1760), X(1835), X(2120)

and X(2370) are assigned to η′(2 1S0), η(4 1S0),

η′(3 1S0), η
′(4 1S0). Then all of their kinematically

allowed two-body strong decays can be calculated

within the framework of the 3P0 model. The wave-

functions needed in the calculation are obtained from

the mass calculation. To simplify the calculation,

SHO wavefunctions are used to mimic real radial

wavefunctions.

The decay widths turn out to be strongly depen-

dent on the SHO wave function scale parameter β.

For η(1760), the width is larger than the result of [6]

but is compatible with the BES observation results [1]

in the RA range. However, the partial width to ωω

is too small, which is incompatible with the experi-

mental data [1, 3, 6]. So the assignment of η(1760)

to η(2 1S0) is disfavored in the present calculation.

For the state X(1835), the calculated decay width is

consistent with the experimental data, and πa0(980)

and πa0(1450) are the main decay modes. To jus-

tify the assignment, experimental investigation of the

πa0(980) and πa0(1450) decay modes of X(1835) is

needed. Sine X(1835) is around the threshold of pp̄;

it may be a mixture of qq̄ and baryonium. Further

study of state X(1835) by taking into account the

mixture is essential to understand the nature of the

state.

X(2120) and X(2370) are assigned to η′(3 1S0) and

η′(4 1S0), respectively. Since they have larger masses,

many strong decay modes are allowed and generally

the phase space is large. The calculated total decay

widths are much higher than the experimental val-

ues. The large decay width may be due to the over-

estimated value of γ. To exclude the impact of pa-

rameters, the branching ratio is better for justifying

the assignment. More experimental data are needed.

Since the lattice QCD predicts that the 0−+ glueball

is about 2.3–2.6 GeV, which is around the masses of

X(2120) and X(2370), the study with the mixture of

qq̄, glueball and other configurations are necessary

to understand the nature of X(2120) and X(2370)

states.
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